Exclusive processes at HERA from the saturation model

Leszek Motyka

Hamburg University & Jagellonian University, Kraków

motyka@mail.desy.de

Based on recent work done with H. Kowalski and G. Watt

Overview

Unitarity and QCD saturation

Glauber-Mueller, Balitsky-Kochvegov, Golec-Biernat-Wüsthoff

Improvements of saturation model

Comparison with data

Implications

Main idea

We want to have simple coherent global picture of various types of processes measured at HERA at small x — beyond leading twist collinear factorisation

Thus one intends to describe:

- Total $\gamma^* p$ cross section down to photoproducion
- Diffractive deep inelastic scattering
- Exclusive vector meson production $(
 ho, \phi, J/\psi)$, including *t*-dependence
- Deeply virtual Compton scattering

Framework should reduce to collinear picture when scales are large and it should be consistent with S-matrix unitarty

It should provide information on multiple scaatering and matter distribution in proton in transverse plane

Our proposal: saturation model formulated in dipole framework with QCD evolution and explicit impact parameter dependence

Color Dipole Representation

At very high energies and the LL approximation description of high energy scattering in the position representation is possible

- long-living fluctuations: colour dipoles (at large N_c)
- short interaction time in target frame
- parton energy $\sim z$ is conserved
- parton transverse positions do not change
- conservation of parton helicity

$$\sigma_i^{\gamma^* p}(Q^2,W^2) \;=\; \int_0^1 dz \int d^2 m{r} \; |\Psi_i(z,m{r})|^2 \, \hat{\sigma}(x,r^2)$$

$$|\Psi_i^f(z, \boldsymbol{r})|^2 = \frac{6\alpha_{em}}{4\pi^2} e_f^2 \quad \times \begin{cases} [z^2 + (1-z)^2] \ \epsilon_f^2 K_1^2(\epsilon_f r) + m_f^2 \ K_0^2(\epsilon_f r) \ (\mathsf{T}) \\ 4Q^2 z^2 (1-z)^2 \ K_0^2(\epsilon_f r) \ (\mathsf{L}) \end{cases}$$

with

$$\epsilon_f^2 = z(1-z)Q^2 + m_f^2$$

Two equivalent pictures of gluon saturation

Assume dominance of single ladder exchange \Rightarrow gluon growth $\sim x^{-\lambda} \Rightarrow \text{ImA} \sim x^{-\lambda}$ Diffractive cross section $\sim |A|^2 \sim x^{-2\lambda}$ would eventually surpass the total cross section

It would imply violation of S-matrix unitarity

Neglecting correlations in projectile wave function \iff no interactions of pomerons \rightarrow Glauber–Mueller (eikonal) picture: $\sigma = \sigma_1 - \sigma_1^2/2 + \ldots \sim \sigma_0[1 - \exp(-\sigma_1/\sigma_0)]$

Theoretical basis: JIMWaLK/BK equation

[Jalilian-Marian, Iancu, McLerran, Leonidov, Weigert], [Balitsky, Kovchegov]

Propagation of a dilute projectile through a dense target at large energy – at the LL1/x: BFKL evolution of amplitude tempered by unitarity corrections

Enhancement + Correlations + Rescattering

Target frame: in the large N_c limit BFKL pomeron fan diagrams – gluon recombination at large density

$$\frac{\partial N(\boldsymbol{x}, \boldsymbol{y}; \tau)}{\partial \tau} = \frac{\bar{\alpha}_s}{2\pi} \int d^2 z \, \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{z} - \boldsymbol{y})^2} \times [N(\boldsymbol{x}, \boldsymbol{z}; \tau) + N(\boldsymbol{z}, \boldsymbol{y}; \tau) - N(\boldsymbol{x}, \boldsymbol{y}; \tau) - N(\boldsymbol{x}, \boldsymbol{z}; \tau)N(\boldsymbol{z}, \boldsymbol{y}; \tau)]$$

BK equation in momentum space

$$\frac{\partial N(k,\tau)}{\partial \tau} = \chi_{\rm BFKL} \left(1 + k^2 \partial_{k^2} \right) N(k,\tau) - N^2(k,\tau)$$

For large $k \ /$ small r – BFKL-like growth with $\log(1/x).$ For small $k \ /$ large r – saturation.

Unitarity is not violated

Saturation Model: Crucial Features

[K. Golec-Biernat and M. Wüsthoff]

- Transition of the dipole-proton cross-section from color transparency $\sigma(r) \sim r^2$ (up to logs) for small dipoles to saturated cross-section $\sigma(r) \sim \sigma_0$ for large dipoles
- The saturation radius decreasing with x assuming Glauber-Mueller dependence

$$egin{aligned} \sigma(x,r) &= & \sigma_0 \left[1 - \exp\left(-rac{r^2}{4R_0^2(x)}
ight)
ight] \ R_0(x) &= & rac{1}{Q_0} \left(rac{x}{x_0}
ight)^{\lambda/2}, \qquad \lambda \simeq 0.3 \end{aligned}$$

Inclusive hard diffraction

[K. Golec-Biernat and M. Wüsthoff]

Naively, in perturbative (or Regge) approach

$$\sigma_{ ext{tot}}(W^2, Q^2) \sim ext{Im}\mathcal{T} \sim (W^2)^{\lambda}$$

 $\sigma_{ ext{diff}}(W^2, Q^2) \sim |\mathcal{T}|^2 \sim (W^2)^{2\lambda}$

At HERA $\lambda\simeq 0.25$ for large Q^2 but

$$\sigma_{
m diff}/\sigma_{
m tot}$$
 is flat!

The flat ratio $\sigma_{\rm diff}/\sigma_{\rm tot}$ is obtained only if the lower momentum cut-off scale grows as a power of W^2

Inclusion of DGLAP evolution

Bartels–Golec-Bierat–Kowalski extended saturation model to high Q^2 according to LL DGLAP evolution

$$\sigma_{q\bar{q}}^{\mathrm{BGBK}}(x,r) = \sigma_0 \left\{ 1 - \exp\left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2) / (3\sigma_0)\right] \right\}$$

Total cross sections: impact parameter dependence

[Kowalski, Teaney]

b-Sat model:
$$\frac{d \sigma_{qq}}{d^2 b} = 2 \left(1 - e^{-\frac{\Omega}{2}}\right)$$

 $\Omega = \frac{\pi^2}{N_c} r^2 \alpha_S(\mu^2) xg(x, \mu^2) T(b)$
Gaussian profile $T_G(b) = \frac{1}{2\pi B_G} e^{-\frac{b^2}{2B_G}}$
 $D = \frac{1}{2\pi B_G} e^{-\frac{b^2}{2B_G}}$

Another shape in b-Sat: step function $T_S(b) = \frac{1}{\pi b_S^2} \Theta (b_S - b)$

Alternatively: generalized model of lancu-Itakura-Munier based on properties of solutions to BK equation: inclusion of charm and impact parameter saturation scale (b-CGC)

Fits to F_2

b-Sat:
$$\lambda_g = 0.02$$
, $\mu_0^2 = 1.17~{
m GeV}^2$,

$$\chi^2$$
/d.o.f = 1.21 = 193/160

Effective pomeron intercept λ – driven by DGLAP evolution

b-CGC: $Q^2 < 45 \text{ GeV}^2$, $\lambda = 0.16$ $x_0 = 6 \cdot 10^{-4}$. $\chi^2/\text{d.o.f} = 211.2/130 = 1.62$

Exclusive processes for arbitrary t

Elastic diffractive amplitude at $t=-\Delta^2$

$$\mathcal{A}_{T,L}^{\gamma^* p \to Ep} = \int d^2 \boldsymbol{r} \int_0^1 \frac{dz}{4\pi} \int d^2 \boldsymbol{b} \; (\Psi_E^* \Psi)_{T,L} \; \mathrm{e}^{-\mathrm{i}[\boldsymbol{b} - (1-z)\boldsymbol{r}] \cdot \boldsymbol{\Delta}} \; \frac{d\sigma_{q\bar{q}}}{d^2 \boldsymbol{b}}$$

$$\frac{d \,\sigma_{T,L}^{\gamma^* p \to Ep}}{d \,t} = \frac{1}{16\pi} \left| \mathcal{A}_{T,L}^{\gamma^* p \to Ep} \right|^2$$

Bartels–Golec-Biernat–Peters analysis: variable conjugate to momentum transver Δ : b - (1 - z)r— it reflects spatial extension of dipole

Photon and vector meson wave functions

Virtual photon wave functions: pQCD/QED box diagram: $\gamma^*g \to q\bar{q}$ Longitudinal photon

$$\Psi_{h\bar{h},\lambda=0}(r,z,Q) = e_f e \sqrt{N_c} \,\delta_{h,-\bar{h}} \, 2Qz(1-z) \,\frac{K_0(\epsilon r)}{2\pi},$$

Transverse photon

$$\Psi_{h\bar{h},\lambda=\pm1}(r,z,Q) = \pm e_f e \sqrt{2N_c} \left\{ \mathrm{i}e^{\pm\mathrm{i}\theta_r} [z\delta_{h,\pm}\delta_{\bar{h},\mp} - (1-z)\delta_{h,\mp}\delta_{\bar{h},\pm}]\partial_r + m_f \delta_{h,\pm}\delta_{\bar{h},\pm} \right\} \frac{K_0(\epsilon r)}{2\pi}$$

Vector mesons: similar spin structure to photon assumed

$$\Psi^V_{h\bar{h},\lambda=0}(r,z) = \sqrt{N_c}\,\delta_{h,-\bar{h}}\,\left[M_V\,+\, \frac{\delta}{M_V z(1-z)}\,\right]\,\phi_L(r,z)$$

 $\delta=1$ — appears as consequence of non-local $q\bar{q}$ coupling to meson

Transversely polarised meson

$$\Psi_{h\bar{h},\lambda=\pm1}^{V}(r,z) = \pm\sqrt{2N_c} \frac{1}{z(1-z)} \left\{ ie^{\pm i\theta_r} [z\delta_{h,\pm}\delta_{\bar{h},\mp} - (1-z)\delta_{h,\mp}\delta_{\bar{h},\pm}]\partial_r + m_f \delta_{h,\pm}\delta_{\bar{h},\pm} \right\} \phi_T(r,z)$$

Vector meson wave functions

Constraints on meson wave functions from leptonic decay costants and normalisation conditions

Simplest: wave functions in factorized form $\phi_{T,L}(r,z) = f_{T,L}(z) \exp(-r^2/2R_{T,L}^2)$

Strong T–L asymmetry:	Meson	$R_T^2/{ m GeV}^{-2}$	$R_L^2/{ m GeV}^{-2}$
	J/ψ	6.5	3.0
	ϕ	16.0	9.7
	ho	21.9	10.4

Another option: use Lorentz invariant quantities e.g. $q\bar{q}$ invariant mass

$$M_{q\bar{q}}^2 = rac{k^2 + m_f^2}{4z(1-z)}$$
 [Brodsky, Lepage], [Forshaw, Sandapen, Shaw]

$$\exp\left[-\frac{\mathcal{R}^2}{8}\left(\frac{k^2+m_f^2}{z(1-z)}\right)\right] \longrightarrow \phi_{T,L}(r,z) \sim z(1-z)\exp\left(-\frac{m_f^2\mathcal{R}^2}{8z(1-z)} - \frac{2z(1-z)r^2}{\mathcal{R}^2}\right)$$

boosted Gaussian
$$Meson \longrightarrow J/\psi \phi \rho$$

 $\mathcal{R}^2/\text{GeV}^{-2} \longrightarrow 2.3 \quad 11.2 \quad 12.9$

T–L symmetric with good accuracy

Phenomenological correcting factors

In applied formalism we calculate imaginary part of scattering amplitude only

Smaller — real parts we estimate using relation for Regge poles

$$\beta = \tan(\pi \lambda/2), \text{ with } \lambda \equiv \frac{\partial \ln \mathcal{A}}{\partial \ln(1/x)}$$

 $\operatorname{Re} \mathcal{A} = \beta \operatorname{Im} \mathcal{A}$

Kinematics of exclusive production implies strong differences in x values of gluons \longrightarrow Shuvaev factor — coming from QCD evolution of off-diagonal gluon distribution at small x

$$R_g(\lambda) = \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(\lambda+4)}, \quad \text{with} \quad \lambda \equiv \frac{\partial \ln\left[xg(x,\mu^2)\right]}{\partial \ln(1/x)}$$

Finally:
$$|\mathcal{A}|^2 \longrightarrow R_g(1+\beta^2) |\mathcal{A}|^2$$

Results for vector mesons: W^2 -dependence

Results for vector mesons: Q^2 -dependence

Results for vector mesons: σ_L/σ_T

Large discrepancies found for R — this quantity at large Q^2 strongly depends on meson wave function behaviour close to z-end-points which is poorly known

Results for vector mesons: *t*-dependence

Deeply Virtual Compton Scattering

 $\gamma^*(Q^2)\,p\to\gamma p'$ is theoreticaly clean — no free parameters are left

Summary of fit results

 \longrightarrow Good description of $\sigma(\gamma^*p)$ at small x down to very low Q^2

 \longrightarrow Important free parameters: constrained by F_2 : A_g , λ , μ_0^2 , and by vector meson data: R_p

 \longrightarrow Less important: quark masses m_c, m_q , form of meson wave functions

 \longrightarrow Good description of all sections of exclusive vector meson production data. Some problems for ρ^0 were found, especially for $R = \sigma_L/\sigma_T$ — this observable is, however, very sensitive to details of VM wave function close to end-points in z

 \longrightarrow Overall good description od DVCS, slightly too flat *t*-dependence

B_D for light mesons: saturation or geometry?

"Proton broadening" for light vector mesons:

 $d\sigma/dt \sim \exp(-B_D|t|)$

t-slope parameter $B_D \simeq 8 - 10 \text{ GeV}^{-2}$ for ρ, ϕ at low Q^2 , while $B_D \simeq 4 - 5 \text{ GeV}^{-2}$ for J/ψ

Scale dependence of B_D — geometric effect related to scattering dipole size

Proton shape and its evolution

Gaussian or step-function transverse profile?

 α' is underestimated in b-Sat it is somewhat better for b-CGC

b-dependent saturation scales

The saturation scale $Q_S^2\equiv 2/r_S^2$, where r_S is defined by $\Omega(r_S)=1$

- \longrightarrow It is essential to include charm and impact parameter profile
- \longrightarrow Consistent results for saturation scale value at HERA are obtained

Soft or semi-hard character of the saturation scale?

$$\lambda_S \equiv rac{\partial \ln(Q_S^2)}{\partial \ln(1/x)}$$

p-Sat:
$$\lambda_S=0.19$$
 at $x=10^{-2}$ and $\lambda_S=0.27$ at $x=10^{-4}$

— greater than $\lambda_S \simeq 0.08$ expected for 'soft' processes

Scale of gluon distribution $xg(x,\mu^2)$, $\mu^2=4/r^2+\mu_0^2$

Minimal available scale of gluon density : $\mu_0^2 \simeq 1.2~{\rm GeV}^2$

Final remarks

 \longrightarrow Framework of Saturation Model is efficient and robust

----> Exclusive vector meson data constrain rather well proton shape and radius

 \longrightarrow Typical saturation scales Q_S^2 seen at HERA stay below 1 GeV². Extrapolations to LHC energies give $Q_S^2 \sim$ a couple GeV²

 \longrightarrow To be completed: nuclear shadowing and b-dependent analysis of hard diffraction