Heavy flavour cross sections at LHC from NLO + Parton shower

HERA-LHC Workshop WG3 Heavy quarks (charm & beauty)

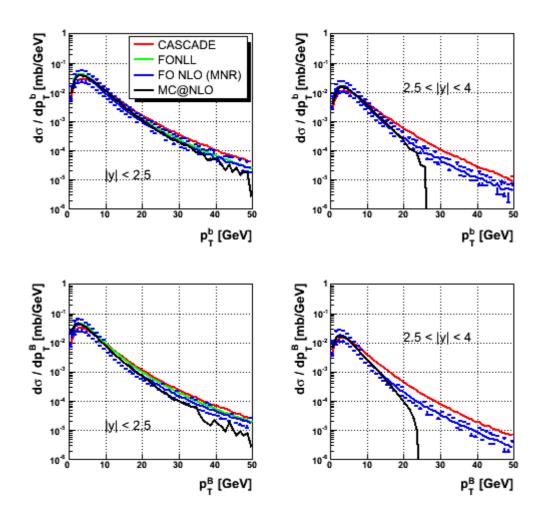
Rachid Guernane

LPC Clermont-Ferrand CNRS/IN2P3

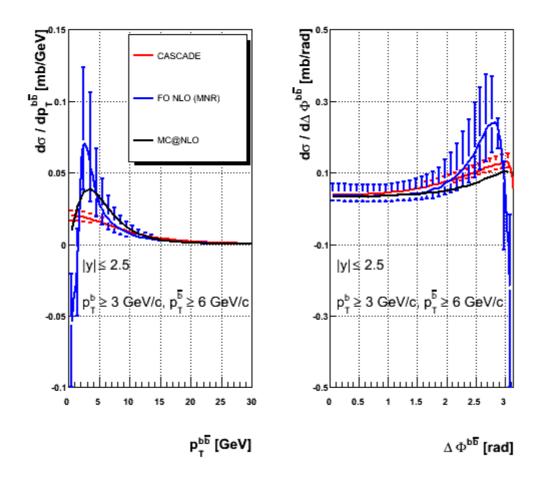
Hamburg, March 15, 2007

MC@NLO in a Nutshell

- MC@NLO is a standalone ME generator which matched NLO calculations of rates for QCD processes with a PS MC event generator namely HERWIG
- Integration step (the most time consumming step) is done only once while event generation can be repeated (several runs)
- Events with negative weights
 - their sum si equal to the total rate
 - mainly (\sim 60%) events that radiate a hard gluon are negatively weighted
- ALICE has implemented an interface to process partonic events into its simulation framework


Input parameters & cross-sections

Parameter	central value	range	
$\Lambda_{ m QCD}^5$	$0.226~\mathrm{GeV}$	fix	
PDF	CTEQ6.1	CTEQ6.1 errors	
m_c	1.5 GeV	1.3-1.7 GeV	
m_b	$4.75~\mathrm{GeV}$	$4.5 - 5.0 \; \text{GeV}$	
c fragmentation			
FO: Peterson $\epsilon_c =$	0.021	0.002-0.11	
NLL: Peterson $\epsilon_c =$	0.0030	0.0023 - 0.0036	
Pythia/Jetset:	Pet. $\epsilon_c = 0.075$	Bowler - $\epsilon_c = 0.05$	
b fragmentation			
FO: Peterson $\epsilon_b =$	0.001	0.0002-0.004	
NLL: Peterson $\epsilon_b =$	0.00035	0.00020 0.00055	
Pythia/Jetset:	Pet. $\epsilon_b = 0.002$	Bowler - $\epsilon_b = 0.005$	
Herwig: PSPLT(2)=	0.5	0.2 - 1.0	


Cross Section	Cuts	Range	Notes
$d\sigma/dp_T^c$	$ Y^c < 2.5$	$0 \rightarrow 50 { m GeV}$	c quark
$d\sigma/dp_T^c$	$ Y^c < 2.5$	$0 \rightarrow 500 \text{GeV}$	(extended range)
$d\sigma/dp_T^c$	$2.5 < Y^c < 4$	$0 \rightarrow 50 { m GeV}$	
$d\sigma/d\Delta\phi^{c\bar{c}}$	$p_T^c > 3, p_T^{\bar{c}} > 6 \text{ GeV},$		
	$ Y^c < 2.5, Y^{\bar{c}} < 2.5$	$0 \rightarrow \pi$	$c\bar{c}$ correl.
$d\sigma/dp_T^{c\bar{c}}$	$p_T^c > 3, p_T^{\bar{c}} > 6 \text{ GeV},$		
	$ Y^c < 2.5, Y^{\bar{c}} < 2.5$	$0 \rightarrow 50$	p_T of $c\bar{c}$ system
$d\sigma/dp_T^D$	$ Y^D < 2.5$	$0 \rightarrow 50 \text{GeV}$	charmed hadron
$d\sigma/dp_T^D$	$2.5 < Y^D < 4.5$	$0 \rightarrow 50 \text{GeV}$	
$d\sigma^c/dp_T^\mu$	$ Y^{\mu} < 2.5$	$0 \rightarrow 50 \text{ GeV}$	any μ from c or \bar{c}
$d\sigma^c/dp_T^\mu$	$2.5 < Y^{\mu} < 4.5$	$0 \rightarrow 50 \text{ GeV}$	
$d\sigma/dp_T^b$	$ Y^b < 2.5$	$0 \rightarrow 50 \mathrm{GeV}$	b quark
$d\sigma/dp_T^b$	$ Y^b < 2.5$	$0 \rightarrow 500 {\rm GeV}$	(extended range)
$d\sigma/dp_T^b$	$2.5 < Y^b < 4$	$0 \rightarrow 50 \mathrm{GeV}$	
$d\sigma/d\Delta\phi^{bb}$	$p_T^b > 3, p_T^b > 6 \text{ GeV},$		
	$ Y^b < 2.5, Y^{\bar{b}} < 2.5$	$0 \rightarrow \pi$	$b\bar{b}$ correl.
$d\sigma/dp_T^{b\bar{b}}$	$p_T^b > 3, p_T^{\bar{b}} > 6 \text{ GeV},$		
	$ Y^b < 2.5, Y^{\bar{b}} < 2.5$	$0 \rightarrow 50$	p_T of $c\bar{c}$ system
$d\sigma/dp_T^B$	$ Y^B < 2.5$	$0 \rightarrow 50 \mathrm{GeV}$	B hadron
$d\sigma/dp_T^B$	$2.5 < Y^B < 4.5$	$0 \rightarrow 50 \mathrm{GeV}$	
$d\sigma^b/dp_T^\mu$	$ Y^{\mu} < 2.5$	$0 \rightarrow 50 \text{ GeV}$	any μ from b or \bar{b}
$d\sigma^b/dp_T^{\mu}$	$2.5 < Y^{\mu} < 4.5$	$0 \rightarrow 50 \; \mathrm{GeV}$	

Benchmark cross-section manual, Massimo Corradi

Differential cross-sections

$Qar{Q}$ correlations

Program for the workshop

- Assess signal systematics
- Study underlying event
 - We should agree on relevant quantities
- POstive Weight Hardest Emission Generator
 - Both charm & bottom
 - No negative weights