Semileptonic top pair decays $t\bar{t} \rightarrow b\bar{b}q\bar{q}\ell\nu$ with the CMS detector

A. Floßdorf, B. Hegner, J. Mnich, Ch. Rosemann

15.03.07 HERA and the LHC Workshop

ヘロン ヘアン ヘビン ヘビン

Emphasis: Selection Development

- Motivation
- Simulation and Reconstruction
- Selection

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Production 90% $gg \rightarrow t\bar{t}$ and 10% $q\bar{q} \rightarrow t\bar{t}$ in pp at 14 TeV

Decay t
ightarrow bW pprox 100%, that is $t \overline{t}
ightarrow WW b \overline{b}$

- search for (exactly) one electron or muon
- at least four jets
- two jets with high b probability
- missing transverse momentum/energy

Motivation

Motivation – The Standard Model and more

- Top guark most unknown known particle (guantum) numbers, exact mass,...)
- Special connection to EWSB (e.g. Yukawa coupling $G_{top} \approx 1$)
- Differential distributions especially sensitive

Christoph Rosemann

Semileptonic top pair decays with CMS

Motivation

Motivation – The detector

- Interplay of all detector components
 - Vertex detector especially for b-tagging
 - Tracker and Ecal for electron reconstruction
 - Muon system and tracker for muon reconstruction
 - ... and of course for jets (Calorimeters and tracking)
- tt
 decays as benchmark or calibration process
 e.g. jets of W decays for energy scale
- But: definitely not tasks for the first day

・ 同 ト ・ ヨ ト ・ ヨ ト …

Introduction Events

Motivation

Selection

Motivation – Parton Density Functions

LHC parton kinematics

- Gluon pdfs of utmost importance
- Symmetric production threshold $x_0 = \frac{2m_{top}}{\sqrt{s}} = 0.025$
- Test of QCD
- In particular: experimental test at high Q² DGLAP vs. CCFM vs. ?

The CMS detector

Simulation and Reconstruction

Reminder:

- No LHC yet
- No CMS yet
- No real data
- Only simulation
- Old CMS framework
- Pythia6 + Geant4 + Reco

→ Ξ → < Ξ →</p>

Signal event display $pp \rightarrow t\bar{t} \rightarrow \mu\nu b\bar{b}q\bar{q}$ (simulated)

Chain:

- Hits, ADC counts
- Iracks, Cluster
- Jets, Electrons, Muons, ...

(Legend: green: Clusters blue: Tracks red: Muon white arrows: Jets)

Event rates

Background processes:

• W+Njets ($W \rightarrow \ell \nu$), N \geq 4

코 에 제 코 어

- Z+Njets ($Z \rightarrow \ell \bar{\ell}$), N \geq 4
- Di-Boson WW, ZW, ZZ
- "QCD" (dijet, multijet)

Preselection: Exactly one isolated lepton

- Lepton:
 - Electron: candidate with Likelihood Batio > threshold
 - Muon: globally reconstructed muon
- Isolation (in cone with radius $\Delta R < 0.2$):
 - Tracks $(n \leq 2, \sum_{p} \leq 1.1 p_{\ell})$
 - Calorimeter $(\sum_{F} \leq 1.1 E_{\ell})$

Christoph Rosemann

Preselection: 4 or 5 jets

- Iterative Cone $\Delta R = 0.5$ with e/γ calibration
- energy threshold: only jets with $E_T > 30 \,\text{GeV}$

(QCD not shown)

 Introduction
 Preselection

 Events
 Detailed Selection

 Selection
 Outlook and Summary

Basic principle: Acceptances and Corrections

After preselection S:B \approx 1:10 (85% W+jets), $\epsilon_{signal} = 28\%$

Christoph Rosemann Semileptonic top pair decays with CMS

Preselection Detailed Selection Outlook and Summary

Selection Variables

- B-Tagging
 - 1st or 2nd highest discriminator value
- Event Shape variables
 - Circularity
 - (A)Planarity

э

Introduction Preselection Events Detailed Selection Selection Outlook and Summ

Selection Variables

- Kinematics and Topology
 - Result (χ^2) of a kinematic fit
 - p_T of the nth jets (or ratios)
 - Angular correlations (MET, lepton, jets)

(QCD not shown)

イロト イポト イヨト イヨト

Introduction Preselection Events Detailed Selection Selection Outlook and Summ

Systematic errors

Main Systematics:

- Background uncertainties:
 - Shapes of W and Z plus Jet production (missing higher order calculations)
 - "QCD" will be extracted from data
 - Event Pile-Up
 - Underlying Event
- Indirectly: Jet energy scale
- B jet fragmentation

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction P Events D Selection O

Preselection Detailed Selection Outlook and Summary

Summary and Outlook

Summary:

- Powerful test of theory and experiment
- Currently promising results, e.g. small acceptance corrections
- 10% signal efficiency seem possible

Outlook:

- Change of reconstruction framework (the third...)
- Check possible alternatives for acceptance corrections
- Create the differential distributions

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Backup: Jet energy preselection cut

