Measurement of bb cross section in LHCb

Karl Harrison (University of Cambridge) for the LHCb collaboration

3rd Workshop on the implications of HERA for LHC physics DESY, Hamburg, 12th-16th March 2007

CHCP Physics interest of production studies

- Measurements of heavy-quark production are essential for testing predictions based on perturbative QCD, and for constraining fragmentation models

- Significant improvements in theoretical calculations, and their inputs, over past few years
 - \blacktriangleright Better knowledge of fragmentation, structure functions and α_{s}
 - Calculations performed fixed-order with next-to-leading log (FONLL)
 - Consequent improved agreement with Tevatron data for central bb production

- Need more precise measurments before ruling out contributions from new physics
- Need to improve understanding of forward production
 - ▶ D0 measurement for 2.4 < $|\eta|$ < 3.2 factor 4 higher than suggested by theory

LHCD Measuring σ_{bb} in LHCb

- LHCb is designed for high-precision measurements of b-hadron decays
 - Will record enormous data samples useful for bb production studies
- Experiment is optimised for acceptance in forward region, and in a single hemisphere
 - \blacktriangleright Take advantage of correlation between b and \bar{b}
 - \blacktriangleright Measure σ_{bb} in region of phase space not accessible to previous hadron-collider experiments, or to other LHC experiments
- Measurement of σ_{bb} is complementary to other production measurements
 - Production fractions for different species of b hadron
 - Differential cross sections
 - Correlations between pairs

LHCb LHCb detector

LH **Trigger and rates**

Average luminosity = 2×10^{32} cm⁻² s⁻¹ ≈ 2 fbarn⁻¹ per year of data taking (10⁷ s)

. .

.

. . .

.

	Approximate cross sections and production rates			
≥ 2 charged tracks in VELO		Cross sec (mbarn	tion)	Rate (kHz)
	Bunch crossings	•		40000.
	All interactions	100.		20000.
	└──Visible interactions	60.		12000.
	bb events	0.5		100.
	cc events	3.5		700.
• Hardware trigger	Trigger	rates		
 High E_T particles 		Rate	Overall	trigger efficiency in
• Partial information		(kHz)	range 0	.3-0.8 for hadronic
	LU triggers	1000.	and sen	ni-leptonic b decays
Software trigger			of inter	est to I HCh
• High E_{T} and IP		0.2	of inter	
• Full information	Single muon			
	Inclusive D	0.5		
UNIVERSITY OF CAMBRIDGE	14th N		5/14	

LHCD Determination of σ_{bb}

- Measurement of cross section for a process X is conceptually simple
- Use: $\sigma_X = N_X / (L \epsilon_X)$
 - ▶ σ_X : cross section
 - L: integrated luminosity
 - \blacktriangleright N_X: number of times process is detected
 - ▶ ε_χ: Detection efficiency

- Outline how each of these will be evaluated in LHCb for measurment of $\sigma_{\rm bb}$

• Deal with general strategy rather than precise numbers, as studies are still at an early stage

- Note that work to measure $\sigma_{\rm bb}$ is work to understand the detector (acceptances) and the environment (luminosity)

Essential for all LHCb physics studies

Number of bb pairs using inclusive muons

- Approaches based on analysis of inclusive muon samples have historically been very successful

 \blacktriangleright Used by UA1, CDF and D0 in their first measurements of $\sigma_{\rm bb}$

- LHCb has dedicated muon stream in trigger, and good muon identification in offline reconstruction

- Aim to identify muons from b using cuts on $P_{\rm T}$ and impact parameter

Number of bb pairs using inclusive J/ψ

- LHCb is able to reconstruct J/ψ decays both to muons and to electrons
- In addition to cuts on P_T and impact parameter, will use cuts on separation between primary vertex and J/ ψ vertex to identify J/ ψ from b

HCD Number of bb pairs using inclusive D mesons

- Reconstruct $D \rightarrow K\pi\pi$, $D \rightarrow K\pi$, $D \rightarrow K\pi\pi\pi$, $D_s \rightarrow KK\pi$, then identify D mesons from b by again using cuts on P_T , impact parameter and vertex separation
- D-meson reconstruction uses RICH for kaon identification

HCD Number of bb pairs using exclusive B decays

- Use channels with well-measured branching fractions, for example: B⁺ \rightarrow J/ ψ K⁺ (3.5% uncertainty), B⁰ \rightarrow J/ ψ K⁰ (3.8% uncertainty)
- For these channels, expect to reconstruct >100k decays per year

LHCD Efficiency estimates

- Efficiency estimates rely heavily on simulation studies
- Most LHCb studies to date have used Pythia for particle production
- Studies for b production based on other packages also
 - HERWIG/MC@NLO/Jimmy, Sherpa, etc
 - Essential for understanding systematic uncertainties
 - Two generators can give same inclusive distributions, but different correlations
- Use EvtGen for particle decays, and Geant 4 for detector simulation

Luminosity from decays of Z⁰and W[±] CERN

CERN-THESIS-2006-013

- Take theoretical predictions for Z and W cross sections and muonic branching fractions

- Theoretical uncertainty of ~4%
- Measure yields of $Z \rightarrow \mu\mu$ and $W \rightarrow \mu\nu$, and correct for experimetal acceptance
 - ▶ Detection rate, after selection cuts, of about 0.05 Hz for
 - $Z \rightarrow \mu\mu$, and 0.25 Hz for single μ from Z or W
 - ▶ To match theoretical uncertainty, require data taking for about 3.75 hours for Z→µµ and 45 minutes for single µ
- Combine numbers from theory and experiment to determine luminosity

Luminosity from beam profiles

- Consider two counter-rotating bunches, with velocity $\sim c$ in beams with crossing angle ϕ and revolution frequency f

- Bunches have populations N_1 , N_2 , and are described by normalised density functions $\rho_1(x,t)$, $\rho_2(x,t)$

- Luminosity obtained as:

- Use residual gas into region of vertex locator, or inject additional gas
- Reconstruct beam-gas interaction to determine vertices beam angles, profiles and relative positions, and so evaluate overlap integral
 - ▶ Use Hijing to generate beam-gas interactions

LHCD Conclusions

- LHCb is designed for high-precision measurements of b-hadron decays, and will have large data samples for studies of b production characteristics

- To keep systematic uncertainties under control, each of the quantities contributing to the measurement of $\sigma_{\rm bb}$ will be evaluated in more than one way

• Determine number of bb pairs using inclusive muons, inclusive J/ψ , inclusive D mesons, and exclusive B decays

- Determine efficiencies using different packages for particle production
- ▶ Determine absolute luminosity using decays of Z⁰ and W[±], and using beam-gas interactions in region of vertex locator

- LHCb will measure $\sigma_{\rm bb}$ in the forward region, where the only previous measurement suggests disagreement with predictions based on perturbative QCD

