

Underlying event tunings: preparing for the first LHC measurements.

Arthur M. Moraes TRIUMF

3rd HERA – LHC Workshop

DESY, Hamburg March 14, 2007.

Outline:

- I. Introduction;
- **II**. Transverse region distributions;
- **III**. Describing MAX/MIN p_T distributions;
- **IV.** Preparing for first measurements at ATLAS;
- V. Summary.

Underlying event tunings for the LHC

MC tunings ("some...") for the underlying event

Les Houches 2005: Physics at TeV Colliders (QCD, EW & Higgs WG report)

Based on CDF data for the region transverse to the leading jet & CDF data for MAX/MIN cones transverse to the highest E_{T} jet.

CTEQ6L

More recent UE tunings for PYTHIA used by ATLAS

□ PYTHIA has two options for underlying event models: "NEW" (PYEVNW – from version 6.3xx and newer) and "OLD" (PYEVNT) scenarios.

□ Important bug fixes were introduced in Pythia6.403 (and newer...) which required a new tuning.

"OLD" vs. "NEW"

p_T cut-off, matter distribution, energy dependence.

Approx. number of parameters tuned: ~5 (ATLAS – DC2 & Rome) or ~8 (CDF) p_T cut-off, matter distribution, energy dependence, ISR, FSR, colour reconnection.

Approx. number of parameters tuned: ~11 (ATLAS – CSC)

UE tuning for PYTHIA6.403 (October 2006)

Ρ	YTHI	\6.403 - PY	EVNW	CTEQ6LO (LO	fit with LO α_{s})	→ LHAPDF
		Default:			Tuned:	
	ISR FSR	MSTP(70)=1 MSTP(72)=1		→ →	MSTP(70)= <mark>2</mark> MSTP(72)= <mark>0</mark>	smooth turn-off as $p_T \rightarrow 0$ reduced FSR scale
	mpi ISR FSR Mpi	MSTP(81)=1 MSTP(82)=4 MSTP(84)=1 MSTP(85)=1 MSTP(86)=2			PYEVNW: new multiple shower selected!	interaction model & new parton
colou	Ir J	MSTP(87)=4 MSTP(88)=1 MSTP(89)=1			MSTP(88)= <mark>0</mark>	regulates sequence of chain formation and baryon production
recor	nection	MSTP(90)=0 MSTP(95)=1			MSTP(90)=1	k _τ compensation spread out across colour chain.
8	TRIUMF		Arthur Morae	es	DES	Y, March 14, 2007

UE tuning for PYTHIA6.403 (October 2006)

Underlying event in charged jet evolution (CDF analysis – Run I data) Phys.

Phys. Rev. D, 65 092002 (2002)

 All particles from a single particle collision except the process of interest.

• Sometimes, the underlying event can also be defined as everything in the collision except the hard process.

It is not only minimum bias event!

Describing the region transverse to the leading jet

Describing the region transverse to the leading jet

"MAX/MIN analysis"

• The underlying event is measured for jet events at two different colliding energies: 630 GeV and 1800 GeV.

 This provides important information on how to model the energy extrapolation in UE models.

LHC prediction for the region transverse to the leading jet

Measuring the underlying event at ATLAS

🍓 TRIUMF

First physics studies with the underlying event

Multiplicity of charged particles with $p_T > 0.5$ GeV and $|\eta| < 1$ in region transverse to leading jet

Measurements at different colliding energies will improve our understanding of multiple (semi-hard) parton interactions and will allow better modeling of the UE. ATLAS - √s=900 GeV ATLAS - √s=14 TeV

Arthur Moraes

<Nracks> in the UE

Measuring the underlying event in TeV jets

15

Summary:

1) PYTHIA6.403 (CTEQ6L + PYEVNW) parameters tuned to the UE:

mstp(70)=2 mstp(72)=0 mstp(81)=1 mstp(82)=4 mstp(84)=1 mstp(85)=1 mstp(86)=2 mstp(87)=4 mstp(88)=0 mstp(89)=1 mstp(90)=1 mstp(95)=1 PARP(78)=0.2 PARP(80)=0.01 PARP(82)=1.9 PARP(83)=0.3 PARP(84)=0.5 PARP(89)=1800 PARP(90)=0.22

PARJ(81)=0.14

Underlying event tunings for the LHC

- 2) Generated distributions are similar (slightly better for p_T distributions!) to the tuning we had with the old model (PYTHIA6.2 + CTEQ5L)
- 3) Ratio <pT>/Nchg in the underlying event still needs improvement! But this is common to all the generators and models I have come across so far.
- 4) LHC prediction is in the same range (plateau 2-3 times higher than the Tevatron measurement) as most predictions.
- 5) Greater effort now is being dedicated to preparations to analyze first underlying event measurements at ATLAS.
- 6) Also beginning to study the underlying event associated to other channels (EW sector for example).

Backup

Arthur Moraes

DESY, March 14, 2007

