Leading Neutron Energy & p_T Distributions from ZEUS

B. Schmidke MPI München On behalf of the ZEUS collaboration

Outline:

- Motivations: LN production, One Pion Exchange (OPE), absorption
- Data sets: DIS, photoproduction (γp), LN measurement
- LN in DIS: energy, $p_{_{\rm T}}$ distributions & Q² dependences
- Comparison: LN in photoproduction & DIS
- Comparison: LN & leading protons
- Comparison: LN in MC models, w/ & w/o OPE
- Comparison: OPE models, absorption (rescattering) models

Motivations: LN production, OPE

 LN can come from 'standard' fragmentation

(baryon # has to go somewhere)

- Can compare to 'standard' MC gens.: x_{I} , p_{T}^{2} distributions
- LN can be produced via isovector exchange: One Pion Exchange (OPE)
- Parameterizations from low energy hadronic scattering data. Can compare:
 x_L, p_T² distributions

Motivations: Absorption

In DIS γ^* is small; in photoproduction γ large, rescattering (absorption) of *n* may occur:

- Compare photoproduction & DIS:
 - $x_{L}^{}$, p_{T}^{2} distributions
 - effects of absorption?
- Compare to absorption (loss) calculations of D' Alesio & Pirner: Eur. Phys. J. A7 (2000) 109
- Recently: (Kaidalov,) Khoze, Martin, Ryskin 'Leading neutron spectra' hep-ph/0602215 'Information from LN@HERA hep-ph/0606213
- They calculate the effects of *absorption* (rescattering), and subsequent *migration* of LN in (x_L, p_T^2) space, and more exchanged particles $\pi + (\rho, a_2)$. absorption gap \Leftrightarrow survival

escape detection

(migration)

Data Sets

Inclusive data (i.e. no LN tag):

- DIS: $Q^2 > 2 \text{ GeV}^2$, $\langle Q^2 \rangle \approx 13 \text{ GeV}^2$; 3 subsets $\langle Q^2 \rangle \approx 2.7$, 8.9, 40 GeV²
- $\gamma p: Q^2 < 0.02 \text{ GeV}^2$, e⁺ tagged $\Rightarrow 150 < W_{\gamma p} < 270 \text{ GeV}$
- LN measurement: Forward Neutron Calorimeter (FNC) & Tracker (FNT)
- 10.2 λ_{I} Pb-scint. calorimeter 105m from I.P.
- Scintillator hodoscope 1 λ_{I} into calorimeter for position detection
- Energy resolution $\sigma_{\rm E}/E \approx 0.7/\sqrt{E}$
- p_T resolution dominated by proton beam p_T spread ~50-100 MeV
- Magnet apertures limit $\Theta_n < 0.75 \text{ mrad} \Rightarrow p_T^2 < 0.476 x_L^2 \text{ GeV}^2$ <u>LN yields:</u>
- DIS, γp have very different inclusive cross sections $\sigma_{_{inc}}$
- For sensible comparisons look at LN yields: $\sigma_{_{\rm LN}}/\sigma_{_{\rm inc}}$
- Additional benefit: systematic uncertainties of central ZEUS cancel; only have LN systematic uncertainties

LN in DIS: x_L distribution

- LN yield → 0 at kinematic limit x²_L→1
 Below x²_L≈0.7 yield drops
 - due to decreasing p_T^2 range
- Systematic uncertainties from:
 Proton beam 0° point
- FNC energy scale
- Dead material before FNC

• Well described by exponential in p_{T}^{2}

p_T^2 distributions: slopes & intercepts • DIS intercepts $a(x_L)$: • DIS slopes $b(x_L)$:

Q^2 dependence of LN production 3 Q^2 bins DIS + γp :

Further comparison: $\gamma p \& DIS$

To minimize systematic uncertainties in comparison:

- Use only DIS from period when γp+LN trigger active (~20% of DIS sample)
- Many LN systematic uncertainties cancel taking ratios:
- Ratio of x_{L} distributions: $\gamma p/DIS$
- Ratio of p_T^2 distributions: $\gamma p/DIS$

 $\Rightarrow \Delta b = b(\gamma p) - b(DIS)$

Comparison $\gamma p/DIS$: x₁ distributions

• smaller $r_{n\pi} \Rightarrow$ more absorption at lower x_{L}

Comparison $\gamma p/DIS: p_T^2$ distributions

- Small but clear difference: $b(\gamma p) > b(DIS)$ for $0.6 < x_1 < 0.9$
- Qualitatively consistent w/ absorption: more abs. @ small $r_{n\pi} \sim \text{large } p_T$ fewer LN @ high $p_T \Rightarrow \text{larger slope}_1$

Comparison: MC models

- Compare to two MC models:
 - RAPGAP w/ 'standard fragmentation'
 - RAPGAP w/ OPE
 - LEPTO w/ 'standard fragmentation'
 - LEPTO w/ soft color interactions
- ~default settings for all models
- Here compare to DIS LN distributions: Both std. frag. too few n, too low x_{I}
- LEPTO-SCI ~OK in shape, magnitude, but slopes to small, flat
- RAPGAP-OPE closest to data
- Other DIS, γp std. frag. models also fail: $0.2^{L_{\perp}}$ ARIADNE, CASCADSE, PYTHIA, PHOJET)

Comparison: OPE models

- Numerous parameterizations

 of pion flux f_{π/p}(x_L,p_T) in literature
 Here compare to measured DIS b(x_T):
- Best agreeing models shown here; others wildly off
- All give too large $b(x_L)$
- More refinement needed: absorption, migration

Compare $\gamma p/DIS$: OPE w/ absorption

• Similar, but weaker x₁ dependence

X,

Comparison: OPE w/ absorption, migration, other exchanges

- Recent work of Kaidalov, Khoze, Martin & Ryskin:
 - start with pure OPE
 - some *n* rescatter on γ
 - rescattered *n* migrate in (x_1, p_T)
- Overall ~50% loss from pure OPE
- Reasonable agreement with LN in γp:
- More recent work of Khoze, Martin & Ryskin:
 - add (ρ,a_2) exchanges (motive next slide)
- Again reasonable agreement with LN in γp

Comparison: OPE w/ absorption, migration, other exchanges

- Absorption+migration with pion exchange alone does not describe slopes; too high in magnitude, no turnover @ high x₁
- Addition of (ρ,a₂) exchanges gives good description of both slopes magnitude and x₁ dependence

Summary

- Best measured LN $x_{L}^{}$, $p_{T}^{}$ distributions in DIS, γp
- Comparison DIS $\leftrightarrow \gamma p$: evidence for absorption of *n* in large γ
- MC models with 'standard' fragmentation do not describe the data; LEPTO-SCI better; RAPGAP OPE best MC
- Pure OPE does not fully describe data: slopes wrong
- More refined calculations w/ OPE+absorption+migration: reasonable xL shape, magnitude; slopes still off
- Addition of (ρ,a_2) exchanges:
 - \Rightarrow very promising agreement with data

EXTRAS

