
 Rapidity gaps in proton and photon induced processes at LHC

Mark Strikman, PSU

HERA-LHC workshop, March14,07



σinel =
π2

3
F2d2αs(λ/d2)xGT(x.λ/d2)

d

F2 Casimir operator  of color SU(3)

F2 F2(quark) =4/3 (gluon)=3

Consider first “small dipole - hadron” cross section

Comment:   This simple picture is valid only in LO.  NLO would require  introducing 
mixing of different components.  Also, in more accurate expression there is an 
integral over x, and and extra term due to quark exchanges
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Baym et al 93

How strong is the interaction of small dipoles?Introduction:



New high energy QCD regime: regime of complete absorption for small αs: 
limit  -  fixed Q & large energies -black disk regime (BDR)

studies of the “quark-antiquark 
dipole”(transverse size d)  - nucleon 

cross section based pQCD and  
HERA data 

Evidence for proximity to BDR at HERA

Frankfurt et al 
2000-2001

Provided a reasonable prediction for  σL

Soft

Regime

Matching Region

Hard

Regime

Υ J/ψ



Combine  with:   analysis of  exclusive hard processes 
(t-dependence of the dipole - nucleon scattering)

 determine   impact factors for  elastic                               qq̄−N scattering

Γ= 1   corresponds to  regime of complete absorption - BDR

Γh(s,b) =
1
2is

1
(2π)2

Z
d2!qei!q!bAhN(s, t)



! !"# $

%&'()*

!

!"+

!",

!"-

!".

$

'$
&!
&!
*+

/
!
&0&!"$&()

1&0&$!
!+

1&0&$!
!2

1&0&$!
!,

1&0&$!
!#

! !"# $

%&'()*

!

!"+

!",

!"-

!".

$

/
!
&0&!"2&()

! !"# $

%&'()*

!

!"+

!",

!"-

!".

$

/
!
&0&!"#&()

0 0.5

0.5

1

1
b (fm)b (fm)b (fm) 0

0.5

1

ΓΓΓΓ Γ Γ qq ggqqqq

d = .5 (fm)

0 0.5

0.50.5

1

1 1

0

0.5

1

d = .1 (fm)

x = 10
−2

x = 10
−3

x = 10
−4

x = 10
−5

0 0.5 1
0

0.5

1

d = .3 (fm)

gggg
T.Rogers et al

In the case gg-N scattering 
we assume pQCD relation

Γgg =
9
4
Γqq̄

|1- Γ(b)|2  - 

probability not to 
interact at given b
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gg -N interaction seems close to BDR 
for Q2~4 GeV2, x~10-4

for these x nuclear gluon shadowing 
effect is rather small

➙

 for Q2~4 GeV2, x~10-3 

gg - Pb  interaction at b=0 is deep in BDR
qq - Pb  interaction in BDR-

➙

⇒
Natural explanation of the 
BRAHMS result at RHIC, 
the only one consistent 
with the STAR data on 

correlations

Suppression of the leading hadron production in 
pA scattering at large pt comparable to the scale 
of Black disk regime at given energy  (FS 01-06)



Gap suppression for pp → p+ H + p

(a) How black in pp interactions at LHC

between partons. In Sec. VIII we work out the dependence
of the exclusive diffractive cross section on the final proton
transverse momenta. We discuss which experimentally
observable features of this dependence furnishes useful
tests of the diffractive reaction mechanism and how one
can extract information about the gluon GPD. In Sec. IX
we summarize our results. We comment on the implica-
tions for the Higgs boson search and on the experimental
feasibility of measuring the transverse momentum depen-
dence of exclusive diffraction with the planned forward
detectors at the LHC.

II. BLACK-DISK LIMIT IN pp ELASTIC
SCATTERING

Information on the transverse radius of strong interac-
tions at high energies comes mostly from measurements of
the t dependence of the differential cross section for pp
and !pp elastic scattering. Combining these data with those
on the pp= !pp total cross section, and implementing theo-
retical constraints following from the unitarity of the
S-matrix, one can reconstruct the complex pp elastic
scattering amplitude, Tel!s; t"; see e.g. Refs. [19–21]. At
high energies, s # jtj$ R%2

p (Rp denotes a typical proton
radius), angular momentum conservation in the CM7 frame
implies that the scattering amplitude is effectively diagonal
in the impact parameter of the colliding pp system.
Furthermore, the experimental data indicate that in this
region the amplitude is predominantly diagonal in the
proton helicities. It is convenient to represent the amplitude
as a Fourier integral over a transverse coordinate variable,
b,

 Tel!s; t & %!2
?" &

is
4!

Z
d2be%i!!?b""!s;b"; (2)

where " is the (dimensionless) profile function. One can
then express the elastic, total, and inelastic (total minus
elastic) pp cross sections in terms of the profile function as
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Z
d2b'

! j"!s; b"j2;
2Re"!s;b";
(1% j1% "!s; b"j2):

(3)

The functions on the right-hand side describe the distribu-
tion of the respective cross sections over pp impact pa-
rameters, b * jbj [22]. In particular, we note that the
combination

 j1% "!s;b"j2 (4)

can be interpreted as the probability for ‘‘no inelastic
interaction’’ in a pp collision at impact parameter b; this
combination plays an important role in our calculation of
the RGS probability (see Sec. V below) [23]. A measure of
the transverse size of the proton is the logarithmic t-slope
of the elastic pp cross section at t & 0,

 B * d
dt

"
d"el=dt!t"
d"el=dt!0"

#

t&0
: (5)

At high energies, where the elastic amplitude is predomi-
nantly imaginary, and " is real, B is equal to half the
average squared impact parameter in the total pp cross
section,

 B + hb2itot
2

* 1

2

R
d2bb22Re"!s;b"R
d2b2Re"!s; b" ; (6)

which may be associated with the transverse area of the
individual protons. The data show that the slope increases
with the CM energy as

 B!s" & B!s0" , 2#0 ln!s=s0"; (7)

where #0 + 0:25 GeV%2. In the Pomeron exchange pa-
rametrization of the pp elastic amplitude this constant is
identified with the slope of the Pomeron trajectory.

In Gribov’s parton picture of high-energy hadron-hadron
interactions [8], the transverse size of the proton in pp
elastic scattering can be directly associated with the aver-
age transverse radius squared of the distribution of soft
partons mediating the soft interactions,

 B & h$2isoft: (8)

Here and in the following, we use $ * j!j to denote the
transverse distance of partons from the center of the proton
and b & jbj for the impact parameter of the pp collision.
The growth of the proton’s transverse size with energy is
explained as the result of random transverse displacements
in the successive decays generating the distribution of soft
partons (Gribov diffusion). Below we shall compare this
distribution of soft partons to the distribution of hard
partons probed in hard exclusive processes (see Sec. III).

Parametrizations of the available data indicate that at
energies above the Tevatron energy,

$$$
s

p
*

$$$$$$$$$$$$$$$$
sTevatron

p &
2 TeV, the profile function at small impact parameters
approaches

 "!s; b" ! 1 for b < b0!s": (9)

This corresponds to unit probability for inelastic scattering
for impact parameters b < b0!s", cf. Eqs. (3) and (4),
similar to the scattering of a pointlike object from a black
disk of radius b0, and is referred to as the black-disk limit
[11,13,24].

The approach to the BDL in central pp scattering at high
energies is a general prediction of QCD, independent of
detailed assumptions about the dynamics. Studies of the
interaction of small-size color dipoles with hadrons, based
on QCD factorization in the leading logQ2 approximation,
show that the BDL is attained at high energies as a result of
the growth of the gluon density at small x due to DGLAP 8
evolution [24]. This result can be used to estimate the
interaction of leading projectile partons with the small-x
gluons in the target in pp scattering; one finds that there is
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between partons. In Sec. VIII we work out the dependence
of the exclusive diffractive cross section on the final proton
transverse momenta. We discuss which experimentally
observable features of this dependence furnishes useful
tests of the diffractive reaction mechanism and how one
can extract information about the gluon GPD. In Sec. IX
we summarize our results. We comment on the implica-
tions for the Higgs boson search and on the experimental
feasibility of measuring the transverse momentum depen-
dence of exclusive diffraction with the planned forward
detectors at the LHC.

II. BLACK-DISK LIMIT IN pp ELASTIC
SCATTERING

Information on the transverse radius of strong interac-
tions at high energies comes mostly from measurements of
the t dependence of the differential cross section for pp
and !pp elastic scattering. Combining these data with those
on the pp= !pp total cross section, and implementing theo-
retical constraints following from the unitarity of the
S-matrix, one can reconstruct the complex pp elastic
scattering amplitude, Tel!s; t"; see e.g. Refs. [19–21]. At
high energies, s # jtj$ R%2

p (Rp denotes a typical proton
radius), angular momentum conservation in the CM7 frame
implies that the scattering amplitude is effectively diagonal
in the impact parameter of the colliding pp system.
Furthermore, the experimental data indicate that in this
region the amplitude is predominantly diagonal in the
proton helicities. It is convenient to represent the amplitude
as a Fourier integral over a transverse coordinate variable,
b,

 Tel!s; t & %!2
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Z
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where " is the (dimensionless) profile function. One can
then express the elastic, total, and inelastic (total minus
elastic) pp cross sections in terms of the profile function as
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The functions on the right-hand side describe the distribu-
tion of the respective cross sections over pp impact pa-
rameters, b * jbj [22]. In particular, we note that the
combination

 j1% "!s;b"j2 (4)

can be interpreted as the probability for ‘‘no inelastic
interaction’’ in a pp collision at impact parameter b; this
combination plays an important role in our calculation of
the RGS probability (see Sec. V below) [23]. A measure of
the transverse size of the proton is the logarithmic t-slope
of the elastic pp cross section at t & 0,

 B * d
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At high energies, where the elastic amplitude is predomi-
nantly imaginary, and " is real, B is equal to half the
average squared impact parameter in the total pp cross
section,
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which may be associated with the transverse area of the
individual protons. The data show that the slope increases
with the CM energy as

 B!s" & B!s0" , 2#0 ln!s=s0"; (7)

where #0 + 0:25 GeV%2. In the Pomeron exchange pa-
rametrization of the pp elastic amplitude this constant is
identified with the slope of the Pomeron trajectory.

In Gribov’s parton picture of high-energy hadron-hadron
interactions [8], the transverse size of the proton in pp
elastic scattering can be directly associated with the aver-
age transverse radius squared of the distribution of soft
partons mediating the soft interactions,

 B & h$2isoft: (8)

Here and in the following, we use $ * j!j to denote the
transverse distance of partons from the center of the proton
and b & jbj for the impact parameter of the pp collision.
The growth of the proton’s transverse size with energy is
explained as the result of random transverse displacements
in the successive decays generating the distribution of soft
partons (Gribov diffusion). Below we shall compare this
distribution of soft partons to the distribution of hard
partons probed in hard exclusive processes (see Sec. III).

Parametrizations of the available data indicate that at
energies above the Tevatron energy,
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2 TeV, the profile function at small impact parameters
approaches

 "!s; b" ! 1 for b < b0!s": (9)

This corresponds to unit probability for inelastic scattering
for impact parameters b < b0!s", cf. Eqs. (3) and (4),
similar to the scattering of a pointlike object from a black
disk of radius b0, and is referred to as the black-disk limit
[11,13,24].

The approach to the BDL in central pp scattering at high
energies is a general prediction of QCD, independent of
detailed assumptions about the dynamics. Studies of the
interaction of small-size color dipoles with hadrons, based
on QCD factorization in the leading logQ2 approximation,
show that the BDL is attained at high energies as a result of
the growth of the gluon density at small x due to DGLAP 8
evolution [24]. This result can be used to estimate the
interaction of leading projectile partons with the small-x
gluons in the target in pp scattering; one finds that there is

FRANKFURT, HYDE-WRIGHT, STRIKMAN, AND WEISS PHYSICAL REVIEW D 00

4

between partons. In Sec. VIII we work out the dependence
of the exclusive diffractive cross section on the final proton
transverse momenta. We discuss which experimentally
observable features of this dependence furnishes useful
tests of the diffractive reaction mechanism and how one
can extract information about the gluon GPD. In Sec. IX
we summarize our results. We comment on the implica-
tions for the Higgs boson search and on the experimental
feasibility of measuring the transverse momentum depen-
dence of exclusive diffraction with the planned forward
detectors at the LHC.

II. BLACK-DISK LIMIT IN pp ELASTIC
SCATTERING

Information on the transverse radius of strong interac-
tions at high energies comes mostly from measurements of
the t dependence of the differential cross section for pp
and !pp elastic scattering. Combining these data with those
on the pp= !pp total cross section, and implementing theo-
retical constraints following from the unitarity of the
S-matrix, one can reconstruct the complex pp elastic
scattering amplitude, Tel!s; t"; see e.g. Refs. [19–21]. At
high energies, s # jtj$ R%2

p (Rp denotes a typical proton
radius), angular momentum conservation in the CM7 frame
implies that the scattering amplitude is effectively diagonal
in the impact parameter of the colliding pp system.
Furthermore, the experimental data indicate that in this
region the amplitude is predominantly diagonal in the
proton helicities. It is convenient to represent the amplitude
as a Fourier integral over a transverse coordinate variable,
b,

 Tel!s; t & %!2
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where " is the (dimensionless) profile function. One can
then express the elastic, total, and inelastic (total minus
elastic) pp cross sections in terms of the profile function as
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The functions on the right-hand side describe the distribu-
tion of the respective cross sections over pp impact pa-
rameters, b * jbj [22]. In particular, we note that the
combination

 j1% "!s;b"j2 (4)

can be interpreted as the probability for ‘‘no inelastic
interaction’’ in a pp collision at impact parameter b; this
combination plays an important role in our calculation of
the RGS probability (see Sec. V below) [23]. A measure of
the transverse size of the proton is the logarithmic t-slope
of the elastic pp cross section at t & 0,
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At high energies, where the elastic amplitude is predomi-
nantly imaginary, and " is real, B is equal to half the
average squared impact parameter in the total pp cross
section,
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which may be associated with the transverse area of the
individual protons. The data show that the slope increases
with the CM energy as

 B!s" & B!s0" , 2#0 ln!s=s0"; (7)

where #0 + 0:25 GeV%2. In the Pomeron exchange pa-
rametrization of the pp elastic amplitude this constant is
identified with the slope of the Pomeron trajectory.

In Gribov’s parton picture of high-energy hadron-hadron
interactions [8], the transverse size of the proton in pp
elastic scattering can be directly associated with the aver-
age transverse radius squared of the distribution of soft
partons mediating the soft interactions,

 B & h$2isoft: (8)

Here and in the following, we use $ * j!j to denote the
transverse distance of partons from the center of the proton
and b & jbj for the impact parameter of the pp collision.
The growth of the proton’s transverse size with energy is
explained as the result of random transverse displacements
in the successive decays generating the distribution of soft
partons (Gribov diffusion). Below we shall compare this
distribution of soft partons to the distribution of hard
partons probed in hard exclusive processes (see Sec. III).

Parametrizations of the available data indicate that at
energies above the Tevatron energy,
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2 TeV, the profile function at small impact parameters
approaches

 "!s; b" ! 1 for b < b0!s": (9)

This corresponds to unit probability for inelastic scattering
for impact parameters b < b0!s", cf. Eqs. (3) and (4),
similar to the scattering of a pointlike object from a black
disk of radius b0, and is referred to as the black-disk limit
[11,13,24].

The approach to the BDL in central pp scattering at high
energies is a general prediction of QCD, independent of
detailed assumptions about the dynamics. Studies of the
interaction of small-size color dipoles with hadrons, based
on QCD factorization in the leading logQ2 approximation,
show that the BDL is attained at high energies as a result of
the growth of the gluon density at small x due to DGLAP 8
evolution [24]. This result can be used to estimate the
interaction of leading projectile partons with the small-x
gluons in the target in pp scattering; one finds that there is
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no chance for the projectile wave function to remain co-
herent in small impact parameter scattering at TeVenergies
[11,13]. Similar reasoning allows one to predict the growth
of the size of the black region b0 with s [11,13]. As a by-
product, these arguments explain why the observed coef-
ficient in the Froissart formula for the total cross sections is
significantly smaller than that derived from the general
principles of analyticity of the amplitude in momentum
transfer and unitarity of the S-matrix [25]. We note that the
need for the approach to the BDL in high-energy scattering
at central impact parameters was understood already in the
pre-QCD period within the Pomeron calculus, where it was
noted that this phenomenon resolves the apparent contra-
diction between the formulas of the triple-Pomeron limit
and the unitarity of the S-matrix, especially in models
where the Pomeron intercept, !P!0", exceeds unity [26].

For our studies of diffractive pp scattering it will be
useful to have a simple analytic parametrization of the pp
elastic amplitude at the LHC energy, which incorporates
the approach to the BDL at small impact parameters. The t
dependence of the pp elastic scattering cross section for
jtj & 1 GeV2 over the measured energy range is reason-
ably described by an exponential shape,

 

d"el

dt
/ exp#B!s"t$; (10)

where B!s" represents an effective slope, to be distin-
guished from the ‘‘exact’’ slope at t % 0, Eq. (5). A pa-
rametrization of the pp elastic amplitude which
reproduces this dependence is

 Tel!s; t" %
is
8#

"tot!s" exp
!
B!s"t
2

"
; (11)

corresponding to

 !!s; b" % !0!s" exp
!
& b2

2B!s"

"
(12)

with

 !0!s" ' !!s; b % 0" % "tot!s"
4#B!s" : (13)

Equation (11) takes into account that the amplitude at high
energies is predominantly imaginary and satisfies the opti-
cal theorem for the total cross section, "tot!s" %
!8#=s" ImTel!s; t % 0". We may now incorporate the con-
straint of the BDL at small impact parameters by replacing

 !0 ! 1: (14)

The value of B we determine by comparing the profile
function (12) with phenomenological parametrizations of
the data, extrapolated to the LHC energy, which gives

 B ( 20 GeV&2 ! ###
s

p % 14 TeV": (15)

In particular, with B % 21:8 GeV&2 we obtain excellent
agreement with the Regge parametrization of Ref. [4].

Figure 1 shows the probability for no inelastic interaction,
j1& !!s;b"j2, Eq. (4), computed with the phenomenologi-
cal parametrization of Ref. [21] and our exponential pa-
rametrization incorporating the BDL, Eqs. (12) and (14).
One sees that the simple exponential parametrization is a
reasonable overall approximation to the phenomenological
parametrization over the b-range shown in Fig. 1.

III. TRANSVERSE SPATIAL DISTRIBUTION OF
GLUONS

Information about the transverse structure of hard inter-
actions comes from studies of hard exclusive processes in
ep scattering, such as meson electroproduction or virtual
Compton scattering. Such processes probe the GPDs in the
proton, whose Fourier transform with respect to the trans-
verse momentum transfer to the proton describes the spa-
tial distribution of quarks and gluons in the transverse
plane; see Refs. [27,28] for a review. In this section we
summarize what is known about the gluon GPD at small x
from theoretical considerations and from measurements of
J= photoproduction and other processes at HERA and in
fixed-target experiments.

The gluon GPD can be formally defined as the transition
matrix element of the twist-2 QCD gluon operator between
proton states of different momenta, p and p0. Physically, it
describes the amplitude for a fast-moving proton to ‘‘emit’’
and ‘‘absorb’’ a gluon with given longitudinal momenta,
with transverse momenta (virtualities) integrated over up
to some hard scale Q2 and a certain invariant momentum
transfer to the proton, t ' !p0 & p"2. The choice of longi-
tudinal momentum variables is a matter of convention.
Instead of the initial and final gluon momentum fractions

 

 0

 0.5

 1

 0  1  2  3

|1
 - 

Γ(
s,

 b
)|2

b  [fm]

Islam et al.

Exponential

FIG. 1. The probability distribution for no inelastic interaction,
j1& !!s; b"j2, Eq. (4), as a function of b ' jbj, at the LHC
energy (

###
s

p % 14 TeV) as computed with different parametriza-
tions of the pp elastic scattering amplitude. Solid line: parame-
trization of Islam et al. [21] (‘‘diffractive part’’ only). Dashed
line: exponential parametrization, Eq. (12), with !0 % 1 (BDL),
cf. Eq. (14), and B % 21:8 GeV&2.
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for no inelastic interaction, as a function of b,
at the LHC energy (W=14TeV)as computed with 
different parametrizations of the pp elastic scattering 
amplitude. Solidline:parametrization of Islam et al
(‘‘diffractive part’’ only). Dashedline: exponential 
parametrization, withΓ(b=0) =1 (BLACK DISK LIMIT) 
and B=21.8 GeV-2.

The probability distribution 
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In LT in pQCD t-distribution of exclusive VM production measures transverse 
distribution of gluons given by the Fourier transform of the two gluon form factor  

Fg(x, t). dσ/dt ∝ F2g (x, t).

  Onset of universal regime FKS[Frankfurt,Koepf, MS] 97. 

Convergence of the t-slopes, B (               ), of  ρ-
meson electroproduction to the slope of
  J/psi photo(electro)production.  

Transverse  distribution of gluons can be extracted from 
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A crucial observation is that the transverse area occupied  by partons with x > 0.05 is 
much smaller than the transverse area associated with the proton in soft interactions

review of the data. This process probes the two-gluon form
factor at an effective scale Q2 ! 3 GeV2. Analysis of the
data, combined with theoretical investigations, has pro-
duced a rather detailed picture of the gluonic transverse
size of the nucleon and its x dependence [11]. For x"
0:1–0:3, the gluonic transverse size suggested by the fixed-
target data is h!2ig ! 0:25 fm2, close to 2=3 times the
proton’s axial charge radius, hr2iA. Between x" 10#1

and x" 10#2, h!2ig increases by "30%. This can be
explained by the contribution of the nucleon’s pion cloud
to the gluon density at large transverse distances, !"
1=$2M"%, which is dynamically suppressed for x >
M"=MN and reaches its full strength for x& M"=MN
[41]. Finally, over the HERA range, x" 10#2–10#4, the
gluonic transverse size exhibits a logarithmic growth with
1=x,

 h!2ig ' h!2ig$x0% ( 4#0
g ln

x0
x

$x < x0 ! 10#2%; (27)

with a rate #0
g considerably smaller than that governing the

growth of the proton’s transverse size in pp elastic scat-
tering, which is dominated by soft interactions,

 #0
g & #0: (28)

A recent analysis of the H1 data finds #0
g ' 0:164)

0:028$stat% ) 0:030$syst% GeV#2 for J= photoproduction
and 0:019) 0:139$stat% ) 0:076$syst% GeV#2 for electro-
production [36]; an analysis of ZEUS electroproduction
data quotes #0

g ' 0:07) 0:05$stat%(0:03
#0:04$syst% GeV#2 [37],

significantly smaller than the soft value #0 ' 0:25 GeV#2.
The smaller rate of growth of the nucleon’s size in hard
interactions can qualitatively be explained by the suppres-
sion of Gribov diffusion in the decay of hard (highly
virtual) partons as compared to soft partons.

A crucial observation is that the transverse area occupied
by partons with x * 10#1 is much smaller than the trans-
verse area associated with the proton in soft interactions
(see Fig. 2),

 h!2ig$x * 10#1% & h!2isoft; (29)

or

 2Bg & B: (30)

In high-energy pp collisions with hard partonic processes
one is thus dealing with a two-scale picture of the trans-

verse structure of the proton. Moreover, when considering
the production of a heavy particle with fixed mass,mH, in a
partonic process with x1;2 "mH=

!!!
s

p
, the soft area of the

proton increases with s faster than the hard area (which
changes as a result of the decrease of x), because #0 > #0

g,
cf. Eq. (28). Thus, the difference of the two areas becomes
even more pronounced with increasing energy.

For our studies of hard processes in diffractive pp
scattering we require a parametrization of the t dependence
of the two-gluon form factor, viz. the shape of the trans-
verse spatial distribution of gluons. The x-values probed in
Higgs production at central rapidities are x" 10#2 at the
LHC energy. Taking into account the effect of DGLAP
evolution, even larger values of x are probed when parame-
trizing the two-gluon form factor at the J= production
scale, Q2 " 3 GeV2 (for a general discussion of the effect
of DGLAP evolution on the transverse spatial distribution
of gluons, see Ref. [24]). We thus need to look at the J= 
photoproduction data at x * 10#2, which are probed in
fixed-target experiments.

Theoretical arguments suggest that the two-gluon form
factor at x * 10#1 should be close to the axial form factor,
which is well described by a dipole form (we omit all
arguments except t),

 Fg$t% '
1

$1# t=m2
g%2

; (31)

with m2
g ! 1 GeV2 [39]. The corresponding transverse

spatial distribution of gluons is given by

 Fg$!% '
m2
g

2"

"mg!
2

#
K1$mg!%: (32)

We also consider an exponential parametrization of the
two-gluon form factor,

 Fg$t% ' exp$Bgt=2%; (33)

corresponding to

 Fg$!% '
exp*#!2=$2Bg%+

2"Bg
: (34)

The relation between the parameters of the dipole and
exponential parametrization which would follow from
identifying h!2i ' 4dFg=dt$t ' 0% is Bg ' 4=m2

g. Better
overall agreement between the squared form factors for
jtj< 1 GeV2 is obtained for somewhat smaller values of
Bg. Matching the squared form factors at jtj ' 0:5 GeV2

we obtain

 Bg '
3:24
m2
g
; (35)

see Fig. 3. It was shown in Ref. [40] that both the dipole
with m2

g ' 1:1 GeV2 and the exponential with Bg '
3:0 GeV2 given by Eq. (35) describe well the t dependence
of the data from the FNAL E401/E458 experiment at

 

B

Bg2

soft interactions
transverse area in

gluons with
x > 10 −1

FIG. 2. The ‘‘two-scale picture’’ of the transverse structure of
the proton in high-energy collisions.
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hE!i ! 100 GeV in which the recoiling proton was de-
tected [38]. We also note that this value of Bg is consistent
with what one obtains from the extrapolation of the HERA
data towards larger x, using Eq. (27) with the measured "0

g.
We shall use the dipole, Eqs. (31), with m2

g ! 1 GeV2 and
the exponential, Eq. (33), with Bg ! 3:24 GeV"2, as our
standard parametrizations for calculations in the kinemat-
ics of Higgs production at the LHC below; comparison
between the two will allow us to estimate the uncertainty of
our numerical predictions with respect to the shape of the
two-gluon form factor.

IV. THEORY OF RAPIDITY GAP SURVIVAL

We now outline the basic steps in the calculation of the
amplitude of double-gap exclusive diffractive processes (1)
and develop the physical picture of RGS. The underlying
idea of our approach is that hard and soft interactions are
approximately independent because they happen over
widely different distance and time scales.

A. Hard scattering process

In the first step, one calculates the amplitude for double-
gap diffractive production of the high-mass system due to
hard interactions. For definiteness, we shall refer in the
following to Higgs boson production, keeping in mind that
the discussed mechanism applies to production of other
high-mass states as well (dijets, heavy quarkonia, etc.).
According to electroweak theory, the Higgs boson is pro-
duced predominantly through its coupling to gluons via a
quark loop; for a review and references see Ref. [42]. In
contrast to inclusive production, the amplitude for double-
gap diffractive production is in the lowest order in the QCD

running coupling constant "s given by the exchange of two
gluons with vacuum quantum numbers in the t-channel
(see Fig. 4). The Higgs boson is radiated from one of the
gluon lines. The role of the second exchanged gluon is to
neutralize the color charge in order to avoid gluon brems-
strahlung. However, global color neutrality alone is not
sufficient. To suppress radiation, one must require that
color be screened locally in space-time. Conversely, this
means that the selection of a diffractive process, without
accompanying radiation, guarantees some degree of local-
ization of the exchanged system.

Operationally, the localization of the exchanged two-
gluon system is ensured by Sudakov form factors, which
suppress configurations with low virtualities prone to emit
gluon bremsstrahlung. The actual calculation of the hard
scattering amplitude including Sudakov suppression is a
challenging problem, which was addressed in various ap-
proximations in Refs. [9,10]. Fortunately, for our purposes
we do not need to solve this problem at a fully quantitative
level, as only a few qualitative aspects of the hard scatter-
ing process turn out to be essential for the physics of RGS.

To discuss the hard scattering process, it is natural to
perform a Sudakov decomposition of the four-momenta,
using the initial proton momenta, p1 and p2, as basis
vectors, with 2#p1p2$ ! s (we neglect the proton mass).
As the transverse momenta of the final-state protons are
small compared to the Higgs mass, we can expand the final
proton four-momenta as

 p0
1 ! #1" #1$p1 % p0

1?; p0
2 ! #1" #2$p2 % p0

2?;

(36)

where #p0
1?; p1$ ! #p0

1?; p2$ ! 0 etc., and #1;2 parame-
trize the longitudinal momentum loss [cf. Eq. (16) and
the footnote before it],

 #1;2 !
mH!!!
s

p e&y; (37)

 

p
1

k
1

k
2

p
1
'

p
2

p
2

k

'

FIG. 4. The hard scattering process in double-gap exclusive
diffractive Higgs boson production (1). Two gluons are ex-
changed between the protons. The gluon-Higgs coupling is
indicated as a local vertex. The upper and lower blobs denote
the gluon-proton scattering amplitude, which can be calculated
in terms of the gluon GPD in the proton.
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F
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Dipole, mg
2 = 1 GeV2

Exp., Bg = 3.24 GeV-2

FIG. 3. Comparison of the dipole (solid line) and exponential
(dashed line) parametrizations of the two-gluon form factor with
the parameters related by Eq. (35). Shown is the squared two-
gluon form factor F2

g#t$, for both parametrizations, correspond-
ing to the t dependence of the cross section for J= photo-
production (see text for details).
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ent superposition of amplitudes corresponding to pp scat-
tering at given transverse displacement (impact parame-
ter), b. The amplitude for the hard process is proportional
to the product of the transverse spatial gluon transition
densities at positions !1;2 relative to the centers of the
respective protons, with the three transverse vectors sat-
isfying the triangular condition !1 ! !2 " b (see Fig. 7).
The modifications due to elastic rescattering now take the
form of a multiplication of the hard scattering amplitude
with the ‘‘absorption factor,’’ 1! !#s; b$. Note that the
modulus squared of this factor can be interpreted as the
probability for ‘‘no inelastic interaction’’ in pp scattering
at a given impact parameter, cf. Eq. (4). This interpretation
will be explored further in Sec. V.

The treatment of RGS based on Eq. (56) makes no
reference to the eikonal approximation for describing the
interplay of hard and soft interactions. While the eikonal
approximation in high-energy scattering seems rather
straightforward at first sight, there are some theoretical
subtleties in this method. In particular, it is well-known
that within the Reggeon calculus the contribution of eiko-
nal diagrams is canceled completely as a consequence of
causality [14,15]; an eikonal-type structure of the ampli-
tude could emerge only from the contributions of non-
planar (Mandelstam-cross) diagrams. The same
cancellation of eikonal diagrams was recently found to
take place in perturbative QCD in amplitudes with
negative-signature exchange [53] as a result of the
Reggeon bootstrap, and for positive-signature exchange
as a result of causality and/or energy-momentum conser-
vation [54]. It has not been demonstrated so far that a
summation of Mandelstam-cross diagrams in perturbative
QCD would produce results similar to the eikonal
approximation.

Our partonic approach allows us to calculate the ampli-
tude for double-gap exclusive diffraction in a model-
independent way in terms of the gluon GPD and the
phenomenological pp elastic scattering amplitude; see
Eqs. (66)–(70). In Ref. [5] such processes were studied
using a model of elastic pp scattering which included the

enhanced eikonal series of single Pomeron exchanges and
the triple-Pomeron vertex to describe the soft spectator
interactions. The expression for the amplitude in the case
of a single Pomeron exchange in that model (and without
inelastic intermediate states) would formally coincide with
our expressions (66)–(70). Whether the same is true for the
full amplitude in that model is less clear; cf. the discussion
of the numerical results in Sec. V B below.

V. THE RAPIDITY GAP SURVIVAL PROBABILITY

We now use our general result for the amplitude of
double-gap exclusive diffractive processes in the indepen-
dent interaction approximation, Eq. (70), to calculate the
RGS probability for such processes. At this level of ap-
proximation, we shall recover a simple geometric expres-
sion for the RGS probability, which permits a probabilistic
interpretation and was heuristically derived in Refs. [11–
13]. We discuss the impact parameter dependence of RGS
and stress the crucial role of the BDL in stabilizing the
numerical estimates ensuring a model-independent result.

A. Impact parameter representation

In order to compute the cross section for double-gap
exclusive diffractive production of a given state at fixed
rapidity, we integrate the modulus squared of the amplitude
(70) over the final proton transverse momenta. By standard
Fourier transform manipulations we obtain

 !diff " #kinematic factors$ %
Z d2p0

1?
#2"$2

%
Z d2p0

2?
#2"$2 jTdiff#p0

1?;p
0
2?$j2 (71)

 

" #const$ %
Z

d2#1

Z
d2#2F2

g#!1$F2
g#!2$j1

! !#!2 ! !1$j2 (72)

(for brevity we suppress all arguments except the trans-
verse coordinates in Fg and !). The RGS probability due to
soft interactions [7], by definition, is given by the ratio of
the cross section of the physical double-gap diffractive
process (72) to the cross section of the hypothetical process
with the same hard scattering subprocess but with no soft
spectator interactions, corresponding to expression (72)
with ! & 0,

 S2 & !diff#physical$
!diff#no soft interactions$ : (73)

We can cast this ratio in a simple form. We rewrite the
convolution integral in Eq. (72) by inserting unity in the
form (cf. Fig. 7)

 

Z
d2b$#2$#b' !1 ! !2$; (74)

 

ρ2
ρ1

b

process
Hard

FIG. 7. Illustration of the transverse coordinate representation
of the diffractive amplitude, Eq. (70). The hard scattering
process is local in transverse space. The centers of the colliding
protons are displaced by the distance b " jbj, and !1;2 " j!1;2j
are the distances from the centers to the point of the hard
process.
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Assuming no correlation between hard and soft interaction in impact parameter 
space we can derive expression for the amplitude of the process:

states were effectively included by way of a two-
component formalism (however, no explicit nondiagonal
‘‘transition’’ GPDs were introduced). We have argued here
that these contributions are strongly suppressed, because of
the small overlap of states accessible in hard and soft
interactions. We shall comment on the implications of
this for the numerical values of the RGS probability in
Sec. V B

D. Evaluation of the diffractive amplitude

It remains to actually evaluate the matrix element (56)
with jppi intermediate states, using the specific form of the
hard scattering amplitude and the pp elastic scattering
amplitude. We insert a set of pp intermediate states in
the form

 

Z d3p00
1

!2!"3 !!!
s

p
Z d3p00

2

!2!"3 !!!
s

p jp00
1p

00
2 ihp00

1p
00
2 j; (58)

where we have approximated the energy of the individual
protons by

!!!
s

p
=2. The matrix element of the operator V̂hard

between the two-proton states is, by definition, given by
[cf. Eqs. (49)]
 

hp0
1p

0
2jV̂hardjp00

1p
00
2 i # "!s;#1;#2"Fg!x1;#1;~t1;Q2"

$ Fg!x2;#2;~t2;Q2"; (59)

where

 

~t 1 % &!p0
1? & p00

1?"2; (60)

 

~t 2 % &!p0
2? & p00

2?"2: (61)

The factor

 "!s;#1;#2" % ChardHg!x1;#1; t1 # 0"Hg!x2;#2; t2 # 0"
(62)

represents the symbolic result for the absolute normaliza-
tion of amplitude of the hard scattering process; it contains
the amplitude of the two-gluon exchange process, Chard,
including the information about the ggH coupling given by
the electroweak theory, as well as the information about the
gluon GPD in the colliding protons at t # 0. The informa-
tion about the transverse momentum dependence of the
amplitude is contained in the two-gluon form factors, Fg,
cf. Eq. (19). Furthermore, we replace in Eq. (56)

 Ŝ soft ! Ŝ # 1' !Ŝ& 1"; (63)

and use the fact that the matrix element of the operator Ŝ&
1 is given by
 

hp00
1p

00
2 jŜ& 1jp1p2i # i!2!"4$!4"!p00

1 ' p00
2 & p1 & p2"

$ !4!"Tel!s; t"; (64)

with

 t # &!p00
1? & p1?"2 # &!p00

2? & p2?"2: (65)

Finally, taking into account that at high energies the
energy-conserving delta function in Eq. (64) effectively
conserves longitudinal momentum, and combining the
contributions from the two terms in Eq. (63), we obtain
 

Tdiff!p0
1?;p

0
2?" #

Z d2!?
!2!"2 "Fg!x1;#1;~t1;Q2"

$ Fg!x2;#2;~t2;Q2"

$
"
!2!"2$!2"!!?" '

4!i
s

Tel!s; t"
#
; (66)

where now

 

~t 1 % &!p0
1? &!?"2; (67)

 

~t 2 % &!p0
2? '!?"2; (68)

 t % &!2
?: (69)

This result has a simple interpretation (see Fig. 6). The first
term in the brackets represents the amplitude of the hard
reaction alone. The second term represents the contribution
in which the hard reaction is accompanied by soft elastic
rescattering with transverse momentum transfer !?. The
total amplitude is the coherent superposition of the two
contributions. We note that the form of this result is analo-
gous to the well-known absorption corrections in Regge
phenomenology, in which an elementary Regge pole am-
plitude is modified by elastic rescattering.

It is instructive to convert the result (66) to the transverse
coordinate representation. Substituting the Fourier repre-
sentation of the gluon GPDs, Eq. (22), and the representa-
tion of the pp elastic amplitude in terms of the profile
function, Eq. (2), and using standard Fourier transform
manipulations, we obtain
 

Tdiff!p0
1?;p

0
2?" #

Z
d2b

Z
d%1

Z
d%2$!2"!b& !1 ' !2"

$ e&i!p0
1?!1"&i!p0

2?!2""Fg!x1;#1;!1;Q2"
$ Fg!x2;#2;!2;Q2"(1& "!s;b"): (70)

Here the scattering amplitude is represented as the coher-
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FIG. 6. The amplitude for double-gap exclusive hard diffrac-
tion in momentum representation, Eqs. (66)–(69). The first term
is the amplitude of the hard reaction alone, the second term the
correction due to soft elastic rescattering. Only the transverse
momenta of the protons are indicated; the momentum transfer
due to soft elastic scattering is !?.
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states were effectively included by way of a two-
component formalism (however, no explicit nondiagonal
‘‘transition’’ GPDs were introduced). We have argued here
that these contributions are strongly suppressed, because of
the small overlap of states accessible in hard and soft
interactions. We shall comment on the implications of
this for the numerical values of the RGS probability in
Sec. V B

D. Evaluation of the diffractive amplitude

It remains to actually evaluate the matrix element (56)
with jppi intermediate states, using the specific form of the
hard scattering amplitude and the pp elastic scattering
amplitude. We insert a set of pp intermediate states in
the form

 

Z d3p00
1

!2!"3 !!!
s

p
Z d3p00

2

!2!"3 !!!
s

p jp00
1p

00
2 ihp00

1p
00
2 j; (58)

where we have approximated the energy of the individual
protons by

!!!
s

p
=2. The matrix element of the operator V̂hard

between the two-proton states is, by definition, given by
[cf. Eqs. (49)]
 

hp0
1p

0
2jV̂hardjp00

1p
00
2 i # "!s;#1;#2"Fg!x1;#1;~t1;Q2"

$ Fg!x2;#2;~t2;Q2"; (59)

where

 

~t 1 % &!p0
1? & p00

1?"2; (60)

 

~t 2 % &!p0
2? & p00

2?"2: (61)

The factor

 "!s;#1;#2" % ChardHg!x1;#1; t1 # 0"Hg!x2;#2; t2 # 0"
(62)

represents the symbolic result for the absolute normaliza-
tion of amplitude of the hard scattering process; it contains
the amplitude of the two-gluon exchange process, Chard,
including the information about the ggH coupling given by
the electroweak theory, as well as the information about the
gluon GPD in the colliding protons at t # 0. The informa-
tion about the transverse momentum dependence of the
amplitude is contained in the two-gluon form factors, Fg,
cf. Eq. (19). Furthermore, we replace in Eq. (56)

 Ŝ soft ! Ŝ # 1' !Ŝ& 1"; (63)

and use the fact that the matrix element of the operator Ŝ&
1 is given by
 

hp00
1p

00
2 jŜ& 1jp1p2i # i!2!"4$!4"!p00

1 ' p00
2 & p1 & p2"

$ !4!"Tel!s; t"; (64)

with

 t # &!p00
1? & p1?"2 # &!p00

2? & p2?"2: (65)

Finally, taking into account that at high energies the
energy-conserving delta function in Eq. (64) effectively
conserves longitudinal momentum, and combining the
contributions from the two terms in Eq. (63), we obtain
 

Tdiff!p0
1?;p

0
2?" #

Z d2!?
!2!"2 "Fg!x1;#1;~t1;Q2"

$ Fg!x2;#2;~t2;Q2"

$
"
!2!"2$!2"!!?" '

4!i
s

Tel!s; t"
#
; (66)

where now

 

~t 1 % &!p0
1? &!?"2; (67)

 

~t 2 % &!p0
2? '!?"2; (68)

 t % &!2
?: (69)

This result has a simple interpretation (see Fig. 6). The first
term in the brackets represents the amplitude of the hard
reaction alone. The second term represents the contribution
in which the hard reaction is accompanied by soft elastic
rescattering with transverse momentum transfer !?. The
total amplitude is the coherent superposition of the two
contributions. We note that the form of this result is analo-
gous to the well-known absorption corrections in Regge
phenomenology, in which an elementary Regge pole am-
plitude is modified by elastic rescattering.

It is instructive to convert the result (66) to the transverse
coordinate representation. Substituting the Fourier repre-
sentation of the gluon GPDs, Eq. (22), and the representa-
tion of the pp elastic amplitude in terms of the profile
function, Eq. (2), and using standard Fourier transform
manipulations, we obtain
 

Tdiff!p0
1?;p

0
2?" #

Z
d2b

Z
d%1

Z
d%2$!2"!b& !1 ' !2"

$ e&i!p0
1?!1"&i!p0

2?!2""Fg!x1;#1;!1;Q2"
$ Fg!x2;#2;!2;Q2"(1& "!s;b"): (70)

Here the scattering amplitude is represented as the coher-
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states were effectively included by way of a two-
component formalism (however, no explicit nondiagonal
‘‘transition’’ GPDs were introduced). We have argued here
that these contributions are strongly suppressed, because of
the small overlap of states accessible in hard and soft
interactions. We shall comment on the implications of
this for the numerical values of the RGS probability in
Sec. V B

D. Evaluation of the diffractive amplitude

It remains to actually evaluate the matrix element (56)
with jppi intermediate states, using the specific form of the
hard scattering amplitude and the pp elastic scattering
amplitude. We insert a set of pp intermediate states in
the form

 

Z d3p00
1

!2!"3 !!!
s

p
Z d3p00

2

!2!"3 !!!
s

p jp00
1p

00
2 ihp00

1p
00
2 j; (58)

where we have approximated the energy of the individual
protons by

!!!
s

p
=2. The matrix element of the operator V̂hard

between the two-proton states is, by definition, given by
[cf. Eqs. (49)]
 

hp0
1p

0
2jV̂hardjp00

1p
00
2 i # "!s;#1;#2"Fg!x1;#1;~t1;Q2"

$ Fg!x2;#2;~t2;Q2"; (59)

where

 

~t 1 % &!p0
1? & p00

1?"2; (60)

 

~t 2 % &!p0
2? & p00

2?"2: (61)

The factor

 "!s;#1;#2" % ChardHg!x1;#1; t1 # 0"Hg!x2;#2; t2 # 0"
(62)

represents the symbolic result for the absolute normaliza-
tion of amplitude of the hard scattering process; it contains
the amplitude of the two-gluon exchange process, Chard,
including the information about the ggH coupling given by
the electroweak theory, as well as the information about the
gluon GPD in the colliding protons at t # 0. The informa-
tion about the transverse momentum dependence of the
amplitude is contained in the two-gluon form factors, Fg,
cf. Eq. (19). Furthermore, we replace in Eq. (56)

 Ŝ soft ! Ŝ # 1' !Ŝ& 1"; (63)

and use the fact that the matrix element of the operator Ŝ&
1 is given by
 

hp00
1p

00
2 jŜ& 1jp1p2i # i!2!"4$!4"!p00

1 ' p00
2 & p1 & p2"

$ !4!"Tel!s; t"; (64)

with

 t # &!p00
1? & p1?"2 # &!p00

2? & p2?"2: (65)

Finally, taking into account that at high energies the
energy-conserving delta function in Eq. (64) effectively
conserves longitudinal momentum, and combining the
contributions from the two terms in Eq. (63), we obtain
 

Tdiff!p0
1?;p

0
2?" #

Z d2!?
!2!"2 "Fg!x1;#1;~t1;Q2"

$ Fg!x2;#2;~t2;Q2"
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#
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where now
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This result has a simple interpretation (see Fig. 6). The first
term in the brackets represents the amplitude of the hard
reaction alone. The second term represents the contribution
in which the hard reaction is accompanied by soft elastic
rescattering with transverse momentum transfer !?. The
total amplitude is the coherent superposition of the two
contributions. We note that the form of this result is analo-
gous to the well-known absorption corrections in Regge
phenomenology, in which an elementary Regge pole am-
plitude is modified by elastic rescattering.

It is instructive to convert the result (66) to the transverse
coordinate representation. Substituting the Fourier repre-
sentation of the gluon GPDs, Eq. (22), and the representa-
tion of the pp elastic amplitude in terms of the profile
function, Eq. (2), and using standard Fourier transform
manipulations, we obtain
 

Tdiff!p0
1?;p

0
2?" #

Z
d2b

Z
d%1

Z
d%2$!2"!b& !1 ' !2"

$ e&i!p0
1?!1"&i!p0

2?!2""Fg!x1;#1;!1;Q2"
$ Fg!x2;#2;!2;Q2"(1& "!s;b"): (70)

Here the scattering amplitude is represented as the coher-
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Focus on the total suppression due to soft interactions

ent superposition of amplitudes corresponding to pp scat-
tering at given transverse displacement (impact parame-
ter), b. The amplitude for the hard process is proportional
to the product of the transverse spatial gluon transition
densities at positions !1;2 relative to the centers of the
respective protons, with the three transverse vectors sat-
isfying the triangular condition !1 ! !2 " b (see Fig. 7).
The modifications due to elastic rescattering now take the
form of a multiplication of the hard scattering amplitude
with the ‘‘absorption factor,’’ 1! !#s; b$. Note that the
modulus squared of this factor can be interpreted as the
probability for ‘‘no inelastic interaction’’ in pp scattering
at a given impact parameter, cf. Eq. (4). This interpretation
will be explored further in Sec. V.

The treatment of RGS based on Eq. (56) makes no
reference to the eikonal approximation for describing the
interplay of hard and soft interactions. While the eikonal
approximation in high-energy scattering seems rather
straightforward at first sight, there are some theoretical
subtleties in this method. In particular, it is well-known
that within the Reggeon calculus the contribution of eiko-
nal diagrams is canceled completely as a consequence of
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cancellation of eikonal diagrams was recently found to
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the triple-Pomeron vertex to describe the soft spectator
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V. THE RAPIDITY GAP SURVIVAL PROBABILITY

We now use our general result for the amplitude of
double-gap exclusive diffractive processes in the indepen-
dent interaction approximation, Eq. (70), to calculate the
RGS probability for such processes. At this level of ap-
proximation, we shall recover a simple geometric expres-
sion for the RGS probability, which permits a probabilistic
interpretation and was heuristically derived in Refs. [11–
13]. We discuss the impact parameter dependence of RGS
and stress the crucial role of the BDL in stabilizing the
numerical estimates ensuring a model-independent result.

A. Impact parameter representation

In order to compute the cross section for double-gap
exclusive diffractive production of a given state at fixed
rapidity, we integrate the modulus squared of the amplitude
(70) over the final proton transverse momenta. By standard
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(for brevity we suppress all arguments except the trans-
verse coordinates in Fg and !). The RGS probability due to
soft interactions [7], by definition, is given by the ratio of
the cross section of the physical double-gap diffractive
process (72) to the cross section of the hypothetical process
with the same hard scattering subprocess but with no soft
spectator interactions, corresponding to expression (72)
with ! & 0,
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!diff#no soft interactions$ : (73)

We can cast this ratio in a simple form. We rewrite the
convolution integral in Eq. (72) by inserting unity in the
form (cf. Fig. 7)
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FIG. 7. Illustration of the transverse coordinate representation
of the diffractive amplitude, Eq. (70). The hard scattering
process is local in transverse space. The centers of the colliding
protons are displaced by the distance b " jbj, and !1;2 " j!1;2j
are the distances from the centers to the point of the hard
process.
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and introduce a normalized impact parameter distribution,
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which satisfies
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In terms of this distribution the RGS probability (73) is
expressed as
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This result agrees with the expression for the RGS proba-
bility derived heuristically in Refs. [11–13,55]. For the
comparison of our result for the RGS probability with
that obtained with the pomeron model of Ref. [5], we refer
to Sec. V B below; see also the comments at the end of
Sec. IV D.

Expression (77) for the RGS probability allows for a
simple probabilistic interpretation. Consider a pp collision
at given impact parameter, b ) jbj. Since the hard two-
gluon exchange process is effectively local in transverse
space, the probability for it to happen is proportional to the
product of the squared transverse spatial distributions of
gluons in the two colliding protons, integrated over the
transverse plane, as given by the numerator of Eq. (75).
Consider now a hypothetical sample of pp events with the
two-gluon induced hard scattering process, but an other-
wise arbitrary (nondiffractive) final state. By the laws of
probability, the distribution of impact parameters in this
sample is given by the normalized distribution Phard!b",
Eq. (75). A diffractive event results if the spectator systems
of the two protons do not interact inelastically. The proba-
bility for this to happen in a pp collision at fixed b is given
by j1% !!b"j2, cf. Eq. (4), in analogy to the well-known
formula for inelastic scattering in nonrelativistic theory
[56]. The RGS probability, which is defined as the fraction
of diffractive events in the sample of all events containing
the same hard scattering process, is then given by the
average of this function with the normalized b distribution
in the sample, Eq. (77).

It needs to be stressed that the impact parameter of a
single pp event is not observable, being a microscopic
quantity beyond the reach of any experimental apparatus.
In the above arguments, the impact parameter plays the
role of a randomly chosen external parameter. However,
using information about the transverse spatial distribution
of gluons in the proton from independent measurements,
we can calculate the probability for certain hard processes
in a pp collision as a function of the impact parameter, and
thus infer the distribution of impact parameters in a sample
of events with the same hard process. This logic was used

in Ref. [24] to devise a trigger on central collisions in
inclusive pp scattering by requiring hard dijet production
at small rapidities. Here we use the same strategy to model
soft spectator interactions in double-gap exclusive diffrac-
tive pp scattering.

The integrand in Eq. (77) describes the effective distri-
bution of impact parameters in a sample of double-gap
diffractive events and reflects the interplay of hard and soft
interactions at the cross section level. The probability for
the hard process, Phard!b", favors small impact parameters,
which maximize the overlap of the large-x gluon distribu-
tions in the protons, and vanishes for b2 * 1=Bg. The
probability for no inelastic soft interactions, j1% !!b"j2,
favors large impact parameters, which increase the chances
for the protons to stay intact, and vanishes for b2 + 1=B
where pp scattering approaches the BDL. The product of
the two probabilities is suppressed both at small and at
large b and thus concentrated at intermediate values of b.

This point can be illustrated nicely with the Gaussian
parametrizations of the transverse spatial distribution of
gluons, Eq. (34), and the pp elastic profile function,
Eq. (12). With the Gaussian form (34), the convolution
integral in Eq. (75) can be computed analytically,
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This function is shown by the dashed line in Fig. 8. The
integrand of Eq. (77) is given by
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and is shown by the solid line in Fig. 8. It is suppressed both
for b2 + 1=B (because of the ‘‘blackness’’ of the pp
amplitude) and for b2 * 1=Bg (because of the vanishing
of the overlap of the two gluon distributions) and thus
concentrated at intermediate values of b. The maximum
of 2#b times the combined distribution is at

 b2 , 5Bg !Bg + B": (80)

We see that within our two-scale picture of the transverse
structure of hard and soft interactions, cf. Fig. 2, the
dominant impact parameters in double-gap exclusive dif-
fractive processes are determined by Bg—the smaller of
the two areas—but may be numerically large because of a
large numerical factor. The RGS probability, Eq. (77), is
given by the integral of 2#b times Eq. (79) (i.e., the area
under the solid curve in Fig. 8) and can be computed
analytically,
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In terms of this distribution the RGS probability (73) is
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This result agrees with the expression for the RGS proba-
bility derived heuristically in Refs. [11–13,55]. For the
comparison of our result for the RGS probability with
that obtained with the pomeron model of Ref. [5], we refer
to Sec. V B below; see also the comments at the end of
Sec. IV D.

Expression (77) for the RGS probability allows for a
simple probabilistic interpretation. Consider a pp collision
at given impact parameter, b ) jbj. Since the hard two-
gluon exchange process is effectively local in transverse
space, the probability for it to happen is proportional to the
product of the squared transverse spatial distributions of
gluons in the two colliding protons, integrated over the
transverse plane, as given by the numerator of Eq. (75).
Consider now a hypothetical sample of pp events with the
two-gluon induced hard scattering process, but an other-
wise arbitrary (nondiffractive) final state. By the laws of
probability, the distribution of impact parameters in this
sample is given by the normalized distribution Phard!b",
Eq. (75). A diffractive event results if the spectator systems
of the two protons do not interact inelastically. The proba-
bility for this to happen in a pp collision at fixed b is given
by j1% !!b"j2, cf. Eq. (4), in analogy to the well-known
formula for inelastic scattering in nonrelativistic theory
[56]. The RGS probability, which is defined as the fraction
of diffractive events in the sample of all events containing
the same hard scattering process, is then given by the
average of this function with the normalized b distribution
in the sample, Eq. (77).

It needs to be stressed that the impact parameter of a
single pp event is not observable, being a microscopic
quantity beyond the reach of any experimental apparatus.
In the above arguments, the impact parameter plays the
role of a randomly chosen external parameter. However,
using information about the transverse spatial distribution
of gluons in the proton from independent measurements,
we can calculate the probability for certain hard processes
in a pp collision as a function of the impact parameter, and
thus infer the distribution of impact parameters in a sample
of events with the same hard process. This logic was used

in Ref. [24] to devise a trigger on central collisions in
inclusive pp scattering by requiring hard dijet production
at small rapidities. Here we use the same strategy to model
soft spectator interactions in double-gap exclusive diffrac-
tive pp scattering.

The integrand in Eq. (77) describes the effective distri-
bution of impact parameters in a sample of double-gap
diffractive events and reflects the interplay of hard and soft
interactions at the cross section level. The probability for
the hard process, Phard!b", favors small impact parameters,
which maximize the overlap of the large-x gluon distribu-
tions in the protons, and vanishes for b2 * 1=Bg. The
probability for no inelastic soft interactions, j1% !!b"j2,
favors large impact parameters, which increase the chances
for the protons to stay intact, and vanishes for b2 + 1=B
where pp scattering approaches the BDL. The product of
the two probabilities is suppressed both at small and at
large b and thus concentrated at intermediate values of b.

This point can be illustrated nicely with the Gaussian
parametrizations of the transverse spatial distribution of
gluons, Eq. (34), and the pp elastic profile function,
Eq. (12). With the Gaussian form (34), the convolution
integral in Eq. (75) can be computed analytically,
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and is shown by the solid line in Fig. 8. It is suppressed both
for b2 + 1=B (because of the ‘‘blackness’’ of the pp
amplitude) and for b2 * 1=Bg (because of the vanishing
of the overlap of the two gluon distributions) and thus
concentrated at intermediate values of b. The maximum
of 2#b times the combined distribution is at

 b2 , 5Bg !Bg + B": (80)

We see that within our two-scale picture of the transverse
structure of hard and soft interactions, cf. Fig. 2, the
dominant impact parameters in double-gap exclusive dif-
fractive processes are determined by Bg—the smaller of
the two areas—but may be numerically large because of a
large numerical factor. The RGS probability, Eq. (77), is
given by the integral of 2#b times Eq. (79) (i.e., the area
under the solid curve in Fig. 8) and can be computed
analytically,
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It is convenient to introduce a normalized impact parameter distribution

and introduce a normalized impact parameter distribution,
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In terms of this distribution the RGS probability (73) is
expressed as
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This result agrees with the expression for the RGS proba-
bility derived heuristically in Refs. [11–13,55]. For the
comparison of our result for the RGS probability with
that obtained with the pomeron model of Ref. [5], we refer
to Sec. V B below; see also the comments at the end of
Sec. IV D.

Expression (77) for the RGS probability allows for a
simple probabilistic interpretation. Consider a pp collision
at given impact parameter, b ) jbj. Since the hard two-
gluon exchange process is effectively local in transverse
space, the probability for it to happen is proportional to the
product of the squared transverse spatial distributions of
gluons in the two colliding protons, integrated over the
transverse plane, as given by the numerator of Eq. (75).
Consider now a hypothetical sample of pp events with the
two-gluon induced hard scattering process, but an other-
wise arbitrary (nondiffractive) final state. By the laws of
probability, the distribution of impact parameters in this
sample is given by the normalized distribution Phard!b",
Eq. (75). A diffractive event results if the spectator systems
of the two protons do not interact inelastically. The proba-
bility for this to happen in a pp collision at fixed b is given
by j1% !!b"j2, cf. Eq. (4), in analogy to the well-known
formula for inelastic scattering in nonrelativistic theory
[56]. The RGS probability, which is defined as the fraction
of diffractive events in the sample of all events containing
the same hard scattering process, is then given by the
average of this function with the normalized b distribution
in the sample, Eq. (77).

It needs to be stressed that the impact parameter of a
single pp event is not observable, being a microscopic
quantity beyond the reach of any experimental apparatus.
In the above arguments, the impact parameter plays the
role of a randomly chosen external parameter. However,
using information about the transverse spatial distribution
of gluons in the proton from independent measurements,
we can calculate the probability for certain hard processes
in a pp collision as a function of the impact parameter, and
thus infer the distribution of impact parameters in a sample
of events with the same hard process. This logic was used

in Ref. [24] to devise a trigger on central collisions in
inclusive pp scattering by requiring hard dijet production
at small rapidities. Here we use the same strategy to model
soft spectator interactions in double-gap exclusive diffrac-
tive pp scattering.

The integrand in Eq. (77) describes the effective distri-
bution of impact parameters in a sample of double-gap
diffractive events and reflects the interplay of hard and soft
interactions at the cross section level. The probability for
the hard process, Phard!b", favors small impact parameters,
which maximize the overlap of the large-x gluon distribu-
tions in the protons, and vanishes for b2 * 1=Bg. The
probability for no inelastic soft interactions, j1% !!b"j2,
favors large impact parameters, which increase the chances
for the protons to stay intact, and vanishes for b2 + 1=B
where pp scattering approaches the BDL. The product of
the two probabilities is suppressed both at small and at
large b and thus concentrated at intermediate values of b.

This point can be illustrated nicely with the Gaussian
parametrizations of the transverse spatial distribution of
gluons, Eq. (34), and the pp elastic profile function,
Eq. (12). With the Gaussian form (34), the convolution
integral in Eq. (75) can be computed analytically,
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and is shown by the solid line in Fig. 8. It is suppressed both
for b2 + 1=B (because of the ‘‘blackness’’ of the pp
amplitude) and for b2 * 1=Bg (because of the vanishing
of the overlap of the two gluon distributions) and thus
concentrated at intermediate values of b. The maximum
of 2#b times the combined distribution is at

 b2 , 5Bg !Bg + B": (80)

We see that within our two-scale picture of the transverse
structure of hard and soft interactions, cf. Fig. 2, the
dominant impact parameters in double-gap exclusive dif-
fractive processes are determined by Bg—the smaller of
the two areas—but may be numerically large because of a
large numerical factor. The RGS probability, Eq. (77), is
given by the integral of 2#b times Eq. (79) (i.e., the area
under the solid curve in Fig. 8) and can be computed
analytically,
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In terms of this distribution the RGS probability (73) is
expressed as
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This result agrees with the expression for the RGS proba-
bility derived heuristically in Refs. [11–13,55]. For the
comparison of our result for the RGS probability with
that obtained with the pomeron model of Ref. [5], we refer
to Sec. V B below; see also the comments at the end of
Sec. IV D.

Expression (77) for the RGS probability allows for a
simple probabilistic interpretation. Consider a pp collision
at given impact parameter, b ) jbj. Since the hard two-
gluon exchange process is effectively local in transverse
space, the probability for it to happen is proportional to the
product of the squared transverse spatial distributions of
gluons in the two colliding protons, integrated over the
transverse plane, as given by the numerator of Eq. (75).
Consider now a hypothetical sample of pp events with the
two-gluon induced hard scattering process, but an other-
wise arbitrary (nondiffractive) final state. By the laws of
probability, the distribution of impact parameters in this
sample is given by the normalized distribution Phard!b",
Eq. (75). A diffractive event results if the spectator systems
of the two protons do not interact inelastically. The proba-
bility for this to happen in a pp collision at fixed b is given
by j1% !!b"j2, cf. Eq. (4), in analogy to the well-known
formula for inelastic scattering in nonrelativistic theory
[56]. The RGS probability, which is defined as the fraction
of diffractive events in the sample of all events containing
the same hard scattering process, is then given by the
average of this function with the normalized b distribution
in the sample, Eq. (77).

It needs to be stressed that the impact parameter of a
single pp event is not observable, being a microscopic
quantity beyond the reach of any experimental apparatus.
In the above arguments, the impact parameter plays the
role of a randomly chosen external parameter. However,
using information about the transverse spatial distribution
of gluons in the proton from independent measurements,
we can calculate the probability for certain hard processes
in a pp collision as a function of the impact parameter, and
thus infer the distribution of impact parameters in a sample
of events with the same hard process. This logic was used

in Ref. [24] to devise a trigger on central collisions in
inclusive pp scattering by requiring hard dijet production
at small rapidities. Here we use the same strategy to model
soft spectator interactions in double-gap exclusive diffrac-
tive pp scattering.

The integrand in Eq. (77) describes the effective distri-
bution of impact parameters in a sample of double-gap
diffractive events and reflects the interplay of hard and soft
interactions at the cross section level. The probability for
the hard process, Phard!b", favors small impact parameters,
which maximize the overlap of the large-x gluon distribu-
tions in the protons, and vanishes for b2 * 1=Bg. The
probability for no inelastic soft interactions, j1% !!b"j2,
favors large impact parameters, which increase the chances
for the protons to stay intact, and vanishes for b2 + 1=B
where pp scattering approaches the BDL. The product of
the two probabilities is suppressed both at small and at
large b and thus concentrated at intermediate values of b.

This point can be illustrated nicely with the Gaussian
parametrizations of the transverse spatial distribution of
gluons, Eq. (34), and the pp elastic profile function,
Eq. (12). With the Gaussian form (34), the convolution
integral in Eq. (75) can be computed analytically,
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and is shown by the solid line in Fig. 8. It is suppressed both
for b2 + 1=B (because of the ‘‘blackness’’ of the pp
amplitude) and for b2 * 1=Bg (because of the vanishing
of the overlap of the two gluon distributions) and thus
concentrated at intermediate values of b. The maximum
of 2#b times the combined distribution is at
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We see that within our two-scale picture of the transverse
structure of hard and soft interactions, cf. Fig. 2, the
dominant impact parameters in double-gap exclusive dif-
fractive processes are determined by Bg—the smaller of
the two areas—but may be numerically large because of a
large numerical factor. The RGS probability, Eq. (77), is
given by the integral of 2#b times Eq. (79) (i.e., the area
under the solid curve in Fig. 8) and can be computed
analytically,
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bility derived heuristically in Refs. [11–13,55]. For the
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[56]. The RGS probability, which is defined as the fraction
of diffractive events in the sample of all events containing
the same hard scattering process, is then given by the
average of this function with the normalized b distribution
in the sample, Eq. (77).

It needs to be stressed that the impact parameter of a
single pp event is not observable, being a microscopic
quantity beyond the reach of any experimental apparatus.
In the above arguments, the impact parameter plays the
role of a randomly chosen external parameter. However,
using information about the transverse spatial distribution
of gluons in the proton from independent measurements,
we can calculate the probability for certain hard processes
in a pp collision as a function of the impact parameter, and
thus infer the distribution of impact parameters in a sample
of events with the same hard process. This logic was used

in Ref. [24] to devise a trigger on central collisions in
inclusive pp scattering by requiring hard dijet production
at small rapidities. Here we use the same strategy to model
soft spectator interactions in double-gap exclusive diffrac-
tive pp scattering.

The integrand in Eq. (77) describes the effective distri-
bution of impact parameters in a sample of double-gap
diffractive events and reflects the interplay of hard and soft
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which maximize the overlap of the large-x gluon distribu-
tions in the protons, and vanishes for b2 * 1=Bg. The
probability for no inelastic soft interactions, j1% !!b"j2,
favors large impact parameters, which increase the chances
for the protons to stay intact, and vanishes for b2 + 1=B
where pp scattering approaches the BDL. The product of
the two probabilities is suppressed both at small and at
large b and thus concentrated at intermediate values of b.

This point can be illustrated nicely with the Gaussian
parametrizations of the transverse spatial distribution of
gluons, Eq. (34), and the pp elastic profile function,
Eq. (12). With the Gaussian form (34), the convolution
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and is shown by the solid line in Fig. 8. It is suppressed both
for b2 + 1=B (because of the ‘‘blackness’’ of the pp
amplitude) and for b2 * 1=Bg (because of the vanishing
of the overlap of the two gluon distributions) and thus
concentrated at intermediate values of b. The maximum
of 2#b times the combined distribution is at

 b2 , 5Bg !Bg + B": (80)

We see that within our two-scale picture of the transverse
structure of hard and soft interactions, cf. Fig. 2, the
dominant impact parameters in double-gap exclusive dif-
fractive processes are determined by Bg—the smaller of
the two areas—but may be numerically large because of a
large numerical factor. The RGS probability, Eq. (77), is
given by the integral of 2#b times Eq. (79) (i.e., the area
under the solid curve in Fig. 8) and can be computed
analytically,

 S2 ) 2B2
g

!B$ Bg"!B$ 2Bg"
, 2B2

g

B2 !Bg + B": (81)
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Note that in our approach one does 
not need to model effects of 

multiPomeron exchanges, etc. Also we 
find that structure of diffraction in pp 
scattering at LHC and in gpds are so 

different that effects of inelastic 
intermediate states are very small. 



The gap survival probability is of the order !Bg=B"2, i.e., it
is proportional to the square of the ratio of the transverse
area occupied by hard gluons to the area corresponding to
soft interactions. Thus, our two-scale picture offers a para-
metric argument for the smallness of the rapidity gap
survival probability.

The approach to the black-disk limit in pp scattering at
high energies, i.e., the fact that !!b" ! 1 at small b plays a
crucial role in determining the numerical value of the RGS
probability and ensuring stability of our calculation with
respect to variation of the parameters. A small deviation of
the profile function from unity at b # 0, of the form !!b #
0" # 1$ ! with ! % 1, would change the result for the
gap survival probability to

 S2 ! S2jBDL & !2 (82)

[here we have used that Bg % B, and that the integral of
Phard is unity, cf. Eq. (76)]. The approach to the BDL
effectively eliminates !!b # 0" as a parameter in our cal-
culation. We stress again that the experimental data as well
as theoretical arguments indicate that the BDL is indeed
reached in pp scattering at small impact parameters at the
LHC energy.

B. Numerical estimates

For a numerical estimate of the gap survival probability
we evaluate Eq. (77) with the dipole parametrization of the
two-gluon form factor, Eq. (31), and the parametrization of
the pp elastic amplitude of Ref. [21]. For Higgs production
at the LHC (

!!!
s

p # 14 TeV) at central rapidities the mo-
mentum fractions of the annihilating gluons are x1;2 '
10$2 (at a scale Q2 % m2

H). For such values of x in
principle the contributions of the nucleon’s pion cloud to
the gluon density at transverse distances "' 1=!2M#"
need to be taken into account; see Sec. III. As we shall
explain below, these contributions to the gluon density
involve correlations in the nucleon wave function, which
effectively reduce their contribution to RGS and should not
be included in the estimate based on Eq. (77). We therefore
use in our estimate at the LHC energy the simple dipole
form factor with m2

g ( 1 GeV2, which does not include the
pion cloud contribution. With this choice of parameters
Eq. (77) gives for the RGS probability for Higgs produc-
tion at the LHC

 S2 # 0:027: (83)

The energy dependence of the RGS probability is shown in
Fig. 9, for various values of the mass parameter of the two-
gluon form factor, m2

g. At the Tevatron energy (
!!!
s

p #
1:9 TeV), the gluon momentum fractions x1;2 are of the
order '10$1, for which the pion cloud contributions to the
gluon density are naturally absent. While a mass parameter
m2

g # 1 GeV2 is still reasonable in this situation, even
higher values m2

g might be relevant in this case. Taking
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The gap survival probability is of the order !Bg=B"2, i.e., it
is proportional to the square of the ratio of the transverse
area occupied by hard gluons to the area corresponding to
soft interactions. Thus, our two-scale picture offers a para-
metric argument for the smallness of the rapidity gap
survival probability.

The approach to the black-disk limit in pp scattering at
high energies, i.e., the fact that !!b" ! 1 at small b plays a
crucial role in determining the numerical value of the RGS
probability and ensuring stability of our calculation with
respect to variation of the parameters. A small deviation of
the profile function from unity at b # 0, of the form !!b #
0" # 1$ ! with ! % 1, would change the result for the
gap survival probability to
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[here we have used that Bg % B, and that the integral of
Phard is unity, cf. Eq. (76)]. The approach to the BDL
effectively eliminates !!b # 0" as a parameter in our cal-
culation. We stress again that the experimental data as well
as theoretical arguments indicate that the BDL is indeed
reached in pp scattering at small impact parameters at the
LHC energy.

B. Numerical estimates

For a numerical estimate of the gap survival probability
we evaluate Eq. (77) with the dipole parametrization of the
two-gluon form factor, Eq. (31), and the parametrization of
the pp elastic amplitude of Ref. [21]. For Higgs production
at the LHC (
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p # 14 TeV) at central rapidities the mo-
mentum fractions of the annihilating gluons are x1;2 '
10$2 (at a scale Q2 % m2

H). For such values of x in
principle the contributions of the nucleon’s pion cloud to
the gluon density at transverse distances "' 1=!2M#"
need to be taken into account; see Sec. III. As we shall
explain below, these contributions to the gluon density
involve correlations in the nucleon wave function, which
effectively reduce their contribution to RGS and should not
be included in the estimate based on Eq. (77). We therefore
use in our estimate at the LHC energy the simple dipole
form factor with m2

g ( 1 GeV2, which does not include the
pion cloud contribution. With this choice of parameters
Eq. (77) gives for the RGS probability for Higgs produc-
tion at the LHC
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The gap survival probability is of the order !Bg=B"2, i.e., it
is proportional to the square of the ratio of the transverse
area occupied by hard gluons to the area corresponding to
soft interactions. Thus, our two-scale picture offers a para-
metric argument for the smallness of the rapidity gap
survival probability.

The approach to the black-disk limit in pp scattering at
high energies, i.e., the fact that !!b" ! 1 at small b plays a
crucial role in determining the numerical value of the RGS
probability and ensuring stability of our calculation with
respect to variation of the parameters. A small deviation of
the profile function from unity at b # 0, of the form !!b #
0" # 1$ ! with ! % 1, would change the result for the
gap survival probability to
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as theoretical arguments indicate that the BDL is indeed
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For a numerical estimate of the gap survival probability
we evaluate Eq. (77) with the dipole parametrization of the
two-gluon form factor, Eq. (31), and the parametrization of
the pp elastic amplitude of Ref. [21]. For Higgs production
at the LHC (
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10$2 (at a scale Q2 % m2

H). For such values of x in
principle the contributions of the nucleon’s pion cloud to
the gluon density at transverse distances "' 1=!2M#"
need to be taken into account; see Sec. III. As we shall
explain below, these contributions to the gluon density
involve correlations in the nucleon wave function, which
effectively reduce their contribution to RGS and should not
be included in the estimate based on Eq. (77). We therefore
use in our estimate at the LHC energy the simple dipole
form factor with m2

g ( 1 GeV2, which does not include the
pion cloud contribution. With this choice of parameters
Eq. (77) gives for the RGS probability for Higgs produc-
tion at the LHC
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The gap survival probability is of the order !Bg=B"2, i.e., it
is proportional to the square of the ratio of the transverse
area occupied by hard gluons to the area corresponding to
soft interactions. Thus, our two-scale picture offers a para-
metric argument for the smallness of the rapidity gap
survival probability.

The approach to the black-disk limit in pp scattering at
high energies, i.e., the fact that !!b" ! 1 at small b plays a
crucial role in determining the numerical value of the RGS
probability and ensuring stability of our calculation with
respect to variation of the parameters. A small deviation of
the profile function from unity at b # 0, of the form !!b #
0" # 1$ ! with ! % 1, would change the result for the
gap survival probability to
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[here we have used that Bg % B, and that the integral of
Phard is unity, cf. Eq. (76)]. The approach to the BDL
effectively eliminates !!b # 0" as a parameter in our cal-
culation. We stress again that the experimental data as well
as theoretical arguments indicate that the BDL is indeed
reached in pp scattering at small impact parameters at the
LHC energy.

B. Numerical estimates

For a numerical estimate of the gap survival probability
we evaluate Eq. (77) with the dipole parametrization of the
two-gluon form factor, Eq. (31), and the parametrization of
the pp elastic amplitude of Ref. [21]. For Higgs production
at the LHC (
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mentum fractions of the annihilating gluons are x1;2 '
10$2 (at a scale Q2 % m2

H). For such values of x in
principle the contributions of the nucleon’s pion cloud to
the gluon density at transverse distances "' 1=!2M#"
need to be taken into account; see Sec. III. As we shall
explain below, these contributions to the gluon density
involve correlations in the nucleon wave function, which
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 HARD INTERACTIONS IN THE BLACK-DISK REGIME

profile function of Ref. [4]. This value of Bg is lower than
the range of values considered in Ref. [4] (our Bg ! 2b in
the notation of that paper). The value of Bg for Higgs
production at the LHC taken in Ref. [5] is Bg !
4 GeV"2, which results in S2 ! 0:02 in their model. One
sees that the different values of Bg partly compensate the
differences due to the treatment of inelastic diffraction in
the two approaches. We thus conclude that the similarity of
the final numerical estimate of Ref. [5] with our results is
somewhat accidental. In any case, the differences between
the numerical results of both approaches are within the
estimated uncertainties.

Potentially more important than the uncertainties of our
calculation of the RGS probability within the independent
interaction approximation are the effects of hard interac-
tions near the BDL, and of possible correlations between
hard and soft interactions, on RGS. These effects can
naturally be incorporated into our partonic picture and
further decrease the RGS probability compared to the
independent interaction approximation (see Secs. VI and
VII).

VI. HARD INTERACTIONS IN THE BLACK-DISK
REGIME

A general feature of high-energy scattering is that the
rise of the gluon density at small x leads to a fast increase
of the amplitudes of hard processes with energy, eventually
causing them to reach the maximum strength allowed by
unitarity. Studies based on the dipole picture have shown
that in central pp collisions at LHC energies the interac-
tion of large-x partons in one proton with the small-x
gluons in the other proton are close to the BDL up to
transverse momenta of k1? # several GeV [11,24]. In pp
elastic scattering this effect explains the observed black-
ness of the pp elastic amplitude at central impact parame-
ters (see Sec. II) [13]. In diffractive scattering, the
approach to the BDL in hard interactions of large-x partons
leads to a further reduction of the RGS probability relative
to the estimates based on the independent interaction ap-
proximation (see Sec. V). This can happen in a number of
ways:

(i) interaction of the ‘‘parent’’ partons of the gluon
attached to the Higgs with the small-x gluon field
in the other proton;

(ii) interaction of the hard gluons attached to the Higgs
boson vertex with the small-x gluon field in the other
proton;

(iii) interactions between different partons in the ladder
producing the gluons attached to the Higgs, which
may approach the BDL because of the local enhance-
ment of the gluon density caused by the hard process.

A schematic illustration of the different mechanisms is
given in Fig. 11. Since the BDL corresponds to unit proba-
bility of inelastic interactions, any such interaction would
tend to destroy the rapidity gaps and result in a decrease of

the RGS probability. These corrections have not been
considered in previous treatments of RGS in Refs. [5,9,10].

It is obvious that the interaction effects of Fig. 11 are not
contained in the GPDs of the colliding protons, as they
involve interactions with gluons in the respective other
proton. They are also not contained in the RGS probability
due to soft spectator interactions, as they specifically in-
volve the gluons attached to the Higgs boson vertex or their
immediate parents in the partonic ladder and make no
reference to spectator interactions. The effects described
here represent genuine corrections beyond the independent
interaction approximation. In order to evaluate these ef-
fects one needs to follow in detail the space-time evolution
of the production of small-x, large-virtuality partons, and
must not restrict the discussion to the GPDs in the individ-
ual protons.

A quantitative treatment of the interaction effects de-
scribed here is beyond the scope of the present paper.
However, in view of their potential importance we would
like to make a rough estimate of the magnitude of the
additional reduction of the RGS probability. For the case
of interaction of the active gluons or their parents with
small-x gluons in the other proton [Fig. 11(a) and 11(b)]
this can be done on the basis of the results of numerical
studies of scattering in the BDL regime of Refs. [11,24]. In
Higgs production at the LHC, the gluons attached to the
Higgs boson vertex have momentum fractions x1;2 # 10"2,
and for their transverse momenta we can assume a charac-
teristic value of k? # 2 GeV, as suggested by the estimates
of Refs. [9,10] (see the discussion in Sec. IVA). The
parents of these partons in the ladder then have transverse
momenta k? # 1 GeV and momentum fractions of the
order x# 10"1; the invariant energy for their interaction
with the other proton is ŝ ! xs# few $ 107 GeV at the
LHC. According to Fig. 8, the typical impact pp parame-
ters at which the diffractive process happens are around
b % 0:8 fm, implying that in the hard process the partons
traverse the other proton on average at transverse distances

 ...
...

...

...
...

(c)

...
...

(b)(a)

FIG. 11. Modifications of the amplitude for double-gap dif-
fraction resulting from hard interactions near the BDL.
(a) Absorption of parent partons of the gluon attached to the
Higgs. The cross denotes the black interaction with the small-x
gluons in the other proton. (b) Absorption of the hard gluons
attached to the Higgs. (c) Absorption due to local interactions
within the partonic ladder. Shown is only the generic structure of
the partonic ladders; the dominant contribution comes from
gluons.
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Modifications of the amplitude for double-gap diffraction resulting from hard interactions near the BDL. 

(a) Absorption of parent partons of the gluon attached to the Higgs. The cross denotes the black 
interaction with the small-x 
gluons in the other proton.
 (b) Absorption of the hard gluons attached to the Higgs. 
(c) Absorption due to local interactions within the partonic ladder. 

Shown is only the generic structure of the partonic ladders; the dominant contribution comes from gluons



Let us illustrate magnitude of these effects  consider the interaction of gluon from the 
evolution of gluon gpd with the small x gluons in the second nucleon

In gluon gpd for diffractive  Higgs production at LHC,

Q2 ~ 4- 8 GeV2,  x~ 10-2

backward evolution - very high probability that these gluons originated from gluons at x ~10-1  
and pt~ 1GeV/c   - these gluons are present in the colliding nucleons and absorbed back into 
the final nucleon long after collisions provided they did not interact.   These partons are close 
to the interacting partons and hence not included in the soft absorption factor.

Probability to survive - interaction of a dipole with size d ~π /2pt ~ .3 fm at effective 
energy seff ~ sLHC/10. xeff ~10-6 - 10-7 !!!
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The gap survival probability is of the order !Bg=B"2, i.e., it
is proportional to the square of the ratio of the transverse
area occupied by hard gluons to the area corresponding to
soft interactions. Thus, our two-scale picture offers a para-
metric argument for the smallness of the rapidity gap
survival probability.

The approach to the black-disk limit in pp scattering at
high energies, i.e., the fact that !!b" ! 1 at small b plays a
crucial role in determining the numerical value of the RGS
probability and ensuring stability of our calculation with
respect to variation of the parameters. A small deviation of
the profile function from unity at b # 0, of the form !!b #
0" # 1$ ! with ! % 1, would change the result for the
gap survival probability to

 S2 ! S2jBDL & !2 (82)

[here we have used that Bg % B, and that the integral of
Phard is unity, cf. Eq. (76)]. The approach to the BDL
effectively eliminates !!b # 0" as a parameter in our cal-
culation. We stress again that the experimental data as well
as theoretical arguments indicate that the BDL is indeed
reached in pp scattering at small impact parameters at the
LHC energy.

B. Numerical estimates

For a numerical estimate of the gap survival probability
we evaluate Eq. (77) with the dipole parametrization of the
two-gluon form factor, Eq. (31), and the parametrization of
the pp elastic amplitude of Ref. [21]. For Higgs production
at the LHC (

!!!
s

p # 14 TeV) at central rapidities the mo-
mentum fractions of the annihilating gluons are x1;2 '
10$2 (at a scale Q2 % m2

H). For such values of x in
principle the contributions of the nucleon’s pion cloud to
the gluon density at transverse distances "' 1=!2M#"
need to be taken into account; see Sec. III. As we shall
explain below, these contributions to the gluon density
involve correlations in the nucleon wave function, which
effectively reduce their contribution to RGS and should not
be included in the estimate based on Eq. (77). We therefore
use in our estimate at the LHC energy the simple dipole
form factor with m2

g ( 1 GeV2, which does not include the
pion cloud contribution. With this choice of parameters
Eq. (77) gives for the RGS probability for Higgs produc-
tion at the LHC

 S2 # 0:027: (83)

The energy dependence of the RGS probability is shown in
Fig. 9, for various values of the mass parameter of the two-
gluon form factor, m2

g. At the Tevatron energy (
!!!
s

p #
1:9 TeV), the gluon momentum fractions x1;2 are of the
order '10$1, for which the pion cloud contributions to the
gluon density are naturally absent. While a mass parameter
m2

g # 1 GeV2 is still reasonable in this situation, even
higher values m2

g might be relevant in this case. Taking
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FIG. 9. The RGS probability for double-gap exclusive diffrac-
tive processes, Eq. (77), as a function of the squared CM energy,
s. The Tevatron and LHC energies are marked by arrows. Shown
are the results obtained with the dipole parametrization of the
two-gluon form factor (31), for different values of the mass
parameter m2

g. The value m2
g # 1 GeV2 is appropriate for Higgs

boson production at the LHC at central rapidities. The profile
function of the pp elastic amplitude was taken from Ref. [21]
(cf. Fig. 1).
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exchange, Phard!b", Eq. (75), evaluated with the exponential
parametrization of the two-gluon form factor, Eq. (33) with
Bg # 3:24 GeV$2. Solid line: The product Phard!b"j1$ !!b"j2,
evaluated with the exponential parametrization, Eq. (12), with
B # 21:8 GeV$2. The vanishing of j1$ !!b"j2, at small b,
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parameters. Note that the plot shows 2#b times the functions of
impact parameter; the small-b part of the dashed curve [distri-
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and was omitted for better legibility. The RGS probability, S2, is
given by the area under the solid curve.
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dipole-N
~ bpp/2

pp

Extra suppression is roughly a square of  (1-Γ)2 ➔ for bpp =1 fm suppression is  by a factor > 5. Overall 
would give suppression > a factor 3-5. Only way out rare fluctuations where gluons were not emitted.

Conclusion: Suppression of exclusive Higgs production at LHC is very sensitive to onset of 
the black disk regime. Large suppression as compared to approximation of factorized soft 

and hard physics is likely to be large:  S2  < 0.01  Several other implications.



What is UPC? Collisions of nuclei (pA) at impact
parameters b ≥ 2RA where strong interaction between

colliding particles is negligible

A

A

! !

Ultraperipheral Nucleus−Nucleus Collision

B > 2RA

UIUC, November 7, 2003 M.Strikman

Ultraperipheral Collisions ≡ UPC
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Rapidity gap processes at large t=(pρ-pγ)2:  from HERA to LHC

xq

N

γ ρ

X

Elementary reaction - scattering of a hadron (γ, γ*)

off a parton of the target at large t=(pγ-pV)2 
FS 89 (large t pp→p +gap + jet), FS95
Mueller & Tung 91

regime of color opacity, a direct evidence is very limited, see however [?]. The rapidity gap
processes we discuss in this paper will provide additional handles to address these questions.

To probe this physics a number of small x processes which originate due to elastic scat-
tering of a parton and a small quark-antiquark (qq̄) color singlet dipoles (we will refer to
them in the following simply as dipoles) at large momentum transfer and at high energies
were suggested. This includes hard diffraction in pp→ pX process at large t, production of
two jets accompanied by rapidity gap-coherent Pomeron [?], the rate of production of two
back to back jets with a large rapidity gap in between [?] as compared to the rate of two jet
production in the same kinematics without rapidity gaps [?, ?], photo(electro) production
of vector mesons at large t with a rapidity gap [?, ?, ?]. Production of two jets with a gap
in between was studied experimentally at the Tevatron, see e.g. [?]. Over the last ten years
the theoretical and experimental studies were focused on the photo/electro production off
a proton. Studies of these processes at HERA resulted in the measurements of the rele-
vant cross sections [?, ?, ?, ?, ?] in a region of the photon-proton center of mass energies
20 GeV ≤ Wγp ≤ 200 GeV .

The HERA data agree well with many (though not all) predictions of the QCD motivated
models (several of which use the LO BFKL approximation[?]), see for example [?] and
references therein.

Clearly it would be beneficial to extend such study to higher Wγp and over a larger
range of the rapidity gap intervals to investigate how energy dependence of the small dipole
- parton scattering changes with t. Recently we demonstrated [?] that this will be possible
using quasireal photons in the ultraperipheral collisions (UPC) of protons with nuclei at
LHC.

Here we perform a more detailed analysis focusing on study of ρ meson photoproduction:

γ + p(A)→ ρ + rapidity gap + X, (1)

at large t and with a rapidity gap between ρ-meson and produced hadronic system X in
the proton-nucleus and nucleus-nucleus UPC at LHC. We consider the kinematics where the
rapidity gap interval is sufficiently large (≥ 4) to suppress contribution of the fragmentation
processes. Related physics can be investigated in the diffractive production of charm or two
jets separated by large rapidity gap from the nucleon fragmentation region. For example,
studies of the A-dependence of production of two jets in the processes like γ + A → (jet +
M1)+ rapidity gap+(jet+M2) will allow to check presence of the color transparency effects
in the gap survival in hard photon induced processes [?].

The CMS and ATLAS detectors are well suited for observing such processes since they
cover large rapidity intervals.

The main variables determining the dynamics of the process are the mass MX of system
produced due to the dissociation of proton target, the square of the transfered momentum
−t ≡ Q2 = −(pγ − pV )2, and the invariant energy of the qq̄- parton elastic scattering

s′ = xW 2
γp, (2)

where

x =
−t

(−t + M2
X −m2

N)
, (3)
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studies of the A-dependence of production of two jets in the processes like γ + A → (jet +
M1)+ rapidity gap+(jet+M2) will allow to check presence of the color transparency effects
in the gap survival in hard photon induced processes [?].

The CMS and ATLAS detectors are well suited for observing such processes since they
cover large rapidity intervals.

The main variables determining the dynamics of the process are the mass MX of system
produced due to the dissociation of proton target, the square of the transfered momentum
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s′ = xW 2
γp, (2)

where

x =
−t

(−t + M2
X −m2

N)
, (3)

2

Forshaw & Ryskin 95



The   rapidity gap between the produced vector meson and knocked out 
parton (roughly corresponding to the leading edge of the rapidity range filled by 
the hadronic system X) is related to Wγp and t  (for large t,  Wγp as

yr = ln
xW 2

γp√
(−t)(m2

V − t)

The choice of large t ensures two important simplifications. First,  the parton ladder 
mediating quasielastic  scattering  is attached to the  projectile  via two gluons. Second is 
that  attachment of the ladder to two partons of the 
target is strongly suppressed.  Also the transverse size dqq̄ ∝ 1/

√
−t

dσγ+p→V +X

dtdx
=

dσγ+quark→V +quark

dt

[
81
16

gp(x, t) +
∑

i

(qi
p(x, t) + q̄i

p(x, t))
]



dσγ+q(g)→V +q(g)

dt
∝ 1

t4
dσN+q(g)→N+q(g)

dt
∝ 1

t6

Energy dependence of fq(s’,t)∝ [s’]δ(t)

δ(-t >> 1 GeV2)?

Soft QCD   δ<-0.5

Two gluon exchange   δ=0

DGLAP / resummed BFKL   δ=0.2 -- 0.3 

subtle points in BFKL analysis



We analyzed the data using a fit

dσγ+p→ρ+X

dt
=

C

(1− t/t0)4

(
s

mV
2 − t

)2δ(t)

I(xmin, t)

I(xmin, t) =
1∫

xmin

x2δ(t)

[
81
16

gp(x, t) +
∑

i

[qi
p(x, t) + q̄i

p(x, t)

]
dx

δ=0.1 -0.2 is consistent with the data at large t
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Description of ZEUS and H1 data for t-dependence of the large t  
and rapidity gap cross section. ZEUS data were taken at average 
Wγp=100 GeV with fixed cut MX < 25 GeV and additional 
restriction 0.01 <x< 1. The H1 data were taken at average 
Wγp=85 GeV and cut MX < 5 GeV.
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Study of the  VM production with gaps is mostly sensitive to gluon  pdfs if the cut is on zmin or MX2/W2 is made. 
Sensitivity to the energy dependence of dipole - parton amplitude f(s’,t)∝sδ is minor. On the contrary if the cut on 

MX< const is made,  sensitivity to the value of δ is very high.

H1



Analyses with z cut, M2X/s < const cuts are good for study of the dominance of the 
mechanism of scattering off single partons. However they correspond to rapidity 

interval between VM and jet which are typically of the order Δy = 2 - 3. 

Optimal way to study BFKL dynamics  is to keep
 M2X < const and vary W

Difficult but not impossible at HERA natural at LHC

At LHC one can energy depedence of  elastic qq - parton scattering at W’=20 GeV -  400 GeV  

σel(qq̄ − q(g)(W ′ = 400GeV )/σel(qq̄ − q(g)(W ′ = 20GeV ) ∼ 10 !!! if  δ=0.2

-



●
measure of the strength of inelastic interactions of small dipole in the processes initiated by BFKL elastic 
qq - parton scattering at W=30 GeV -  1 TeV   
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FS & Zhalov 06
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γ + A →ρ + gap + X UPC [LHC & RHIC11(?)]
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trigger on hadron production in a rapidity interval close to one of the nuclei 

Advantages: 

no ambiguity which of the nuclei emitted photon - Large W are possible



Strong sensitivity of Aeff/A 
to the strength of  inelastic 
qq-N interactions
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Figure 6: The probability of rapidity gap survival as a function of σeff which models the
strength of dipole-nucleon interaction in nuclear medium.
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Complementary to quasielastic process - no small x 
partons in the nucleus are involved on the trigger level
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Figure 10: The same as in Fig.?? but for PbPb UPC and −t = 5 GeV 2
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Integrated over mass of produced system cross section of the nucleon dissociative ρ meson 
photoproduction at -t=5 GeV2 in the ultraperipheral lead-lead collisions at LHC. The upper figure - the 
limit of the mass of produced system MX is proportional to the photon-nucleon center of mass energy 
MX < 0.1Wγ p, in the right figure for central rapidities the limit of MX  is fixed by restriction  MX < 5GeV. 
Solid line - calculations with Glauber-Gribov screening, dashed line calculations in the leading twist 
approximation neglecting nuclear shadowing correction which is very small for discussed kinematics, 
dot-dashed line - one-side contribution when ρ meson is produced by photons emitted by only one 
nucleus: large positive rapidities correspond to vector mesons produced by high energy photons.  The 
counting rate can be estimated using expected luminosity for PbPb collisions L=10-3  μb-1 sec -1.



Conclusions 

Studies of UPC at LHC will address many (though not all) of the 
benchmark issues of HERA III proposal including 

Small x physics with protons and nuclei in a factor of ten  larger energy range 
though at higher virtualities both in inclusive and diffractive channels

Interaction of small dipoles at ultrahigh energies -  approach to 
regime of black disk limit, color opacity

28

Gap survival probability at LHC should be much smaller than according 
to the models neglecting correlations of partons in transverse plane 

due to onset of black disk regime/ regime of high gluon fields

“No saturation without disintegration” Jonathan Mayhew, 1750


