

Motivation

- Heavy flavour production in DIS is a test of pQCD providing an additional hard scale M to the momentum transfer of the boson Q and p_t
- Beauty contribution to F_2 is directly sensitive to the gluon distribution in the proton
- Beauty production is of increasing interest for higher energies -> LHC

Beauty contribution to the proton structure function F_2

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{Q^4x} \left\{ \left[1 + (1-y)^2 \right] F_2(x,Q^2) - y^2 F_L(x,Q^2) + \dots x F_3 \right\}_{\text{at high}} Q^2$$

 $\frac{d^2 \sigma^{ep}}{d \Omega^2 dx} \propto F_2(x, Q^2)$

 $\frac{d^2 \sigma^{ep \to b\overline{b}X}}{d\Omega^2 dx} \propto F_2^{b\overline{b}}(x, Q^2)$

Heavy Flavour production mechanism

Dominant process in *ep*-collisions: **Boson-Gluon-Fusion**

Kinematic variables:

- $Q^2 = -q^2$ photon virtuality, squared momentum transfer
 - Bjorken scaling variable, for $Q^2 >> (2m_Q)^2$: momentum fraction of p constituent

Kinematic regime:

• Deep inelastic scattering (DIS): $Q^2 > 1 \text{GeV}^2$

Multiple scales:

- **m**_b ~ 5 GeV
- Q^2 \gtrsim 1 GeV² in DIS
- $p_t^{b} \sim \text{typically few GeV} \rightarrow \text{different pQCD approaches}$
 - good testing ground for pQCD

pQCD approximations

Massive scheme:

- b massive
- neglects $[\alpha_s \ln (Q^2/m_b^2)]^n$
- scale m_b , p_t

 α

 e^+

► *b* produced perturbatively (not part of the Proton or Photon)

h

ħ

Massless scheme:

- b massless
- resumes $[\alpha_{\rm s} \ln (Q^2/m_b^2)]^n$
- scale: *Q*², *p*_t
- \rightarrow b also in Proton and Photon

Variable flavour number scheme (VFNS):

- massive at small Q²
- massless at large Q²

р

Beauty identification

Process :

$e p \rightarrow e b\overline{b} X \rightarrow e \mu jet X'$

 p_t^{rel} is the momentum of the muon transverse to the axis of the associated jet (including the muon)

 p_t^{rel} spectrum is harder for b than for c

→ statistical separation using MC

 χ^2 fit of b MC against c+lf MC to the data in p_t^{rel}

resulting beauty fraction of about 21%

Cross section

Beauty cross section for the DIS process:

```
e p \rightarrow e b\overline{b} X \rightarrow e \mu jet X'
```

Cuts on MC_{true} quantities:

13th March 2007

HERA and the LHC - F2bb at ZEUS - Benjamin Kahle

Cross sections in Q² and Q²x

Calculation of F_2^{bb} = beauty contribution to F_2

hvqdis(CTEQ5F4) for a tiny bin around (x,Q^2)

Expected to be compatible with calculations by Riemersma *et al.* used for F_2^{cc}

Neglecting the small contribution from F_{I} , the reduced cross section is equal to F_2 :

$$\tilde{\sigma}^{b\bar{b}}(x,Q^2) = F_2^{b\bar{b}} - \frac{Y^2}{1 + (hege_V)^2} F_L^{b\bar{b}}$$

The reduced cross section for data is the reduced cross section of the NLO multiplied by the ratio of data to NLO in a x,Q^2 bin:

$$\tilde{\sigma}_{data}^{b\bar{b}}(x,Q^2) = \tilde{\sigma}_{NLO}^{b\bar{b}}(x,Q^2) \underbrace{\frac{d^2 \sigma_{data}^{b\bar{b} \to \mu}}{d x d Q^2}}_{Cross section for} \underbrace{\frac{d^2 \sigma_{NLO}^{b\bar{b} \to \mu}}{d x d Q^2}}_{e p \to e b\bar{b} X \to e \mu jet X'}$$

NLO using hvqdis with same settings as for $\tilde{\sigma}^{b\bar{b}}$ (but requiring SL decay to μ and jet)

H1 uses the impact parameter method to measure F_2^{bb} and F_2^{cc} with an inclusive charm and beauty sample of 57pb⁻¹: H1 Collab., A. Aktas et al., Eur. Phys. J. C45 (2006) 23-33

Kinematic plane (ZEUS)

 (x,Q2) values chosen for F₂^{bb} to compare with H1's results

F₂^{bb} at ZEUS and H1

ZEUS data lie above H1 data but compatible within errors.

HVQDIS+CTEQ5F4 agrees with similar predictions by H1

ZEUS: 39 pb⁻¹
 H1: 57.4 pb⁻¹

Theory predictions except HVQDIS+CTEQ5F4 provided by P.D.Thompson, hep-ph/0703103

ZEUS data point at $Q^2=200 \text{GeV}^2$; x=0.13 is shifted to lower x value to be separated from the H1 point

15. O²

Same ZEUS data. Some points are recalculated for other values of x to be comparable with H1 data and theory curves.

ZEUS data are derived using HVQDIS+CTEQ5F4 and should strictly compared only with this

For comparison with other curves, model dependencies have to be taken into account.

PDF Schemes and Parameters

PDF	Order	Scheme	μ_M^2	M _b (GeV)
-· MRST04	α_s^2	VFNS	Q ²	4.3
— MRST NNLO	α_s^3	VFNS	Q ²	4.3
CTEQ6HQ	α_s^2	VFNS	Q ²	4.5
– – HVQDIS+CTEQ5F4	α_s^2	FFNS	$p_t^2 + 4M^2$	4.75
CTEQ5F3	α_s^2	FFNS	Q ²	4.5
MRST FF3	α_s^2	FFNS	Q ²	4.3
CTEQ6.5	α_s^2	VFNS	Q ² +M ²	4.5

Theory predictions except HVQDIS+CTEQ5F4 provided by P.D.Thompson, hep-ph/0703103

bb at ZEUS and H1

Summary and Outlook

- First measurement of F^{bb}₂ at ZEUS (39 pb⁻¹),
 ~10 times more data to come -> much reduced errors
- Results agree with H1's using a very different method to obtain F₂^{bb} but similar uncertainties (both statistical and systematical)
- NLO predictions agree with data within large spread.

Questions to this meeting: What are the reasons for the large NLO spread? Does this affect the PDF extraction from inclusive F_2 ?

NLO calculations

The calculation of the NLO QCD visible cross section predictions proceeds in three steps:

- HVQDIS (B.Harris, J.Smith, hep-ph/9503484): $\gamma^*g \rightarrow bb, \gamma^*g \rightarrow bbg, \gamma^*q \rightarrow bbq, etc.$ (pointlike only) using CTEQ5F4 (FFNS) PDF
- Fragmentation of the **b-quark** into a **B-meson** (Peterson function with ε =0.0035)
- Semileptonic decay of the B-meson

(Muon momentum spectrum extracted from RAPGAP, including primary and secondary muons)

Extrapolation to full phase-space

Q ²	Extrapolation factor:
25 GeV ²	~6
110 GeV ²	~4
200 GeV ²	~3

Similar to extrapolations for F_2^{cc}

Extrapolation factor excluding branching fraction to μ of 0.3924

Extrapolation factor includes p_t^{b} and η^{b} spectrum, fragmentation, and decay kinematics (jet and μ)

Inclusive lifetime tags

