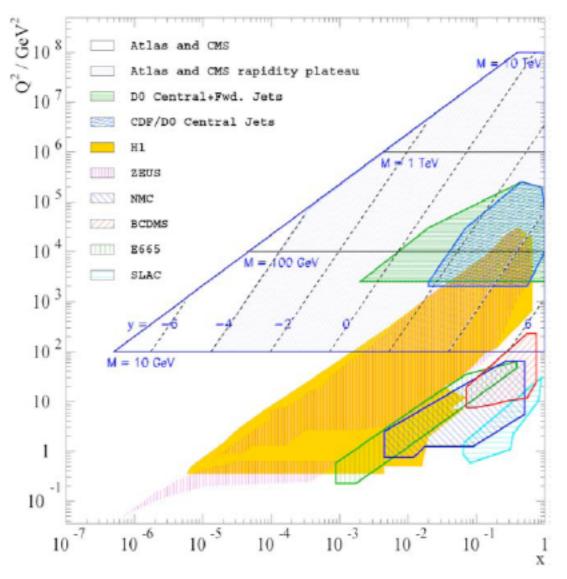
# Higgs production in association with jets at the LHC

Vittorio Del Duca INFN LNF

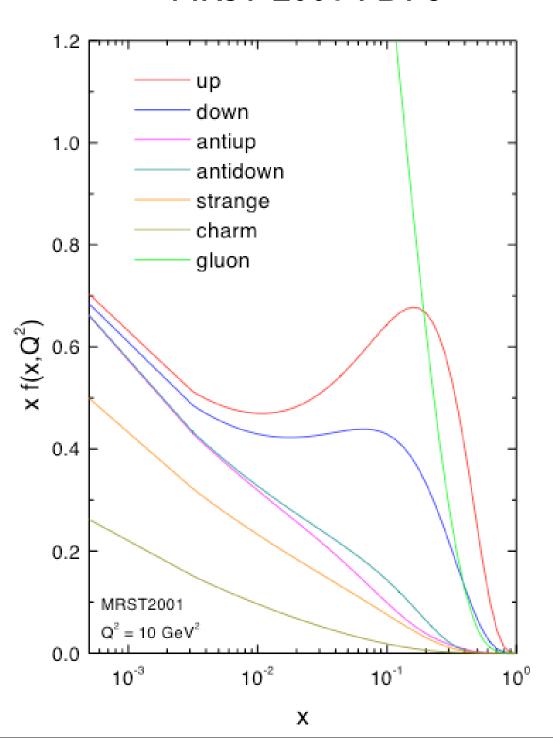
HERA and the LHC


DESY 15 March 2007

# LHC kinematic reach

### **LHC** parton kinematics

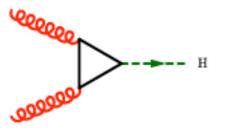
### $x_{1,2} = (M/14 \text{ TeV}) \exp(\pm y)$ M = 10 TeV $10^{7}$ $10^{6}$ M = 1 TeV $10^{5}$ M = 100 GeV $10^{4}$ $10^{3}$ M = 10 GeVfixed **HERA** $10^{1}$ target $10^{-2}$ $10^{-5}$ $10^{-3}$ $10^{-6}$ $10^{-4}$ $10^{-1}$ $10^{-7}$

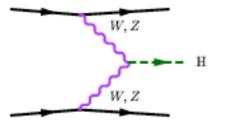

# LHC opens up a new kinematic range

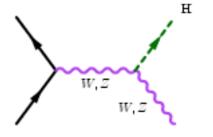


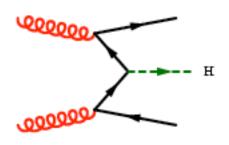
Feynman x's for the production of a particle of mass M

$$x_{1,2} = \frac{M}{14 \text{ TeV}} e^{\pm y}$$

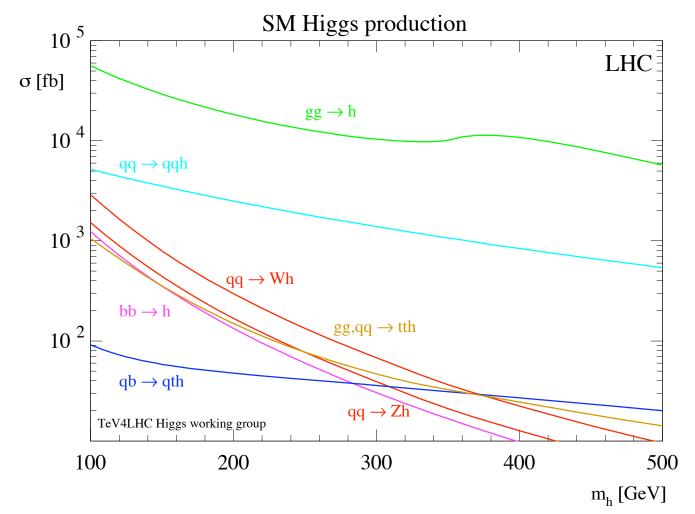

# MRST 2001 PDF's





## **HIGGS PRODUCTION MODES AT LHC**


In proton collisions at I4 TeV, and for  $M_H>100~{
m GeV}$  the Higgs is produced mostly via

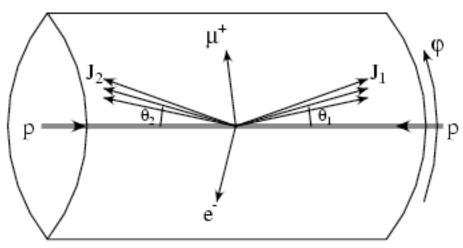
- **Q** gluon fusion  $gg \rightarrow H$ 
  - $\bigcirc$  largest rate for all  $M_H$
  - $\bigcirc$  proportional to the top Yukawa coupling  $y_t$
- igotimes weak-boson fusion (WBF) qq o qqH
  - second largest rate (mostly ud initial state)
  - proportional to the WWH coupling
- igotimes Higgs-strahlung qar q o W(Z)H
  - third largest rate
  - same coupling as in WBF
- $igotimes t ar{t}(bar{b})H$  associated production
  - $\bigcirc$  same initial state as in gluon fusion, but higher x range
  - $\bigcirc$  proportional to the heavy-quark Yukawa coupling  $y_Q$

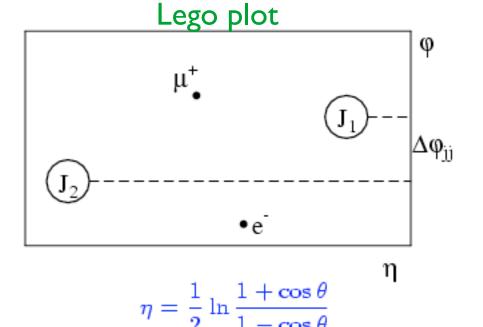








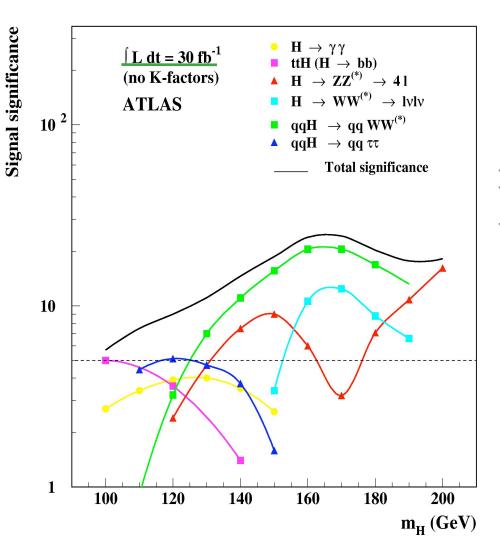


# **HIGGS PRODUCTION AT LHC**



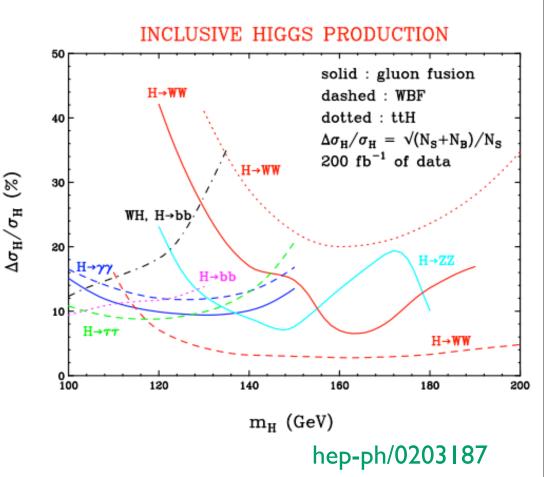

- igotimes in the intermediate Higgs mass range  $M_H \sim 100-200~{
  m GeV}$ 
  - $\odot$  gluon fusion cross section is  $\sim 20-60~\mathrm{pb}$
  - $\bigcirc$  WBF cross section is  $\sim 3-5~\mathrm{pb}$
  - $WH,ZH,tar{t}H$  yield cross sections of  $\sim 0.2-3~
    m pb$

# WEAK BOSON FUSION: $qq \rightarrow qqH$

### A WBF event







### **WBF** features

- energetic jets in the forward and backward directions
- Higgs decay products between the tagging jets
- $\bigcirc$  sparse gluon radiation in the central-rapidity region, due to colourless W/Z exchange
- NLO corrections increase the WBF production rate by about  $10\,\%$ , and thus are small and under control
- WBF can be measured with good statistical accuracy:  $\sigma \times \mathrm{BR} \approx \mathcal{O}(10\%)$

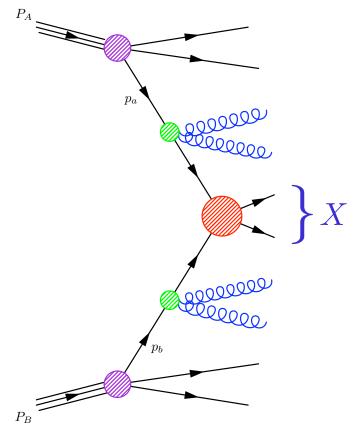
# SIGNAL SIGNIFICANCE AND (STAT + SYST) ERROR



Statistical significance:  $\frac{N_S}{\sqrt{N_S + N_B}}$ 



QCD/p.d.f. uncertainties:


 $\mathcal{O}(5\%)$  for WBF

 $\mathcal{O}(20\%)$  for gluon fusion

luminosity uncertainties: O(5%)

# Cross sections at high Q<sup>2</sup>

separate the short- and the long-range interactions through factorisation

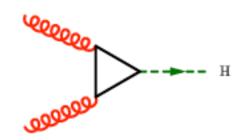


$$\begin{split} \sigma_X &= \sum_{a,b} \int_0^1 dx_1 dx_2 \; f_{a/A}(x_1,\mu_F^2) \; f_{b/B}(x_2,\mu_F^2) \\ &\times \; \hat{\sigma}_{ab\to X} \left( x_1, x_2, \{p_i^\mu\}; \alpha_S(\mu_R^2), \alpha(\mu_F^2), \frac{Q^2}{\mu_R^2}, \frac{Q^2}{\mu_F^2} \right) \\ &X = W, Z, H, Q\bar{Q}, \text{high-} E_T \text{jets}, \dots \end{split}$$

 $\hat{\sigma}$  is known as a fixed-order expansion in  $\alpha_S$ 

$$\hat{\sigma} = C\alpha_S^n(1 + c_1\alpha_S + c_2\alpha_S^2 + \ldots)$$
 $c_1 = \text{NLO}$   $c_2 = \text{NNLO}$ 

or as an all-order resummation


$$\hat{\sigma} = C\alpha_S^n[1 + (c_{11}L + c_{10})\alpha_S + (c_{22}L^2 + c_{21}L + c_{20})\alpha_S^2 + \ldots]$$
 where  $L = \ln(M/q_T), \ln(1-x), \ln(1/x), \ln(1-T), \ldots$   $c_{11}, c_{22} = \bigsqcup c_{10}, c_{21} = \text{NLL} c_{20} = \text{NNLL}$ 

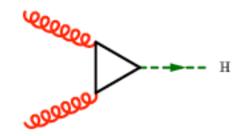
# HIGGS PRODUCTION VIA GLUON FUSION

### LEADING ORDER

$$\mathcal{O}(\alpha_s^2)$$

$$\mathcal{O}(lpha_s^2) \qquad gg o H$$



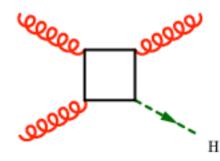

• energy scales:  $\hat{s} = M_{\rm H}^2$  and  $M_t^2$ 

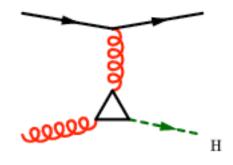
### HIGGS PRODUCTION VIA GLUON FUSION

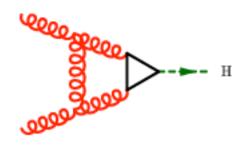
### LEADING ORDER

$$\mathcal{O}(\alpha_s^2)$$

$$\mathcal{O}(\alpha_s^2)$$
  $gg \to H$ 





• energy scales:  $\hat{s} = M_{H}^{2}$  and  $M_{t}^{2}$ 


### NLO CORRECTIONS

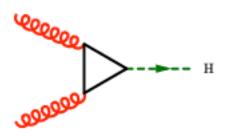
$$\mathcal{O}(lpha_s^3)$$

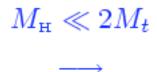
- 2-loop  $gg \rightarrow H$
- 1-loop  $gg \to gH$   $qg \to qH$  + crossings

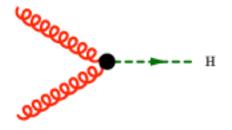




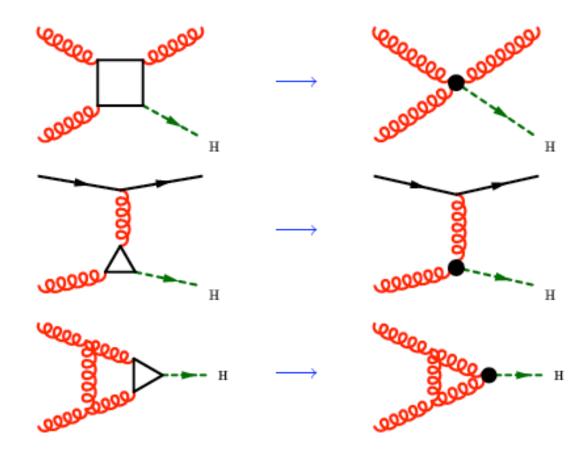



Djouadi, Graudenz, Spira, Zerwas, '93-'95


ightharpoonup large K factor:  $\sigma^{\text{NLO}} = K^{\text{NLO}} \sigma^{\text{LO}}$   $\mathcal{O}(40 - 100\%)$ 


# THE LARGE TOP-MASS LIMIT




## THE LARGE TOP-MASS LIMIT



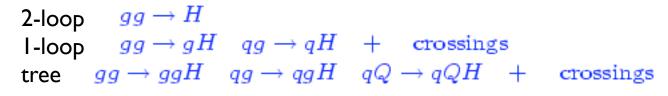


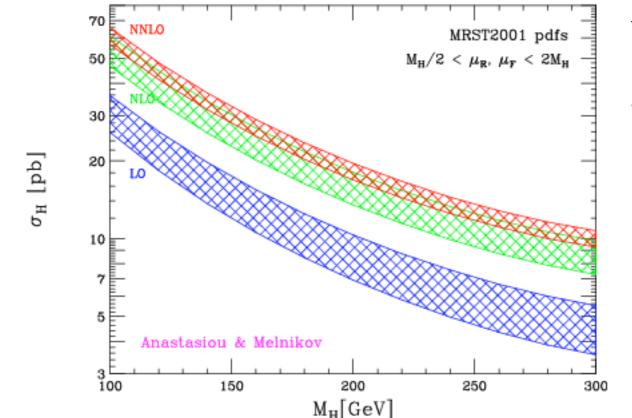


### **NLO** CORRECTIONS



K factor in the large  $M_t$  limit  $K_{\infty} = \lim_{M_t \to \infty} K$ NLO rate in the large  $M_t$  limit


$$\sigma_{\infty}^{\rm NLO} = K_{\infty}^{\rm NLO} \ \sigma^{\rm LO}$$


 $\sigma_{\infty}^{
m NLO}$  is within 10% of  $\sigma^{
m NLO}$  for  $M_{
m H}\lesssim 1~{
m TeV}$ 

# $gg \to H$ in the large $M_t$ Limit

### **NNLO** CORRECTIONS

$$\mathcal{O}(\alpha_S^4)$$





total cross section for inclusive Higgs production at LHC

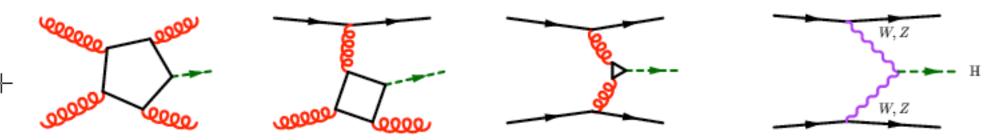
R. Harlander hep-ph/0007289

Harlander Kilgore 02
Anastasiou Melnikov 02
Ravindran Smith van Neerven 03

The band contours are

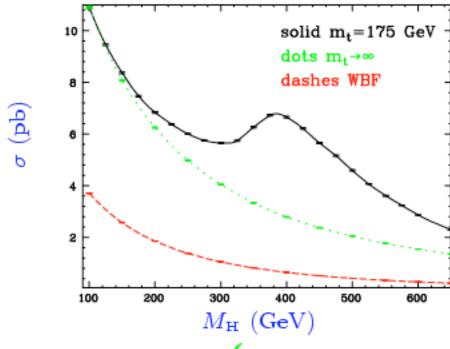
lower 
$$\mu_R=2M_{
m H}$$
  $\mu_F=M_{
m H}/2$ 

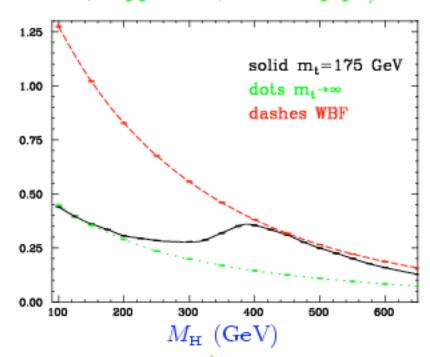
upper 
$$\mu_R=M_{
m H}/2$$
  $\mu_F=2M_{
m H}$ 


# HIGGS COUPLINGS AND QUANTUM NUMBERS

The properties of the Higgs-like resonance are its

- couplings: gauge, Yukawa, self-couplings
- quantum numbers: charge, colour, spin, CP

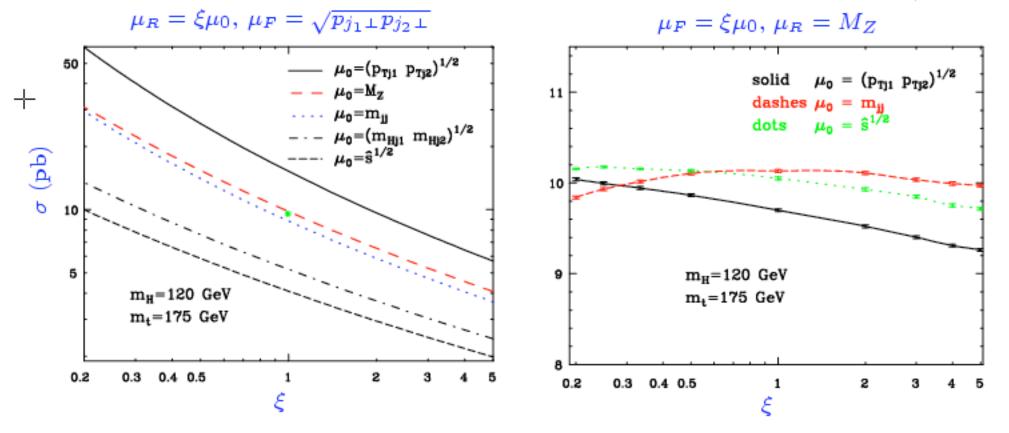

The gauge coupling has also CP properties and a tensor structure. Info on that can be obtained by analysing the final-state topology of Higgs + 2 jet events


### H+ **2 JETS RATE** as a function of $M_{ m H}$



$$\mu_F = \sqrt{p_{j_1 \perp} p_{j_2 \perp}} \,, \mu_R = M_Z$$

Kilgore, Oleari, Schmidt, Zeppenfeld, VDD hep-ph/0105129






$$\text{WBF cuts: incl.} \, + \left\{ \begin{array}{l} |\eta_{j_1} - \eta_{j_2}| > 4.2 \\ \\ \eta_{j_1} \cdot \eta_{j_2} < 0 \\ \\ \sqrt{s_{j_1 j_2}} > 600 \; \text{GeV} \end{array} \right.$$

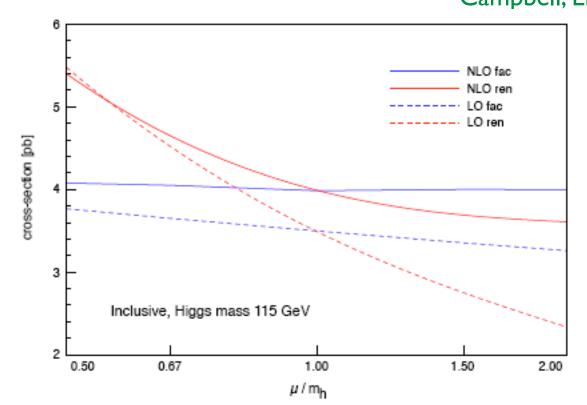
WBF cuts enhance WBF wrt gluon fusion by a factor 10

Kilgore, Oleari, Schmidt, Zeppenfeld, VDD hep-ph/0108030

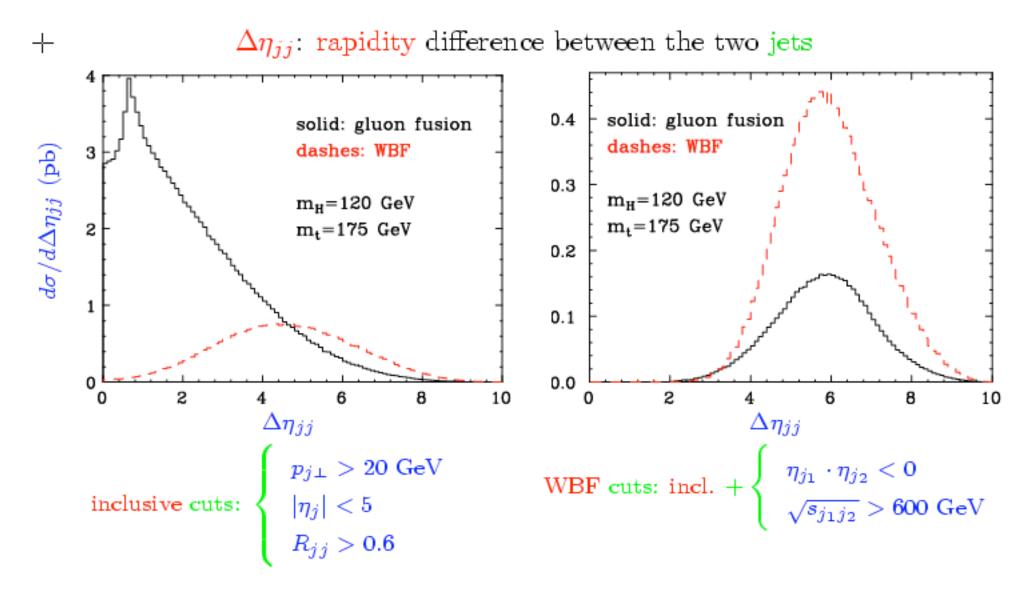


- $^{\bullet \bullet}$  strong  $\mu_R$  dependence: the calculation is LO and  $\mathcal{O}(\alpha_S^4)$ 
  - a natural scale for  $\alpha_s$ ?

    high energy limit suggests  $\alpha_s^4 \to \alpha_s(p_{j_1\perp})\alpha_s(p_{j_1\perp})\alpha_s^2(M_{\rm H})$   $\sigma$  varies by a factor 2.5 for  $\mu_0/2 < \mu_R < 2\mu_0$
- mild  $\mu_F$  dependence:  $\mathcal{O}(10\%)$  over the  $\mu_0/5 < \mu_R < 5\mu_0$  range


### **NLO** corrections

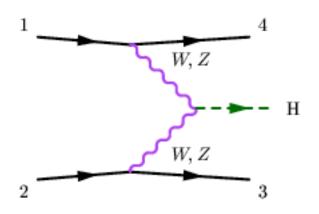
NLO corrections increase the WBF production rate by about 10 %, with a few % change under  $\mu_R$  scale variation


Campbell, Ellis; Figy, Oleari, Zeppenfeld 2003 Berger Campbell 2004

NLO corrections in the large  $M_{top}$  limit increase the gluon fusion production rate by about 15--25 %, but the change under  $\mu_R$  scale variation is sizeable

Campbell, Ellis, Zanderighi 2006




### RAPIDITY DISTRIBUTIONS



- lacktriangle WBF events spontaneously have a large  $\Delta \eta_{ij}$
- $rightharpoonup ext{dip in gluon fusion at low } \Delta \eta_{jj} ext{ is unphysical: } R_{jj} = \sqrt{\Delta \eta_{jj} + \Delta \phi_{jj}} > 0.6$


### **AZIMUTHAL ANGLE CORRELATIONS**

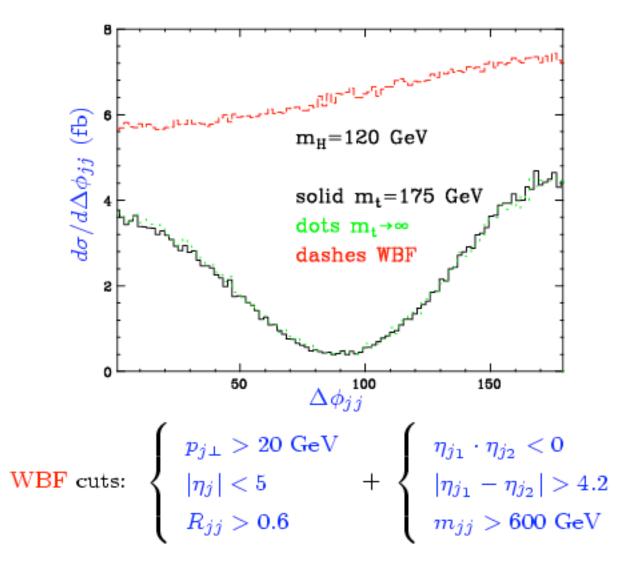
 $\Delta \phi_{jj} \equiv$  the azimuthal angle between the two jets



$${\cal A}_{WBF} {\sim} \; rac{1}{2p_1 \cdot p_4 - M_W^2} rac{1}{2p_2 \cdot p_3 - M_W^2} \hat{s} m_{jj}^2$$

 $\Longrightarrow$  a flat  $\Delta \phi_{ij}$  distribution




gluon fusion in the large  $M_t$  limit

$$\mathcal{L}_{eff} = \frac{1}{4} A \ H \ G^a_{\mu\nu} G^{a \ \mu\nu} \quad A = \frac{\alpha_s}{3\pi v}$$

$${\cal A}_{gluon} \sim J_1^\mu (q_1^
u q_2^\mu - g^{\mu
u} q_1 \cdot q_2) J_2^
u$$
 $J^\mu \equiv ext{quark-gluon current}$ 

for 
$$|p_i^z| \gg |p_i^{x,y}|$$
  $i = 3,4$ : forward jets  $\mathcal{A}_{gluon} \sim (J_1^0 J_2^0 - J_1^3 J_2^3) p_{3_{\perp}} \cdot p_{4_{\perp}}$ 
 $\Rightarrow$  zero at  $\Delta \phi_{jj} = \frac{\pi}{2}$ 

### **AZIMUTHAL ANGLE DISTRIBUTION**



- the azimuthal angle distribution discriminates between WBF and gluon fusion
- lacktriangle note that the large  $M_t$  limit curve approximates very well the exact curve

# **LHC Event Simulation**



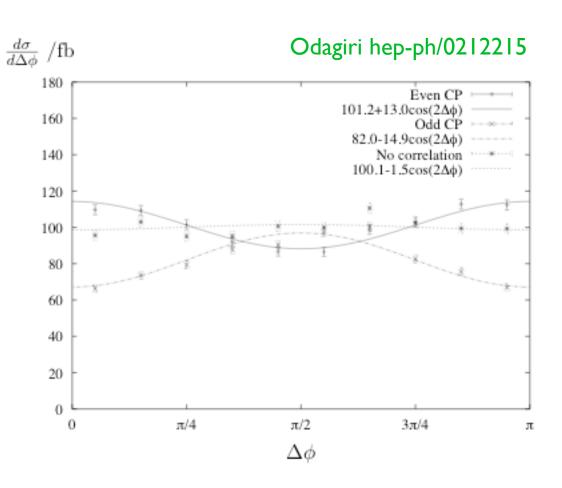
Parton showering and hadronisation are modelled through shower Monte Carlos (HERWIG o PYTHIA)

# 3 complementary approaches to $\hat{\sigma}$

|                                           | matrix-elem MC's                                               | fixed-order x-sect                                  | shower MC's                                                        |
|-------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|
| final-state<br>description                | hard-parton jets. Describes geometry, correlations,            | limited access to<br>final-state<br>structure       | full information<br>available at the<br>hadron level               |
| higher-order effects:<br>loop corrections | hard to implement:<br>must introduce<br>negative probabilities | straightforward<br>to implement<br>(when available) | included as vertex corrections (Sudakov FF's)                      |
| higher-order effects:<br>hard emissions   | included, up to high<br>orders (multijets)                     | straightforward<br>to implement<br>(when available) | approximate,<br>incomplete phase<br>space at large angles          |
| resummation of<br>large logs              | ?                                                              | feasible<br>(when available)                        | unitarity implementation (i.e. correct shapes but not total rates) |

M.L. Mangano KITP collider conf 2004

# Shower MonteCarlo generators


- Webber et al. 1992
  being re-written as a C++ code (HERWIG++)
- PYTHIA T. Sjostrand 1994

### and more

- CKKW S. Catani F. Krauss R. Kuhn B. Webber 2001
  - a procedure to interface parton subprocesses with a different number of final states to parton showers
- MC@NLO S. Frixione B. Webber 2002
  - a procedure to interface NLO computations to shower MC's

# Azimuthal angle distribution

Including parton showers and hadronisation through HERWIG, Odagiri finds much less correlation between the jets



### Caveat!

the plot has been obtained by generating also the jets through the showers

# Matrix-element MonteCarlo generators

multi-parton generation: processes with many jets (or W/Z/H bosons)

ALPGEN
M.L.Mangano M. Moretti F. Piccinini R. Pittau A. Polosa 2002

MADGRAPH/MADEVENT W.F. Long F. Maltoni T. Stelzer 1994/2003

OMPHEP A. Pukhov et al. 1999

GRACE/GR@PPA T. Ishikawa et al. K. Sato et al. 1992/2001

HELAC C. Papadopoulos et al. 2000

processes with 6 final-state fermions

PHASE E.Accomando A. Ballestrero E. Maina 2004

merged with parton showers

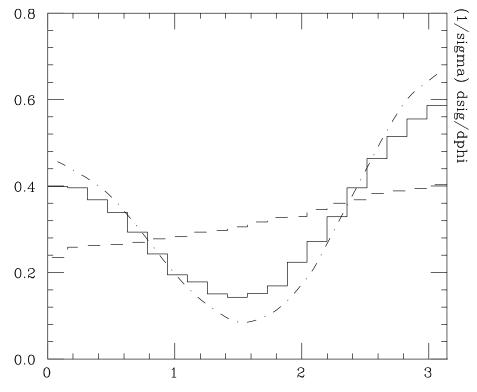
all of the above, merged with HERWIG or PYTHIA

SHERPA F. Krauss et al. 2003

# Azimuthal angle distribution



### ALPGEN: H + 2 jets at parton level + parton shower by HERWIG


### Klamke Mangano Moretti Piccinini Pittau Polosa Zeppenfeld VDD 2006

### **VBF** cuts

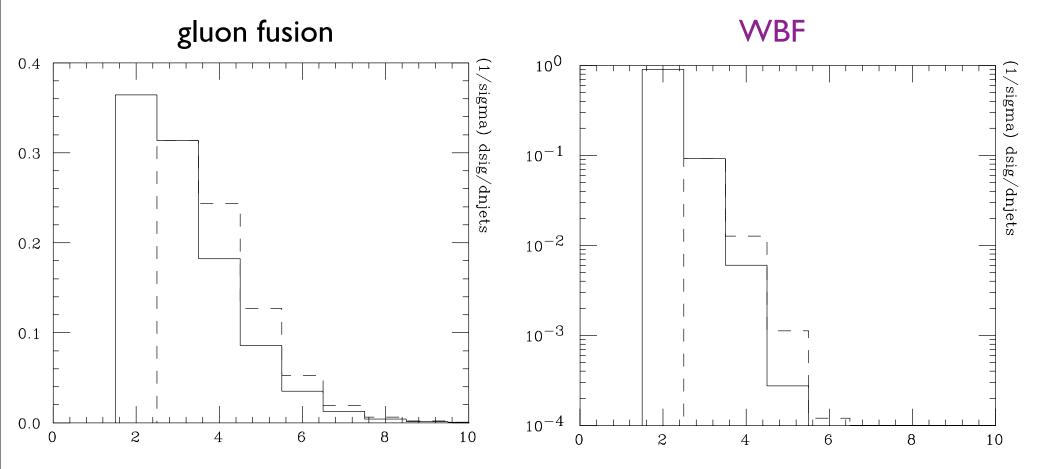
$$p_{Tj}^{tag} > 30 \text{ GeV} \quad |\eta_j| < 5 \quad R_{jj} > 0.6$$
  
 $|\eta_{j1} - \eta_{j2}| < 4.2 \quad \eta_{j1} \cdot \eta_{j2} < 0$   
 $m_{jj} > 600 \text{ GeV}$ 

# A<sub>Φ</sub>: a quantity that characterises how deep the dip is

| $A_{\phi}$    | parton level | shower level |
|---------------|--------------|--------------|
| ggH + 2  jets | 0.474(3)     | 0.357(3)     |
| VBF + 2 jets  | 0.017(1)     | 0.018(1)     |



dash: VBF


solid: gluon fusion w/ PS

dot-dash: ditto w/o PS

$$A_{\phi} = \frac{\sigma(\Delta \phi < \pi/4) - \sigma(\pi/4 < \Delta \phi < 3\pi/4) + \sigma(\Delta \phi > 3\pi/4)}{\sigma(\Delta \phi < \pi/4) + \sigma(\pi/4 < \Delta \phi < 3\pi/4) + \sigma(\Delta \phi > 3\pi/4)}$$

 $\Delta\Phi$  is the azimuthal angle between the tagging jets

# Jet multiplicity



Normalised jet multiplicity after parton shower for H + 2 (solid) and 3 (dashes) partons. Solid curve is normalised to the total x-sect for H + 2 jets. Note the log scale on the rhs panel

$$p_{Tj}^{tag} > 30 \text{ GeV}$$
  $p_{Tj} > 20 \text{ GeV}$   $|\eta_j| < 5$   $R_{jj} > 0.6$   
 $|\eta_{j1} - \eta_{j2}| < 4.2$   $\eta_{j1} \cdot \eta_{j2} < 0$   $m_{jj} > 600 \text{ GeV}$ 

### WWH COUPLING

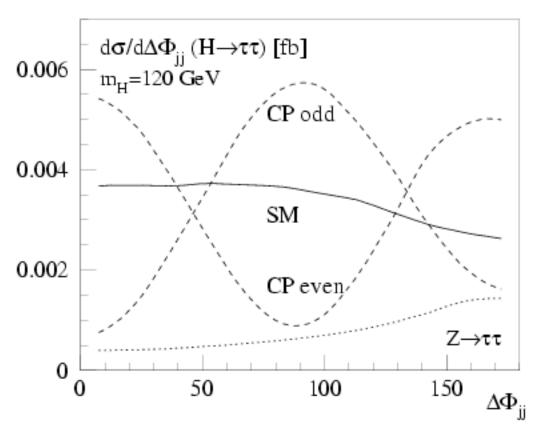
the azimuthal angle  $\Delta \phi_{jj}$  between the jets can be used as a tool to investigate the tensor structure of the WWH coupling

Plehn, Rainwater, Zeppenfeld hep-ph/0105325

take a gauge-invariant effective Lagrangian with dim. 6 operators (CP even and CP odd) describing an anomalous WWH coupling

$$\mathcal{L}_{6} = \frac{g^{2}}{2\Lambda_{\mathrm{e},6}^{2}} \left(\Phi^{\dagger}\Phi\right) V_{\mu\nu} V^{\mu\nu} + \frac{g^{2}}{2\Lambda_{\mathrm{o},6}^{2}} \left(\Phi^{\dagger}\Phi\right) \widetilde{V}_{\mu\nu} V^{\mu\nu}$$

lacktriangledown expand  $\Phi$  about the vev (get dim. 5 (D5) operators)


$$\mathcal{L}_{5} = \frac{1}{\Lambda_{e,5}} H W_{\mu\nu}^{+} W^{-\mu\nu} + \frac{1}{\Lambda_{o,5}} H \widetilde{W}_{\mu\nu}^{+} W^{-\mu\nu} \quad \text{with} \quad \frac{1}{\Lambda_{5}} = \frac{g^{2}v}{\Lambda_{6}^{2}}$$

- $\stackrel{\bullet}{\bullet}$  CP odd D5 operator:  $\epsilon^{\mu\nu\alpha\beta}$  tensor in the coupling
  - $\Rightarrow$  zero at  $\Delta \phi_{ij} = 0, \pi$
- $^{ullet}$  CP even D5 operator is like the effective ggH coupling

$$\mathcal{A}_{\text{CP even}} \sim \ \frac{1}{\Lambda_{\text{e},5}} J_1^{\mu} (q_1^{\nu} q_2^{\mu} - g^{\mu \nu} q_1 \cdot q_2) J_2^{\nu} \qquad \Rightarrow \qquad \text{zero at } \Delta \phi_{jj} = \frac{\pi}{2}$$

### AZIMUTHAL ANGLE DISTRIBUTION FOR WWH COUPLINGS

• assume a Higgs-like scalar signal is found at LHC at the SM rate (for D5 operators:  $\Lambda_5 \sim 500~{
m GeV})$ 

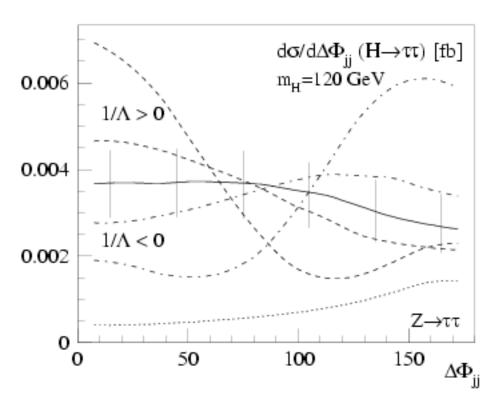


WBF cuts:

$$p_{j\perp} > 20 \text{ GeV}$$

$$|\eta_{j}| < 5$$

$$R_{jj} > 0.6$$


$$\eta_{j_1} \cdot \eta_{j_2} < 0$$

$$|\eta_{j_1} - \eta_{j_2}| > 4.2$$

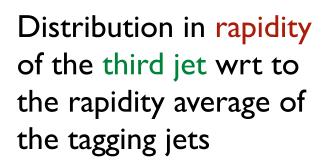
- the  $\Delta \phi_{ij}$  distribution
  - discriminates between different WWH couplings
  - is independent of the particular decay channel and the Higgs mass range

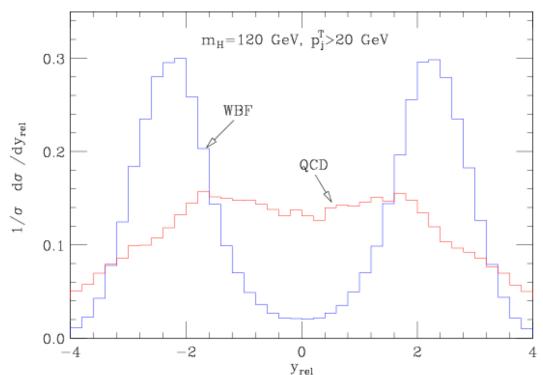
### Interference effects in the $\Delta \phi_{ij}$ distribution

- assume a Higgs candidate is found at LHC with a predominantly SM  $g^{\mu\nu}$  + coupling. How sensitive are experiments to any D5 terms?
  - no interference between SM and CP odd D5 operator

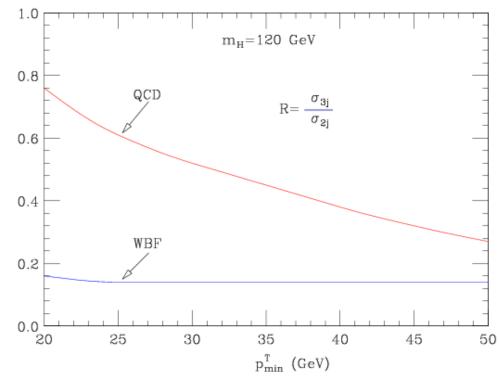


 $\Delta \phi_{jj}$  distribution for the SM and interference with a CP even D5 coupling. The two curves for each sign of the operator correspond to values  $\sigma/\sigma_{\rm SM}=0.04,1.0$ . Error bars correspond to an integrated luminosity of 100 fb<sup>-1</sup> per experiment, distributed over 6 bins, and are statistical only


- interference between SM and CP even D5 operator:  $|\mathcal{A}|^2 = |\mathcal{A}_{SM} + \mathcal{A}_{e,5}|^2$ 
  - lacktriangle all terms, but  $|\mathcal{A}_{\mathrm{SM}}|^2$ , have an approximate zero at  $\Delta\phi_{\mathrm{jj}}=\pi/2$
  - lacktriangle systematic uncertainty induced by H+2 jet rate from gluon fusion
    - $\longrightarrow HG_{\mu\nu}G^{\mu\nu}$  is a CP even D5 operator


### THE CENTRAL JET VETO

- $\bigcirc$  In WBF no colour is exchanged in the t channel
- $\bigcirc$  The central-jet veto is based on the different radiation pattern expected for WBF versus its major backgrounds, i.e.  $t\bar{t}$  production and WW + 2 jet production


Barger, Phillips & Zeppenfeld hep-ph/9412276

The central-jet veto can also be used to distinguish between Higgs production via gluon fusion and via WBF





Ratio of Higgs + 3 jet to Higgs + 2 jet production as a function of  $p_{min}^{T}$ 



# **CONCLUSIONS**

- Once a Higgs-like resonance is found at the LHC, we shall want to study its couplings and quantum numbers
- In Higgs + 2 jets, the azimuthal angle correlation between the two jets can be used as a tool to distinguish between WBF and gluon fusion, and to investigate the tensor structure of the WWH coupling
- Because of the characteristic final-state topology induced by WBF production large-rapidity cuts can be used to deplete gluon fusion wrt WBF
- We examined Higgs + 2 jet-production through matrix-element MC's, which include shower effects.
  - the analysis confirms the one at the parton level
  - however, in gluon fusion large fraction of events with 3 or more jets
    - → need a CKKW-type analysis