
B. Kahle, DESY Hamburg

- Introduction
- Beauty measurements
- Beauty contribution to F_{2}
- Summary and Conclusions

Motivation

- Heavy flavour production in DIS is a test of pQCD providing an additional hard scale M to the momentum transfer of the boson Q and p_{t}
- Beauty contribution to F_{2} is directly sensitive to the gluon distribution in the proton
- Beauty production is of increasing interest for higher energies -> LHC

Beauty contribution to the proton structure function F_{2}

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{Q^{4} x}\left\{\left[1+(1-y)^{2} F_{2}\left(x, Q^{2}\right)-y^{2} F_{L}\left(x, Q^{2}\right)+\ldots x F_{3}\right\}\right.
$$

$$
\frac{d^{2} \sigma^{e p}}{d Q^{2} d x} \propto F_{2}\left(x, Q^{2}\right)
$$

$$
\frac{d^{2} \sigma^{e \rho \rightarrow b \bar{b} x}}{d Q^{2} d x} \propto F_{2}^{b \bar{b}}\left(x, Q^{2}\right)
$$

Heavy Flavour production mechanism

Dominant process in ep-collisions: Boson-Gluon-Fusion

Kinematic variables:

$Q^{2}=-q^{2} \quad$ photon virtuality, squared momentum
$x=\frac{Q^{2}}{2 P q} \begin{aligned} & \text { transfer } \\ & \begin{array}{l}\text { Bjorken scaling variable, for } Q^{2} \gg\left(2 m_{Q}\right)^{2} \\ \text { momentum fraction of } p \text { constituent }\end{array}\end{aligned}$

Kinematic regime:

- Deep inelastic scattering (DIS): $Q^{2}>1 \mathrm{GeV}^{2}$

Multiple scales:

pQCD approximations

Massive scheme:

-b massive

- neglects $\left[\alpha_{s} \ln \left(Q^{2} / m_{b}^{2}\right)\right]^{n}$
- scale m_{b}, p_{t}
$\leftrightarrows b$ produced perturbatively
(not part of the Proton or Photon)

Massless scheme:
-b massless

- resumes $\left[\alpha_{s} \ln \left(Q^{2} / m_{b}^{2}\right)\right]^{n}$
- scale: Q^{2}, p_{t}
$\longrightarrow b$ also in Proton and Photon

Variable flavour number scheme (VFNS):

- massive at small Q^{2}
- massless at large Q^{2}

Beauty identification

Process :
 $e p \rightarrow e b \bar{b} X \rightarrow e \mu$ jet X^{\prime}

$\mathrm{p}_{\mathrm{t}}^{\text {rel }}$ method:

$p_{t}{ }^{\text {rel }}$ is the momentum of the muon transverse to the axis of the associated jet (including the muon)
$p_{t}{ }^{\text {rel }}$ spectrum is harder for b than for c
\rightarrow statistical separation using MC
ZEUS

χ^{2} fit of b MC against $\mathrm{c}+\mathrm{lf} \mathrm{MC}$ to the data in $p_{t}{ }^{\text {rel }}$
resulting beauty fraction of about 21%
\rightarrow scale Rapgap-b MC up by a factor 2.49

Cross section

Beauty cross section for the DIS process:

$$
e p \rightarrow e b \bar{b} X \rightarrow e \mu \text { jet } X^{\prime}
$$

Cuts on $\mathrm{MC}_{\text {true }}$ quantities:

$$
\begin{aligned}
& Q^{2}>4 \mathrm{GeV}^{2} \\
& 0.05<y<0.7 \\
& \mathrm{E}_{\mathrm{t}, \mathrm{jet}}^{\mathrm{lab}}>5 \mathrm{GeV} \\
& -2>\eta_{\mathrm{jet}}>2.5 \\
& \mathrm{p}_{\mathrm{t}, \mu}>1.5 \mathrm{GeV} \\
& -1.6>\eta_{\mu}
\end{aligned}
$$

Cross sections in p_{1} and η
 ZEUS
 ZEUS

ZEUS

ZEUS

Cross sections in Q^{2} and $Q^{2} x$

ZEUS

ZEUS

ZEUS

ZEUS

Calculation of

$\mathrm{F}_{2}{ }^{\text {bb }}=$ beauty contribution to F_{2}

„Reduced cross section" is defined as:

Cross section calculated using hvqdis (CTEQ5F4) for a tiny bin around ($\mathrm{x}, \mathrm{Q}^{2}$)

Expected to be compatible with calculations by Riemersma et al. used for $\mathrm{F}_{2}{ }^{\mathrm{cc}}$

Neglecting the small contribution from F_{L}, the reduced cross section is equal to F_{2} :

$$
\tilde{\sigma}^{b \bar{b}}\left(x, Q^{2}\right)=F_{2}^{b \bar{b}}-\frac{y^{2}}{\left.1+h^{2-s} y\right)^{2}}{ }_{L}^{a c t c^{2}} F_{L}^{b \bar{b}}
$$

$\mathrm{F}_{2}{ }^{\text {bb }}$ measurement

The reduced cross section for data is the reduced cross section of the NLO multiplied by the ratio of data to NLO in a $\mathrm{x}, \mathrm{Q}^{2}$ bin:
 measure $\mathrm{F}_{2}{ }^{\mathrm{bb}}$ and $\mathrm{F}_{2}{ }^{\mathrm{cc}}$ with an inclusive charm and beauty sample of $57 \mathrm{pb}^{-1}$:
H1 Collab., A. Aktas et al., Eur. Phys. J. C45 (2006) 23-33

Kinematic plane (ZEUS)

- (x,Q2) values chosen for $\mathrm{F}_{2}{ }^{\mathrm{bb}}$ to compare with H1's results

$\mathrm{F}_{2}{ }^{\text {bb }}$ at ZEUS and H 1

ZEUS data lie above H1 data but compatible within errors.

HVQDIS+CTEQ5F4 agrees with similar predictions by H1

Theory predictions except HVQDIS+CTEQ5F4 provided by P.D.Thompson, hep-ph/0703103

ZEUS data point at $\mathrm{Q}^{2}=200 \mathrm{GeV}^{2} ; x=0.13$ is shifted to lower x value to be separated from the H1 point

PDF Schemes and Parameters

PDF	Order	Scheme	$\mu_{M}{ }^{2}$	$\mathrm{M}_{\mathrm{b}}(\mathrm{GeV})$
- . MRST04	$\alpha_{s}{ }^{2}$	VFNS	Q ${ }^{2}$	4.3
- MRST NNLO	$\alpha_{s}{ }^{3}$	VFNS	Q ${ }^{2}$	4.3
...... CTEQ6HQ	$\alpha_{s}{ }^{2}$	VFNS	Q ${ }^{2}$	4.5
- - HVQDIS+CTEQ5F4	$\alpha_{s}{ }^{2}$	FFNS	$\mathrm{p}_{\mathrm{t}}{ }^{2}+4 \mathrm{M}^{2}$	4.75
CTEQ5F3	$\alpha_{s}{ }^{2}$	FFNS	Q ${ }^{2}$	4.5
MRST FF3	$\alpha_{s}{ }^{2}$	FFNS	Q ${ }^{2}$	4.3
CTEQ6.5	$\alpha_{s}{ }^{2}$	VFNS	$\mathrm{Q}^{2}+\mathrm{M}^{2}$	4.5

Theory predictions except HVQDIS+CTEQ5F4
provided by P.D.Thompson, hep-ph/0703103

$\mathrm{F}_{2}{ }^{\text {bb }}$ at ZEUS and H 1

Summary and Outlook

- First measurement of $\mathrm{F}_{2}{ }^{\mathrm{bb}}$ at ZEUS (39 pb^{-1}),
~10 times more data to come -> much reduced errors
- Results agree with H1's using a very different method to obtain $\mathrm{F}_{2}{ }^{\text {bb }}$ but similar uncertainties (both statistical and systematical)
- NLO predictions agree with data within large spread.

Questions to this meeting:
What are the reasons for the large NLO spread?
Does this affect the PDF extraction from inclusive F_{2} ?

BACKUP

NLO calculations

The calculation of the NLO QCD visible cross section predictions proceeds in three steps:

- HVQDIS (B.Harris, J.Smith, hep-ph/9503484): $\gamma^{*} \mathrm{~g} \rightarrow \mathrm{bb}, \gamma^{*} \mathrm{~g} \rightarrow \mathrm{bbg}, \gamma^{*} \mathrm{q} \rightarrow \mathrm{bbq}$, etc. (pointlike only) using CTEQ5F4 (FFNS) PDF
- Fragmentation of the b-quark into a B-meson
(Peterson function with $\varepsilon=0.0035$)
- Semileptonic decay of the B-meson
(Muon momentum spectrum extracted from RAPGAP, including primary and secondary muons)

CTEQ5F4 with different scales

$\mathrm{F}_{2}{ }^{\mathrm{bb}}$ using different scales for CTEQ5F4:
Q ${ }^{2}$
$\mathrm{Q}^{2}+4 \mathrm{M}^{2} \quad(\mathrm{M}=4.5 \mathrm{GeV})$
$\mathrm{Q}^{2}+4 \mathrm{M}^{2} \quad(\mathrm{M}=4.75 \mathrm{GeV})$
large differences at low Q^{2} for different masses

Extrapolation to full phase-space

Q^{2}	Extrapolation factor:
$25 \mathrm{GeV}^{2}$	~ 6
$110 \mathrm{GeV}^{2}$	~ 4
$200 \mathrm{GeV}^{2}$	~ 3

Similar to extrapolations for $\mathrm{F}_{2}{ }^{\mathrm{cc}}$

Extrapolation factor excluding branching fraction to μ of 0.3924

Extrapolation factor includes
p_{t}^{b} and η^{b} spectrum, fragmentation, and decay kinematics (jet and μ)

Inclusive lifetime tags

most significant impact parameter S_{1}

