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The structure function of the proton F5 in QCD

o Atfixed z and Q2 > 1 GeV? , the structure function of the proton F> appears to
depend logarithmically on Q2
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e This behaviour arises from perturbative QCD (pQCD), which dictates the
Q?—evolution of the underlying parton distributions f(x, Q?), f =q, 4, g

e The parton distributions are fixed at a specific input scale Q? = Q32, mainly by
experiment, only their evolution to any Q% > Q2 being predicted by pQCD



Standard X2 analysis

Do NLO and NNLO pQCD QZ?-evolutions agree with recent HERA data on F» at x < 1073 ?

e In order to answer, the valence ¢, = u., d, and sea w = q, g distributions are
parametrized at the input scale Q% = 1.5 GeV? as follows

qu(£7Q(2)) — Nq'vmaqv (]‘ _m)bqv (1+CQ’U\/5+dq’Um+eq’Um]ﬂ5)
rw(r, Q) = Npz®(1—2)"(1+ cuvVE + dpe)

e Sea breaking effects are not considered: =4 =d and s=35=0.5¢
e The normalizations N, N4, and Ny are fixed by (3(z, Q%) = 3,—u.a.s(q + 7)):

1uvdm:2, 1dvd33=1, 133§]—|—gd:c:1
0 0 0

e All Q?-evolutions are performed in Mellin n-moment space,
the program QCD-PEGAUS has been used for the NNLO evolutions
A. Vogt, Comput. Phys. Commun. 170, 65 (2005)

e The choice of a factorization scheme in NLO might imply similar effects as the
additional NNLO contributions: NLO analysis in both MS and DIS schemes.
NNLO only in the MS factorization scheme



Parameter values

e The following data sets from DIS processes have been used:
small-z and large-z H1 F2 data

fixed target BCDMS data for F2 and F

proton and deuteron NMC data

o Total of 740 data points; degrees of freedom dof = 720, x? evaluated by adding in
guadrature statistical and systematic errors

NNLO(MS) NLO(MS)
Uy dy q g (% dy q g
N 0.250 | 3.620 | 0.120 | 2.120 || 0.430 | 0.396 | 0.055 | 2.379
a 0.252 | 0.925 | -0.149 | -0.012 || 0.286 | 0.538 | -0.218 | -0.012
b 3.629 | 6.711 | 3.728 | 6.514 || 3.550 | 5.797 | 3.311 | 5.639
c 4764 | 6.723 | 0.621 | 2.092 | 1.112 | 2250 | 5.309 | 0.879
d 24.18 | -24.24 | -1.135 | -3.089 || 15.61 | -52.70 | -5.905 | -1.771
e 9.049 | 30.11 — — 4.241 | 69.76 — —
x2 /dof 0.989 0.993
as(M2) 0.112 0.114

e Rather small quantitative difference between the NLO(DIS) and NLO(MS)




Comparison with the experimental data

e H1 data in the small-z region:

1.5 GeV2 < Q?<12GeV?, 3x107°<zx<3x107°
C. Adloff et al., H1 Collab., EPJ C21, 33 (2001)
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e Perturbatively stable predictions compatible with the data, comparable x?’ s:
agreement between the Q?—evolutions of f(x, Q?) and the measured
Q?—dependence of Fy(x, Q?)



Resulting gluon and sea distributions

e The gluon distributions at Q? = 4.5 GeV? conform to the rising shape as  — 0
(tamed at NNLO) obtained in most available analyses published so far
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e NLO-DIS|3r5 : NLO(DIS) results transformed to the MS factorization scheme

e Itis possible to conceive a valence—like gluon at some very—low Q2 scale, but
even in this extreme case the gluon ends up as non valence—like at Q2 > 1 GeV?



Curvature test of F5

e Atz = 10—% most measurements lie along a straight (dotted) line, if plotted versus

Q2
4= 9810 ( + 0.5 GeV2>

D. Haidt, EPJ C35, 519 (2004)
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e MRSTO1 fit: sizable curvature for F5, incompatible with the data, mainly caused by
the valence-like input gluon distribution at Q2 = 1 GeV?



ay(X)

Calculation of the curvature

e The curvature az(z) = 3 82 F»(z, Q?) is evaluated by fitting the predictions for
F>(x,Q?) at fixed values of z to a (kinematically) given interval of ¢, as
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Fa(z,Q%) = ao(z) + a1(z)q + az(z)q”

for

for

2x 1074 <z <1072
5x107° <z <2x107%

e (a): The average value of g decreases with decreasing = due to the kinematically
more restricted Q2 range accessible experimentally

e Our fits agree with the experimental curvatures, as calculated by Haidt using H1
data



Results

e (b): For comparison az(x) is also shown for an z—independent fixed g—interval
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e No sensitive dependence on the factorization scheme (MS or DIS)

e Perturbative stable evolutions result in a positive curvature a2 (x) , which increases
as x decreases

e Future analyses of present precision measurements in this very small z—region
should provide a sensitive test of the range of validity of pQCD evolutions



FP = 9?°FP/9(In Q?)?

o P =0(a?) isdirectly related to the evolution equations and to experiment

o FP=0FY/0InQ? = O(as) and x = 0.5 GeV?/(Q? + 0.5 GeV?)
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o FY dominates over xFY :  02FY represents a clean test of the curvature of £



Summary and conclusions

A dedicated test of the pQCD NLO and NNLO parton evolutions in the small-x
region has been performed

The Q?-dependence of F»(z, Q?) is compatible with recent high-statistics
measurements in that region

The results are perturbatively stable and rather insensitive to the factorization
scheme used (MS or DIS)

A characteristic feature of perturbative QCD is a positive curvature a2 (x), which
increases as = decreases

Present data are indicative for such a behaviour, but they are statistically
insignificant for x < 10~4.

The H1 Collab. has found a good agreement between the perturbative NLO
evolution and the slope of F3, ai(z), i.e. the first derivative 952 F»

Future analyses of present precision measurements should provide a sensitive
test of the range of validity of pQCD and further information concerning the
detailed shapes of the gluon and the sea distributions at very small x



	
	
	
	
	
	
	
	
	
	
	

