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Motivation and objective
Parton showers are and will be an important tool in the
field of collider physics...

...will however always be an approximation of the
underlying fundamental model of QCD to a certain
degree.

Want to estimate the uncertainty of a MC prediction...

...by quantifing the effects of varying different features
of the parton shower;

The solution must leave delicate technical features of
original parton shower implementation untouched.
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Method
The basic building block of a parton-shower is the a
probability distribution of the type

P[ϕ(~y)] = FR[ϕ(~y)] exp

(

−

∫ξ(~y)

dn
~y

′
FV [ϕ(~y

′
)]

)

,

where ϕ is a vector of functional components representing
the variable quantities within the shower, for example

coupling constant;

kernel;

...,

and ~y represents evolution variables, the splitting variables,
...
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Method
Varying this distribution following ϕ 7→ ϕ + δϕ we find

P[ϕ + δϕ]

P[ϕ]
=

(

1 +
δFR[ϕ]

FR[ϕ]

)

exp

(

−

∫ξ(~y)

dn
~y

′
δFV [ϕ(~y

′
)]

)

,

where

δFR/V [ϕ] = FR/V [ϕ + δϕ] − FR/V [ϕ] .

In order to mimick the effect of the variation, the generation
stage is reweighted by

1 +
δP[ϕ]

P[ϕ]
:=

P[ϕ + δϕ]

P[ϕ]
.

The full event is reweighted by a product of these weights.
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Method
Using sensible variations, this “simulation” of the effect
of the variation by reweighting the events can be used
to estimate the uncertainty of the predictions made with
the parton shower.

The parton shower only needs to give a set of weights
with each event corresponding to the different
variations.

We now look at some examples

Relaxing collinear approximation

Inclusion of NLO kernel

Changing kinematics

Uncertainty updfs
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Kinematics and evolution

We use a use a Herwig++
type of shower with vari-
ables z, q̃ q q

q

k

i−1
i

0

i

In the Sudakov basis

qi = αip + βin + q⊥i ,

with p2 = m2, n2 = 0, p ·n = 1, and p · q⊥i = n · q⊥i = 0. The
variables are given by

zi =
αi

αi−1
, q̃2

i =
p2
⊥i

z2
i (1 − zi)2

+
µ2

z2
i

+
Q2

g

zi(1 − zi)2

where p⊥i = q⊥i − ziq⊥i−1 and µ = max(m,Qg).
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Kinematics and evolution
The branching probability is given by

dB(q→ qg) =
CF

2π
αS

(

z2(1 − z)2q̃2
) dq̃2

q̃2
dzPqq(z, q̃2).

For a final state shower we then identify

FR[ϕ(z, q̃2)] = FV [ϕ(z, q̃2)] =
1

2πq̃2
αS(z, q̃

2)Pqq(z, q̃2) .

with bounds z− < z < z+ and q̃2 < q̃2
i−1.
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Quasi-Collinear Approximation
Kernel in the quasi-collinear approximation defines variation

1 + z2

1 − z
−

2m2

z(1 − z)q̃2
= Pqq(z, q̃2) + δPqq(m2; z, q̃2) .
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Quasi-Collinear Kernel
Distribution of the transverse momentum of each emission.
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NLO Kernel
Interprete the NLO contribution to the kernel as a variation

δF =
1

2πq̃2
α2

S(z, q̃
2)δP

(2)
qq(z, q̃2).

With flavour singlet and
non-singlet contributions

δP
(2)
qq(z, q̃2) = P

S(2)
qq (z) + P

V(2)
qq (z).
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NLO Kernel

Distribution of the
number of emissions
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Change of Kinematics
We also want to simulate a change in kinematics and
evolution ordering through the alternative weight

Phase spaces of emissions are not identical

Methods of reconstruction are not the same

Orderings differ

Infra-red cutoffs differ
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Pythia-like Kinematics
For a Pythia-like shower, the evolution variables are

zi =
Ei

Ei−1
←→ zi =

αi

αi−1

Q2
i = q2

i−1 ←→ q̃2
i =

p2
⊥i

z2
i (1 − zi)2

+
µ2

z2
i

+
Q2

g

z(1 − z)2

These variables are reconstructed from the 4-momenta
generated with the Herwig++ like shower and then used to
calculate the weight. Real part:

wi =
αS(zi(1 − zi)Q

2)Pqq(zi)q̃
2

αS(z
2
i (1 − z2

i )q̃
2)Pqq(zi)Q2

J(zi,Q
2
i )

× θ(Q2
i−1 − Q2

i )θ(z+ − zi)θ(zi − z−) ,
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Pythia-like Kinematics
For the virtual part we take advantage of the analytic
behaviour of the Sudakov form factor

∆(t, t0) = ∆(t, t1)∆(t1, t0),

to directly compute the
Sudakov weight

w∆ =
∆P(Q2

max,Q
2
0)

∆H(q̃2
max, q̃

2
0)

.
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Change of Kinematics

Distribution of 1 − T with thrust T = max
n

∑N
i=1 |pi · n|
∑N

i=1 |pi|
.
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Unintegrated PDF
How to assess the uncertainty in the updf delivered by
SMALLX to the backward evoluting parton shower
CASCADE.
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Unintegrated PDF
The basic building block of the parton shower is

P =
P̃(z, q

z , k⊥)

2πzq2
A(x

z , k ′

⊥
, q

z )

× exp

(

−

∫q

q

dq ′2

q ′2

∫
dz

z

dφ

2π
P̃(z, q ′

z
, k⊥)

A(x
z , k ′

⊥
, q ′

z )

A(x, k⊥, q ′)

)

where k ′

⊥
= |(1 − z)/zq + k⊥|.

Define A = A(x, k⊥, q ′) and Az = A(x
z , k ′

⊥
, q ′

z )

Variation of the real part: δFR/FR = δAz/A

and of the virtual part: δFV ≈
P̃(z, q ′

z , k⊥)

2πzq ′2A

(

δAz −
Az

A
δA

)
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Conclusion
Suggest to estimate uncertainties in parton shower by
reweighting events

Direct study of reweighted results vs. full
implementation can highlight physical differences
between methods

Kinematics bounds
Evolution ordering

Could be used to direct research in regions where
Monte Carlo’s fail to match data
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Uncertainty in Strong Coupling

Used αS(M
2
Z) ± δαS(M

2
Z) to compute ΛQCD ± δΛ±

QCD

2-loop running coupling, frozen at Q2 = 0.630 GeV2
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Running Coupling
Distribution of N, the number of emissions.
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Running Coupling
Distribution of p⊥ of each emission.
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