Perturbative NLO and NNLO parton evolutions in the small-x region *

Cristian Pisano

Vrije Universiteit Amsterdam

3rd HERA and the LHC Workshop 13 March 2007 DESY, Hamburg

- The structure function of the proton F_2 in QCD
- Standard χ^2 analysis
- Curvature test of F_2
- Results
- Summary and conclusions
- * EPJ C40, 515 (2005) and hep-ph/0610060; in collab. with M. Glück and E. Reya

• At fixed x and $Q^2 \gtrsim 1 \text{ GeV}^2$, the structure function of the proton F_2 appears to depend logarithmically on Q^2

- This behaviour arises from perturbative QCD (pQCD), which dictates the Q^2 -evolution of the underlying parton distributions $f(x, Q^2)$, f = q, \bar{q} , g
- The parton distributions are fixed at a specific input scale $Q^2 = Q_0^2$, mainly by experiment, only their evolution to any $Q^2 > Q_0^2$ being predicted by pQCD

Standard χ^2 analysis

Do NLO and NNLO pQCD Q^2 -evolutions agree with recent HERA data on F_2 at $x \leq 10^{-3}$?

• In order to answer, the valence $q_v = u_v$, d_v and sea $w = \bar{q}$, g distributions are parametrized at the input scale $Q_0^2 = 1.5 \text{ GeV}^2$ as follows

$$x q_v(x, Q_0^2) = N_{q_v} x^{a_{q_v}} (1-x)^{b_{q_v}} (1+c_{q_v} \sqrt{x} + d_{q_v} x + e_{q_v} x^{1.5})$$

$$x w(x, Q_0^2) = N_w x^{a_w} (1-x)^{b_w} (1+c_w \sqrt{x} + d_w x)$$

- Sea breaking effects are not considered: $\bar{q} \equiv \bar{u} = \bar{d}$ and $s = \bar{s} = 0.5 \bar{q}$
- The normalizations N_{u_v} , N_{d_v} and N_g are fixed by $(\Sigma(x, Q^2) \equiv \Sigma_{q=u,d,s}(q+\bar{q}))$:

$$\int_0^1 u_v dx = 2, \qquad \int_0^1 d_v dx = 1, \qquad \int_0^1 x(\Sigma + g) dx = 1$$

- All Q²-evolutions are performed in Mellin *n*-moment space, the program QCD-PEGAUS has been used for the NNLO evolutions

 A. Vogt, Comput. Phys. Commun. 170, 65 (2005)
- The choice of a factorization scheme in NLO might imply similar effects as the additional NNLO contributions: NLO analysis in both $\overline{\rm MS}$ and DIS schemes. NNLO only in the $\overline{\rm MS}$ factorization scheme

- The following data sets from DIS processes have been used: small-x and large-x H1 F_2^p data fixed target BCDMS data for F_2^p and F_2^n proton and deuteron NMC data
- Total of 740 data points; degrees of freedom dof = 720, χ^2 evaluated by adding in quadrature statistical and systematic errors

	$NNLO(\overline{MS})$				$NLO(\overline{MS})$			
	u_v	d_v	$ar{q}$	g	u_v	d_v	$ar{q}$	g
N	0.250	3.620	0.120	2.120	0.430	0.396	0.055	2.379
a	0.252	0.925	-0.149	-0.012	0.286	0.538	-0.218	-0.012
b	3.629	6.711	3.728	6.514	3.550	5.797	3.311	5.639
с	4.764	6.723	0.621	2.092	1.112	22.50	5.309	0.879
d	24.18	-24.24	-1.135	-3.089	15.61	-52.70	-5.905	-1.771
e	9.049	30.11	—	—	4.241	69.76		—
χ^2/dof	0.989				0.993			
$\alpha_s(M_Z^2)$	0.112				0.114			

• Rather small quantitative difference between the NLO(DIS) and NLO($\overline{\mathrm{MS}}$)

Comparison with the experimental data

• H1 data in the small-*x* region:

 $1.5 \text{ GeV}^2 \le Q^2 \le 12 \text{ GeV}^2, \qquad 3 \times 10^{-5} \le x \le 3 \times 10^{-3}$

C. Adloff et al., H1 Collab., EPJ C21, 33 (2001)

• Perturbatively stable predictions compatible with the data, comparable χ^2 's: agreement between the Q^2 -evolutions of $f(x, Q^2)$ and the measured Q^2 -dependence of $F_2(x, Q^2)$ • The gluon distributions at $Q^2 = 4.5 \text{ GeV}^2$ conform to the rising shape as $x \to 0$ (tamed at NNLO) obtained in most available analyses published so far

- NLO-DIS| $_{\overline{\rm MS}}$: NLO(DIS) results transformed to the $\overline{\rm MS}$ factorization scheme
- It is possible to conceive a valence–like gluon at some very–low Q^2 scale, but even in this extreme case the gluon ends up as non valence–like at $Q^2 > 1$ GeV²

• At $x = 10^{-4}$ most measurements lie along a straight (dotted) line, if plotted versus

$$q = \log_{10} \left(1 + \frac{Q^2}{0.5 \,\mathrm{GeV}^2} \right)$$

D. Haidt, EPJ C35, 519 (2004)

• MRST01 fit: sizable curvature for F_2 , incompatible with the data, mainly caused by the valence–like input gluon distribution at $Q_0^2 = 1 \text{ GeV}^2$

Calculation of the curvature

• The curvature $a_2(x) = \frac{1}{2} \partial_q^2 F_2(x, Q^2)$ is evaluated by fitting the predictions for $F_2(x, Q^2)$ at fixed values of x to a (kinematically) given interval of q, as

$$F_2(x,Q^2) = a_0(x) + a_1(x)q + a_2(x)q^2$$

- (a): The average value of q decreases with decreasing x due to the kinematically more restricted Q^2 range accessible experimentally
- Our fits agree with the experimental curvatures, as calculated by Haidt using H1 data

<u>Results</u>

• (b): For comparison $a_2(x)$ is also shown for an *x*-independent fixed *q*-interval

- No sensitive dependence on the factorization scheme (\overline{MS} or DIS)
- Perturbative stable evolutions result in a positive curvature $a_2(x)$, which increases as x decreases
- Future analyses of present precision measurements in this very small *x*-region should provide a sensitive test of the range of validity of pQCD evolutions

$$\ddot{F}_2^p \equiv \partial^2 F_2^p / \partial (\ln Q^2)^2$$

- $\ddot{F}_2^p = \mathcal{O}(\alpha_s^2)$ is directly related to the evolution equations and to experiment
- $\dot{F}_2^p \equiv \partial F_2^p / \partial \ln Q^2 = \mathcal{O}(\alpha_s)$ and $\kappa = 0.5 \text{ GeV}^2 / (Q^2 + 0.5 \text{ GeV}^2)$

$$\partial_q^2 F_2^p = \left(\frac{Q^2 + 0.5 \,\text{GeV}^2}{Q^2} \,\ln 10\right)^2 \left[-\kappa \,\dot{F}_2^p + \ddot{F}_2^p\right]$$

• \ddot{F}_2^p dominates over $\kappa \dot{F}_2^p$: $\partial_q^2 F_2^p$ represents a clean test of the curvature of F_2^p

- A dedicated test of the pQCD NLO and NNLO parton evolutions in the small-*x* region has been performed
- The Q^2 -dependence of $F_2(x,Q^2)$ is compatible with recent high-statistics measurements in that region
- The results are perturbatively stable and rather insensitive to the factorization scheme used ($\overline{\rm MS}$ or DIS)
- A characteristic feature of perturbative QCD is a positive curvature $a_2(x)$, which increases as x decreases
- Present data are indicative for such a behaviour, but they are statistically insignificant for x < 10⁻⁴.
 The H1 Collab. has found a good agreement between the perturbative NLO evolution and the slope of F₂, a₁(x), i.e. the first derivative ∂_{Q²}F₂
- Future analyses of present precision measurements should provide a sensitive test of the range of validity of pQCD and further information concerning the detailed shapes of the gluon and the sea distributions at very small *x*