Diffractive Open Charm Production at HERA

Roger Wolf, Inst. f. Experimentalphysik (Universität Hamburg)

HERA-LHC Workshop Hamburg 12.-16.03.2007

Diffractive open charm Production...

e

...means a 2-fold restriction to the Hadronic Final State:

(1) Diffractive Event Signature

NO forward energy flow

Less than 3% of the proton momentum take part in the hard scattering process

Diffractive open charm Production...

...means a 2-fold restriction to the Hadronic Final State:

(1) Diffractive Event Signature

- **NO** forward energy flow
- Less than 3% of the proton momentum take part in the hard scattering process

(2) Charm Quarks in Final State

 Reconstruct exclusively (D*-mesons)
Reconstruct inclusively via character. properties of *charmed* hadrons (lifetime)

Outline

- Tests of QCD Factorization in Diffraction (in the frame of H1 diffractive parton densities from F2d)
- Test of perturbative 2g models (describe diffractive scattering with inclusive PDFs)
- Charm contribution to F2d (model independent property)

QCD Factorization in Diffraction

$$\sigma_{meas} = (universal DPDFs) \otimes (Hard ME)$$

Solid proof for ep at 'sufficiently' large scales μ

BGF can be selected by dijets or open charm

Event Selection in DIS & γp

M(K $\pi \pi_{slow}$) - M(K π) [GeV]

D* Cross Sections in DIS

Comparison:

- NLO Calculation (hvqdis): Collins et al. (massive scheme)
- H1 2006 DPDF Fit A & B

• At
$$\mu^2 = 4m_c^2 + Q^2$$

<u>Result:</u>

- Overall good description
- QCD Factorization valid for *charm* production in DIS

D* Cross Sections in DIS

D^* Cross Sections in γp

Comparison:

- **NLO** Calculation (fmnr): Frixione et al. (massive scheme)
- H1 2006 DPDF Fit A & B

• At
$$\mu^2 = 4m_c^2 + p_t^2$$

Result:

0.8

Z^{obs}

1.5

η**(D*)**

0.6

0.5

0

Overall good description! **QCD** Factorization valid for charm production in γp

D* Cross Sections in γp

Relevance of the γp Masurement

QCD Factorization: Summary

Double Ratio:

DIS restricted to the same range in y as in γp

 $R_{DIS}^{\gamma p} = \frac{(\sigma_{vis}^{\prime}/NLO)_{\gamma p}}{(\sigma_{vis}^{\prime}/NLO)_{DIS}} = 1.15 \pm 0.40(\text{stat}) \pm 0.09(\text{syst})$ $\star \text{ Low Statistics (in } \gamma p \& \text{ in restricted DIS})$ $\star \sim 1.4\sigma \text{ deviation from 0.6}$

The Perturbative 2g Model

- Describes diffractive processes via simplest possible colorless exchange (2g)
- Input: inclusive PDFs (J2003 set 2)
- Factorization scheme: CCFM, k₊
- One free parameter (p_t(g)_{ccg} tuned to forward jet measurements)
- Valid only where secondary Reggeon exchanges are suppressed (x_{IP}<0.01)</p>

D^* Cross Sections in DIS (x₁₀<0.01)

The Structure Function F2d(charm)

- Determine Diffractive Structure Function with the condition of charm in the event
- Large extrapolation factors if determined by D* due to visible range restriction (~3 for p_t>2GeV, |η|<1.5)
- Introduce new method (from hep-ex/0411046, hep-ex/0507081) to determine charm inclusively from displaced tracks (lifetime measurement)

Significance and Impact Parameter

-2

2

H1 Data

---- uds

5

..... C

----- b

Total MC

S,

7

S₂

Consider track with highest and second highest S

- Subtract neg. from pos. values (resolution from data)
- Fit template distrib's for b/c/uds taken from MC to obtain the signal composition

F2d(charm) measurement

Comparison with 2g Model of MRW

Conclusions

New Measurements of Diffractive open charm Production at (hep-ex/0610076):

- Compile a wide kinematic Range (0.01<Q²<100 GeV²) and different measuring techniques
- Including a few 'Premiers' at HERA (Diffractive D* in γp, lifetime method)
- Give a consistent picture between meth's/exp's (experimentally solid data)
- Are in good agreement with QCD Factorization (in DIS & γp) and with perturbative 2g models in different approaches.

Backup

So far existing Tests in charm and dijets

Comp with NLO: Dijets (γp)

Complementarity of charm & Dijets

Probed by **charm** measurement $<\mu^2 > = 11-16 \text{ GeV}^2$

Summary

