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The structure function of the proton F2 in QCD

• At fixed x and Q2 >∼ 1 GeV2 , the structure function of the proton F2 appears to

depend logarithmically on Q2
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• This behaviour arises from perturbative QCD (pQCD), which dictates the
Q2–evolution of the underlying parton distributions f(x, Q2), f = q, q̄, g

• The parton distributions are fixed at a specific input scale Q2 = Q2
0
, mainly by

experiment, only their evolution to any Q2 > Q2
0

being predicted by pQCD
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Standard χ2 analysis

Do NLO and NNLO pQCD Q2–evolutions agree with recent HERA data on F2 at x <∼ 10−3 ?

• In order to answer, the valence qv = uv , dv and sea w = q̄, g distributions are
parametrized at the input scale Q2

0
= 1.5 GeV2 as follows

x qv(x, Q2
0) = Nqv

xaqv (1 − x)bqv (1 + cqv

√
x + dqv

x + eqv
x1.5)

x w(x, Q2
0) = Nwxaw (1 − x)bw (1 + cw

√
x + dwx)

• Sea breaking effects are not considered: q̄ ≡ ū = d̄ and s = s̄ = 0.5q̄

• The normalizations Nuv
, Ndv

and Ng are fixed by (Σ(x, Q2) ≡ Σq=u,d,s(q + q̄)):

R

1

0
uvdx = 2,

R

1

0
dvdx = 1,

R

1

0
x(Σ + g)dx = 1

• All Q2-evolutions are performed in Mellin n-moment space,
the program QCD-PEGAUS has been used for the NNLO evolutions

A. Vogt, Comput. Phys. Commun. 170, 65 (2005)

• The choice of a factorization scheme in NLO might imply similar effects as the
additional NNLO contributions: NLO analysis in both MS and DIS schemes.
NNLO only in the MS factorization scheme
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Parameter values

• The following data sets from DIS processes have been used:
small-x and large-x H1 F p

2
data

fixed target BCDMS data for F p
2

and F n
2

proton and deuteron NMC data

• Total of 740 data points; degrees of freedom dof = 720, χ2 evaluated by adding in
quadrature statistical and systematic errors

NNLO(MS) NLO(MS)

uv dv q̄ g uv dv q̄ g

N 0.250 3.620 0.120 2.120 0.430 0.396 0.055 2.379

a 0.252 0.925 -0.149 -0.012 0.286 0.538 -0.218 -0.012

b 3.629 6.711 3.728 6.514 3.550 5.797 3.311 5.639

c 4.764 6.723 0.621 2.092 1.112 22.50 5.309 0.879

d 24.18 -24.24 -1.135 -3.089 15.61 -52.70 -5.905 -1.771

e 9.049 30.11 — — 4.241 69.76 — —

χ2/dof 0.989 0.993

αs(M2

Z
) 0.112 0.114

• Rather small quantitative difference between the NLO(DIS) and NLO(MS)
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Comparison with the experimental data

• H1 data in the small-x region:

1.5 GeV2 ≤ Q2 ≤ 12 GeV2, 3 × 10−5 . x . 3 × 10−3

C. Adloff et al., H1 Collab., EPJ C21, 33 (2001)
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• Perturbatively stable predictions compatible with the data, comparable χ2’ s:
agreement between the Q2–evolutions of f(x, Q2) and the measured
Q2–dependence of F2(x, Q2)
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Resulting gluon and sea distributions

• The gluon distributions at Q2 = 4.5 GeV2 conform to the rising shape as x → 0

(tamed at NNLO) obtained in most available analyses published so far
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MS

: NLO(DIS) results transformed to the MS factorization scheme

• It is possible to conceive a valence–like gluon at some very–low Q2 scale, but
even in this extreme case the gluon ends up as non valence–like at Q2 > 1 GeV2
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Curvature test of F2

• At x = 10−4 most measurements lie along a straight (dotted) line, if plotted versus

q = log10

„

1 +
Q2

0.5GeV2

«

D. Haidt, EPJ C35, 519 (2004)
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• MRST01 fit: sizable curvature for F2, incompatible with the data, mainly caused by
the valence–like input gluon distribution at Q2

0
= 1 GeV2
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Calculation of the curvature

• The curvature a2(x) = 1

2
∂2

q F2(x, Q2) is evaluated by fitting the predictions for

F2(x, Q2) at fixed values of x to a (kinematically) given interval of q, as

F2(x, Q2) = a0(x) + a1(x)q + a2(x)q2
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(a)

data

MRST01

0.7 ≤ q ≤ 1.4 for 2 × 10−4 < x < 10−2

0.7 ≤ q ≤ 1.2 for 5 × 10−5 < x ≤ 2 × 10−4

• (a): The average value of q decreases with decreasing x due to the kinematically
more restricted Q2 range accessible experimentally

• Our fits agree with the experimental curvatures, as calculated by Haidt using H1
data
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Results

• (b): For comparison a2(x) is also shown for an x–independent fixed q–interval
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MRST01

0.6 ≤ q ≤ 1.4

(1.5 GeV2 ≤ Q2 ≤ 12 GeV2)

• No sensitive dependence on the factorization scheme (MS or DIS)

• Perturbative stable evolutions result in a positive curvature a2(x) , which increases
as x decreases

• Future analyses of present precision measurements in this very small x–region
should provide a sensitive test of the range of validity of pQCD evolutions
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F̈ p

2
≡ ∂2F p

2
/∂(lnQ2)2

• F̈ p
2

= O(α2
s) is directly related to the evolution equations and to experiment

• Ḟ p
2
≡ ∂F p

2
/∂ ln Q2 = O(αs) and κ = 0.5 GeV2/(Q2 + 0.5 GeV2)

∂2
q F p

2
=

„

Q2 + 0.5 GeV2

Q2
ln 10

«2
h

−κ Ḟ p
2

+ F̈ p
2

i
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At smallest values of x,

upper curves: NLO(MS)
lower curves: NNLO

• F̈ p
2

dominates over κḞ p
2

: ∂2
q F p

2
represents a clean test of the curvature of F p

2
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Summary and conclusions

• A dedicated test of the pQCD NLO and NNLO parton evolutions in the small–x
region has been performed

• The Q2-dependence of F2(x, Q2) is compatible with recent high-statistics
measurements in that region

• The results are perturbatively stable and rather insensitive to the factorization
scheme used (MS or DIS)

• A characteristic feature of perturbative QCD is a positive curvature a2(x), which
increases as x decreases

• Present data are indicative for such a behaviour, but they are statistically
insignificant for x < 10−4.
The H1 Collab. has found a good agreement between the perturbative NLO
evolution and the slope of F2, a1(x), i.e. the first derivative ∂Q2F2

• Future analyses of present precision measurements should provide a sensitive
test of the range of validity of pQCD and further information concerning the
detailed shapes of the gluon and the sea distributions at very small x
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