Vista as a tool for generator tuning

Stephen Mrenna CD/FNAL

HERALHC

The MIT High-Pt group:

Bruce Knuteson Conor Henderson Ray Culbertson

Stephen Mrenna (CD)

Vista for Understanding the SM

Dictionary.com Unabridged (v 1.1) - vis·ta /'vɪstə/

1. a view or prospect, esp. one seen through a long, narrow avenue or passage, as between rows of trees or houses.

2. such an avenue or passage, esp. when formally planned.

3. a far-reaching mental view: vistas of the future.

[Origin: 1650–60; < It: a view, n. use of fem. of visto (ptp. of vedere to see < L vidére)]

Dictionary.com Unabridged (v 1.1) - vis·ta /'vɪstə/

1. a view or prospect, esp. one seen through a long, narrow avenue or passage, as between rows of trees or houses.

2. such an avenue or passage, esp. when formally planned.

3. a far-reaching mental view: vistas of the future.

4. attempt to understand the entirety of high-pT collider data, with a focus on large scale discrepancies and shapes

[Origin: 1650–60; < It: a view, n. use of fem. of visto (ptp. of vedere to see < L vidére)]

How do we address the question:

Do we understand the entirety of high-pT (collider) data?

Implement the **Standard Model**

Look in many final states

Final State	Chi2	data	bkg				
1b3j1pmiss_sumPt400+ [73]	9.0	451	374.5	+-	18	(pyth_jj_200 =
2b1e+2j [-]	8.0	15	6.5	+-	1.9	<	ttcp0z = 2.3
2j_sumPt0-400 [161]	6.0	69704	67013.6	+-	1171.2	<	pyth_jj_018 =
2j2mu+1pmiss [-]	-5.0	2	12.2	+-	3	<	mad_mu+mu-jj
1b2e+2j [-]	5.0	9	3.9	+-	1.5	<	mrenna_e+e-jj
1j1ph1pmiss [5]	4.0	2591	2470.1	+-	37.7	<	$pyth_pj_045 =$
2j1mu+1ph [-]	4.0	11	11.2	+-	2.2	<	mrenna_mu+mu-
1e+1j1mu+ [-]	4.0	13	6.6	+-	2.1	<	ztcp5i = 3.4
1e+2j1ph [-]	4.0	31	20.9	+-	2.7	<	mad_aajj = 6.
3j2mu+ [-]	4.0	34	23.2	+-	2.7	<	mrenna_mu+mu-
2b2j1pmiss_sumPt400+ [-]	-3.0	17	30.4	+-	4.2	¢	$pyth_j_200 =$
1b2j_sumPt400+ [229]	3.0	4669	4518.6	+-	72.7	<	$pyth_j_200 =$
4j_sumPt0-400 [253]	-3.0	2611	2736.9	+-	42.3	<	$pyth_j_040 =$
2b1j1ph1pmiss [-]	3.0	6	2.7	+-	1.5	($pyth_j_200 =$
1b1j1mu+ [-]	3.0	67	53.8	+-	4.3	<	pyth_jj_018 =
1j1ph [277]	3.0	31738	31149.8	+-	352.1	<	$pyth_pj_045 =$
1e+1mu+ [-]	3.0	66	53.5	+-	3.2	<	ztcp5i = 38.8
4j1mu+ [-]	3.0	73	61.3	+-	2.6	<	$pyth_j_040 =$
5j [269]	3.0	448	406	+-	14.5	<	$pyth_j_040 =$
1b5j [-]	3.0	8	8.9	+-	1.7	<	$pyth_j_060 =$
1b1j1pmiss_sumPt0-400 [-]	2.0	120	104	+-	7.2	<	$pyth_j_040 =$
2j1pmiss_sumPt0-400 [37]	2.0	2381	2281.2	+-	73.9	<	$pyth_jj_018 =$

...

Have a measure of agreement

Final State	Chi2	data	bkg	
1b2e+2j [-]	5.0	9	3.9 +-	1.5
(mrenna_e+e-jjj = 1. ztopcz = 0. hewk03 = 0.	9 , mad_e+e-jj = 0.5 , mren 3 , pyth_jj_040 = 0.2 , mac 1 , wtop1z = 0.1)	nna_e+e-jj = 0.4 1_aajj = 0.1 , mr	, mad_e+e-b- renna_e+vejjj	b = 0.4 , j = 0.1 ,

Must mix a cocktail

Check also consistency between shapes of object distributions in each final state

Stephen Mrenna (CD)

Vista Overview

- 1. Identify objects
- 2. Select events
- 3. Partition events
- 4. Implement the SM
- 5. Determine correction factors
- 6. Perform global comparison
- 7. Investigate discrepancies

Stephen Mrenna (CD)

Vista for Understanding the SM

standard definition of objects. objects are reasonably "tight".

Standard ID cuts Objects identified if $p_T > 17$ GeV

Stephen Mrenna (CD)

Cartoon of Vista mis-id matrix

Stephen Mrenna (CD)

Vista for Understanding the SM

Vista: partitioning into final states

partition rules for Vista

- Group events exclusively, according to what final reconstructed objects they contain.
 Objects are : e, γ, μ, τ, b, j, pTmiss
- Any object with pT > 17 GeV counts.
- μ,τ, b : |η| < 1.0
- e, j, γ : lηl < 2.5

Monte Carlo samples used

Matched (MadEvent+Pythia) W/Z + jets

Pythia QCD dijets

Pythia QCD photon+jet(s)

Pythia QCD diphoton (+jets)

Herwig ttbar

Pythia VV

MadEvent + Pythia filling in holes (e.g. $Z+2\gamma$)

Using standard CDF samples wherever possible.

Entirely Modular: plug-in better Monte Carlo where needed **Correction Factors**

object-dependent, location-dependent, energy-dependent corrections applied to particle-level events to maximize the agreement between "theory" and data

- 1. consistent with external constraints
- 2. some theory-based (K-factors)
- 3. expt.-based (misid, trigger + prescale, energy scale, ...)
- 4. instead of defining a control region, one checks for consistency of the fit
- 5. <50 correction factors, but >10000 distributions
- 6. start with 0, and add those that are needed (debug detector and SM simultaneously)

Correction Factors

Code	Category	Explanation					
5001	luminosity	CDF integrat	ced luminosity				
5102	k-factor	cosmic_ph			21 - 22/52	5 (c) X	2 2 1
5103	k-factor	cosmic_j		5211	misId	p(e->e)	central
5121	k-factor	1ph1j	photon+jet (s)	5212	misId	p(e->e)	plug
5122	k-factor	1ph2j		5213	misId	p(mu->mu)	CMUP
5123	k-factor	1ph3j		5214	misId	p(mu->mu)	CMX
5124	k-factor	1ph4j+		5216	misId	p(ph->ph)	central
5130	k-factor	2ph0j	diphoton(+jets)	5217	misId	p(ph->ph)	plug
5131	k-factor	2ph1j		5219	misId	p (b->b)	central
5132	k-factor	2ph2j+		5245	misId	p(e->ph)	plug
5141	k-factor	wŌj	₩ (+jets)	5256	misId	p(q->e)	central
5142	k-factor	wij	19 (TA) 22	5257	misId	p(q->e)	plug
5143	k-factor	w2j		5261	misId	p(q->mu)	
5144	k-factor	w3j+		5273	misId	p(j->b)	25 <pt< td=""></pt<>
5151	k-factor	zoj	Z (+jets)	5285	misId	p(q->tau)	15 <pt<60< td=""></pt<60<>
5152	k-factor	Zlj		5286	misId	p(q->tau)	60 <pt<200< td=""></pt<200<>
5153	k-factor	Z2j+		5292	misId	p(q->ph)	central
5161	k-factor	2j pt<150	dijet	5293	misId	p(q->ph)	plug
5162	k-factor	2j 150 <pt< td=""><td>12</td><td>5401</td><td>trigger</td><td>p(e->trig)</td><td>central, pt>25</td></pt<>	12 	5401	trigger	p(e->trig)	central, pt>25
5164	k-factor	3j pt<150	multijet	5402	trigger	p(e->trig)	plug, pt>25
5165	k-factor	3j 150 <pt< td=""><td>al and the state of the state</td><td>5403</td><td>trigger</td><td>p(mu->trig)</td><td>CMUP, pt>25</td></pt<>	al and the state of the state	5403	trigger	p(mu->trig)	CMUP, pt>25
5167	k-factor	4j pt<150		5404	trigger	p(mu->trig)	CMX, pt>25
5168	k-factor	4j 150 <pt< td=""><td></td><td></td><td></td><td></td><td></td></pt<>					
5169	k-factor	5i+ low					

the global fit

$$\chi^2(\vec{s}) = \left(\sum_{k \in \text{bins}} \chi^2_k(\vec{s})\right) + \chi^2_{\text{constraints}}(\vec{s})$$

$$\chi_k^2(\vec{s}) = \frac{(\text{Data}[k] - \text{SM}[k])^2}{\delta \text{SM}[k]^2 + \sqrt{|\mathbf{SM}[k]|^2}}$$

There are no systematic uncertainties on the procedure ?

Vista takes a different approach to the question of systematic uncertainties.

Finds values for the correction factors that allow the data to be described by the Standard Model.

The correction factors themselves are systematic shifts

The uncertainties on the values are the errors on these systematic shifts.

How can you possibly generate a complete Standard Model prediction?

At LEP 2, all 4 experiments had an internal web page containing a complete Standard Model cocktail, showing which Monte Carlo samples to mix together (and in what proportions) to obtain a complete Standard Model background estimate.

A similar cocktail was mixed at H1 in HERA Run I.

In this analysis, we have constructed such a cocktail for the first time at a hadron-hadron collider.

The size is intimately tied to the choice of offline trigger and identification pT thresholds.

Vista comparison

344 final state populations

Final state	effect (σ)	data	bkg	stat. uncertainty
			113.7 +-	3.6
	-		1902.9 +-	50.8
	-		296.5 +-	5.6
	-		27 +-	4.6
	+		2015.4 +-	28.7
	-		37294.6 +-	524.3
	t t		1751.6 +-	42
	+		695.3 +-	13.3
			967.5 +-	38.4
	(二)		11.6 +-	1.5
			551.2 +-	11.2
	+		27281.5 +-	405.2
	+		95 +-	4.7
			85.6 +-	8.2
	-		125 +-	13.6
	-		29.5 +-	4.6
	<u></u>		369.4 +-	21.1
	+		14.2 +-	1.8
			92437.3 +-	1354.5
	+		298.6 +-	7.7
			0.7 +-	1.2
			6.1 +-	2.5
			35.6 +-	4.9
			298.4 +-	14.7
			2.1 +-	1.6
			40898.8 +-	649.2
			8403.7 +-	144.7
			57.5 +-	11

Dissimilarities follow:

Stephen Mrenna (CD)

Vista comparison

~15,000 plots of kinematic distributions

Some final states are very powerful in determining fakes

• Also a peak at Z-mass, where electron is reconstructed as a jet

Real photon+jet production, plus di-jets with a jet faking a photon

Refitting after removing t-tbar

Strengths

- Looks at many places
- Is not blind
- Fast
- Looks for both large and small effects
- Correction factors apply globally
- Uncertainties and correlations of correction factors

Limitations

- Perfection in implementation is reached asymptotically
- Trials factor penalty
- Does not find C.L. regions.
- Stricter offline trigger reduces dataset
- Finite MC
- Some systematics are very hard to implement (CDFsim)

Successful "Debugging" of SM implementation

Large instrinsic kT

FSR for multiparton interactions

Stephen Mrenna (CD)

Questions raised by Vista spurred changes to RF Tunes

Use LO a _s	PY	TH	IA 6	5.2 '	Tun	es		
with $\Lambda = 192$ MeV!	Parameter	Tune DW	Tune DWT	ATLAS	Tune QW	Tune QWT	Tune QK	Tune QKT
K. Carden	PDF	CTEQ5L	CTEQ5L	CTEQ5L	CTEQ6.1	CTEQ6.1	CTEQ6.1	CTEQ6.1
K-factor (Slicthand)	MSTP(2)	1	1	1	1	1	1	1
(Sjostrand)	MSTP(33)	0	0	0	0	1	1	Ì.
	PARP(31)	1.0	1.0	1.0	1.0	1.0	1.8	1.8
	MSTP(81)	1	1	1	1	1	1	1
	MSTP(82)	4	4	4	4	4	4	4
UE Parameters	PARP(82)	1.9 GeV	1.9409 GeV	1.8 GeV	1.1 GeV	1.1237 GeV	1.9 GeV	1.9409 GeV
	PARP(83)	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	PARP(84)	0.4	0.4	0.5	0.4	0.4	0.4	0.4
Ĩ	PARP(85)	1.0	1.0	0.33	1.0	1.0	1.0	1.0
	PARP(86)	1.0	1.0	0.66	1.0	1.0	1.0	1.0
	PARP(89)	1.8 TeV	1.96 TeV	1.0 TeV	1.8 TeV	1.96 TeV	1.8 TeV	1.96 TeV
ISR Parameter	PARP(90)	0.25	0.16	0.16	0.25	0.16	0.25	0.16
7	PARP(62)	1.25	1.25	1.0	1.25	1.25	1.25	1.25
	PARP(64)	0.2	0.2	1.0	0.2	0.2	0.2	0.2
	PARP(67)	2.5	2.5	1.0	2.5	2.5	2.5	2.5
	MSTP(91)	1	1	1	1	1	1	1
	PARP(91)	2.1	2.1	1.0	2.1	2.1	2.1	2.1
	PARP(93)	15.0	15.0	5.0	15.0	15.0	15.0	15.0

Intrinsic KT

Stephen Mrenna (CD)

Vista for Understanding the SM

Issues to be considered

So far, the tuning procedure is not optimized.

Getting the bulk of the effect is often enough, since correction factors can compensate

We have been lucky that the shape of MC can be reproduced at the particle level

Our current stage of "debugging" is trying to do "parameter scans" more intelligently

The Importance of Automation

- Allows quick testing and feedback
- Enables us to look at many channels at once
- Want possibility to test hypotheses overnight or as soon as reasonably possible
 - Choice of objects, trigger thresholds, etc. reflect this.
 - Aim at probing 1-2M "most interesting" high-pT events
 - Speed is an important consideration.
 - Want/need methods to quickly reweight "old" Monte Carlo and converge on a "right" answer

Other discrepant shapes

Stephen Mrenna (CD)

Vista for Understanding the SM

Discrepant shapes

Stephen Mrenna (CD)

Vista for Understanding the SM

Parting Words

Vista is a methodology to answer the question: "Do we understand all the high-pT data?"

We have demonstrated that it is a useful part of our toolkit to understand the Standard Model

We got started "late" in Run2

We believe this should be done earlier as part of debugging the experiment

We should be prepared at the LHC start-up

Getting ready for the 900 GeV run