

Inclusive Diffraction at HERA from the ZEUS Experiment

Jarosław Łukasik, DESY / AGH-UST Cracow on behalf of the ZEUS collaboration

3rd HERA and the LHC workshop

Outline

- Introduction description of NC diffractive DIS, event topologies, structure functions
- Methods of diffractive sample selection: LPS, LRG, M_x
- Preliminary results, comparisons
- Summary

Event topologies

J. Łukasik

Diffractive structure functions

$$\frac{d^{4}\sigma_{y*p}^{D}}{dQ^{2}d\beta dx_{IP}dt} = \frac{2\pi\alpha_{em}^{2}}{\beta Q^{4}} (1 + (1 - y)^{2}) F_{2}^{D(4)}(Q^{2}, \beta, x_{IP}, t)$$
Regge factorization:
$$F_{2}^{D(4)}(\beta, Q^{2}, x_{IP}, t) = f_{IP}(x_{IP}, t) F_{2}^{IP}(\beta, Q^{2})$$

$$IP \text{ flux}$$

$$IP \text{ flux}$$

$$IP \text{ structure function}$$
When t is not measured:
$$\frac{d^{3}\sigma_{y*p}^{D}}{dQ^{2}d\beta dx_{IP}} = \frac{2\pi\alpha_{em}^{2}}{\beta Q^{4}} (1 + (1 - y)^{2}) F_{2}^{D(3)}(Q^{2}, \beta, x_{IP})$$
H1 definition:
$$\sigma_{r}^{D} = F_{2}^{D} - \frac{y^{2}}{1 + (1 - y)^{2}} F_{L}^{D}$$
(contribution from F_{L}^{D} is neglected in ZEUS measurements)
Differential cross section vs. M_{x} :
$$\frac{1}{2M_{x}} \frac{d\sigma_{y*p \to XV}^{D}(M_{x}, W, Q^{2})}{dM_{x}} = \frac{4\pi^{2}\alpha_{em}}{Q^{2}(Q^{2} + M_{x}^{2})} x_{IP} F_{2}^{D(3)}(\beta, x_{IP}, Q^{2})$$

Scattered proton tagging

- In most of the diffractive events outgoing proton stays intact and provides a clean experimental signature
- Since p_τ of the outgoing proton is expected to be small (<1 GeV typically), it escapes through the forward beam hole
- A fraction of these events can be detected by the Leading Proton Spectrometer (LPS)
- LPS measures the momentum of the scattered proton using track deflection induced by the magnets located along the *p* beam line
- Drawback: limited acceptance of the LPS (few %), dependent on x_L and p_τ of outgoing proton

 $x_L > 0.97 - a$ clean sample of diffractive events

Selection methods – LRG

- Presence of a large rapidity gap between the system X and outgoing proton (or proton remnant system N)
- Pseudorapidity of the most forward going particle: η_{max} distribution
- Plateau like structure, due to diffractive events mainly, extends to low η_{max} values diffractive tail —
- Drawback: background from proton dissociation, inclusive low multiplicity DIS events

Selection methods $-M_{\chi}$

- properties of $\ln(M_{\chi}^2)$ distribution:
 - flat for diffractive events
 - for non-diffractive events exponential fall-off towards low masses
 - position of the non-diffractive peak changes with W
- identifies the diffractive contribution as the excess of events over the exponential fall-off of the non-diffractive part

Drawback:

 sensitivity to the proton dissociation background

Details of the analyses

• DATA

- 2000e+, Lumi = 32.6 pb⁻¹ (LPS), Lumi = 45.4 pb⁻¹ (LRG)
- 99-00, Lumi = 52.4 pb⁻¹ (*M*_x)
- Three analysis methods applied for the same data taking period
- Kinematic coverage

 LPS: 	2 < Q ² < 120 GeV ² ,	40 < <i>W</i> < 240 GeV,	2 < <i>M_x</i> < 40 GeV
• LRG:	2 < Q ² < 305 GeV ² ,	40 < <i>W</i> < 240 GeV,	2 < <i>M_x</i> < 25 GeV
• <i>M</i> _x :	25 < Q ² < 320 GeV ² ,	45 < <i>W</i> < 220 GeV,	1.2 < <i>M_x</i> < 30 GeV

- Event selection
 - Scattered electron in the calorimeter
 - LPS: detection of scattered proton
 - LRG: energy in the Forward Plug Calorimeter (FPC) < 1 GeV, η_{max} < 3
- Backgrounds
 - LPS data
 - corrected for beam halo events (after $E-P_z < 1860$ GeV cut: 3%)
 - corrected for proton dissociation events (9% at x_{IP} = 0.1, negligible in the x_{IP} < 0.01 region)
 - photoproduction background negligible
 - LRG data
 - corrected for non-diffractive DIS events (up to 10%)
 - proton dissociative events (estimated with the help of LPS: ~18%) not rejected
 - M_{x} data
 - corrected for non-diffractive DIS events
 - background from proton dissociation for M_N > 2.3 GeV estimated with SANG MC results were corrected; no Reggeon contribution
 - The M_{χ} results contain contributions from proton dissociation for masses M_{χ} < 2.3 GeV

ZEUS LPS results (1)

Diffractive structure functions:

J. Łukasik

ZEUS LPS results (2)

Comparison of recent LPS and H1 FPS results:

$$\mathbf{R}^{\mathbf{D}} = \boldsymbol{\sigma}_{\mathrm{L}}^{\gamma^* \mathbf{p} \to \mathrm{pX}} / \boldsymbol{\sigma}_{\mathrm{T}}^{\gamma^* \mathbf{p} \to \mathrm{pX}}$$
$$\mathbf{R}^{\mathbf{D}} = \mathbf{0} \longrightarrow \mathbf{x}_{\mathrm{IP}} \mathbf{F}_{2}^{\mathbf{D}(3)} = \mathbf{x}_{\mathrm{IP}} \boldsymbol{\sigma}_{\mathrm{r}}^{\mathbf{D}(3)}$$

Normalization uncertainties are not shown:

- +12% / -10% for ZEUS LPS
- +/-10% for the H1 FPS data

The agreement is fair

ZEUS LRG results (1)

J. Łukasik

ZEUS LRG results (2)

The Regge-fit gives a good description of the ZEUS LRG data $\chi^2/ndf = 159/185$ (=0.86)

ZEUS LRG results (3)

Comparison of the ZEUS LRG with LPS data:

LPS/LRG = 0.82 ±0.01(stat.) ±0.03(syst.) independent of Q^2 and β

~10% normalization uncertainty of the LPS measurement is not shown

LRG results – ZEUS vs. H1

ZEUS M_{χ} results (1)

M_x 98-99, M_x 99-00 (prel.) $M_{\rm X} = 1.2 {\rm GeV}$ *M*₂ 98-99: **†** 3 GeV 6 GeV 11 GeV 20 GeV **30 GeV** do^{diff}/dM_X (nb/GeV 400 $2.7 \, \text{GeV}^2$ 1998-1999 published data 200 1000 <u>↓</u>*↓* * 200 ¥₽ (ZEUS Coll., S. Chekanov et 1000 al., Nucl. Phys. B 713, 3 (2005)) 400 4 GeV^2 100 500 Prel. M_x 99-00: [★]* * 200 50 1999-2000 preliminary results 400 200 6 GeV² 100 Extension of M_{γ} 98-99 analysis 200 100 to higher Q² 50 **★**★ * 200 8 GeV² 200 50 ↓* * 100 150 *M*_× 98-99 and *M*_× 99-00 14 GeV^2 100 100 50 analyses have common 50 50 25 **★*** * bin at Q²=25 GeV² *** 60 50 = 25 GeV² 40 20 **•** 20 100 200 0 100 200 100 200 100 200 0 100 200 0 100 200 0 0 0 W (GeV)

ZEUS M_{χ} results (2)

*M*_x 98-99: **★** Prel. *M*_x 99-00: **♦**

 M_{χ} 98-99 and M_{χ} 99-00 analyses have common bin at Q^2 =55 GeV²

Prel. *M*_× 99-00

J. Łukasik

ZEUS modified BEKW fit

Fit with **BEKW** model

(Bartels, Ellis, Kowalski and Wüsthoff, 1998)

•
$$x_{IP}F_2^{D(3)} = c_T \cdot F_{q\bar{q}}^T + c_L \cdot F_{q\bar{q}}^L + c_g \cdot F_{q\bar{q}g}^T$$

 $F_{q\bar{q}}^T = (\frac{x_0}{x_{IP}})^{n_T(Q^2)} \cdot \beta(1-\beta),$
 $F_{q\bar{q}}^L = (\frac{x_0}{x_{IP}})^{n_L(Q^2)} \cdot \frac{Q_0^2}{Q^2+Q_0^2} \cdot [\ln(\frac{7}{4} + \frac{Q^2}{4\beta Q_0^2})]^2 \cdot \beta^3(1-2\beta)^2,$
 $F_{q\bar{q}g}^T = (\frac{x_0}{x_{IP}})^{n_g(Q^2)} \cdot \ln(1 + \frac{Q^2}{Q_0^2}) \cdot (1-\beta)^{\gamma}$
assume $n_T(Q^2) = c_4 + c_7 \ln(1 + \frac{Q^2}{Q_0^2}), n_L(Q^2) = c_5 + c_8 \ln(1 + \frac{Q^2}{Q_0^2}),$
 $n_g(Q^2) = c_6 + c_9 \ln(1 + \frac{Q^2}{Q_0^2})$

The ZEUS data favour $n_T(Q^2) = n_g(Q^2) = n_1 \ln(1 + Q^2/Q_0^2)$ and $n_L = 0$

Taking $x_0 = 0.01$ and $Q_0^2 = 0.4$ GeV² results in the modified **BEKW** model

$$C_T, C_L, C_g, N_1^{T,g}, \gamma$$

J. Łukasik

ZEUS M_X : $x_{IP}F_2^{D(3)}$ results with BEKW(mod) fit (1)

2006/08/08 09.56

J. Łukasik

ZEUS M_x: $x_{IP}F_2^{D(3)}$ results with BEKW(mod) fit (2)

result of the BEKW(mod) fit

 $x_{IP}F_2^{D(3)}$ shows scaling violations:

from positive scaling violations over near constancy to negative scaling violations

ZEUS M_x: $x_{IP}F_2^{D(3)}$ results with BEKW(mod) fit (3)

result of the BEKW(mod) fit

$x_{IP}F_2^{D(3)}$ exhibits:

- a broad maximum around β=0.5 which is due to the transverse qq̄-contribution
- a steep rise towards small β which is generated by the qq
 q
 q
 q
 contribution
- a longitudinal qq
 -contribution which is sizeable only at very high β and causes the structure function not to vanish at β=1

ZEUS M_x: $x_{IP}F_2^{D(3)}$ results with BEKW(mod) fit (4)

- fixed $x_{IP} = 0.01$
- 25<Q²<190 GeV² on one plot
- the 3 contributions from BEKW(mod) fit for the above Q² values plotted

The BEKW model has an effective QCD-type *Q*²-evolution incorporated

J. Łukasik

ZEUS: comparison of M_{χ} and LRG results (1)

ZEUS: comparison of M_{χ} and LRG results (2)

- ZEUS M_x 98-99
- ZEUS M_x 99-00 (prel.)
- ZEUS LRG 00 (prel.)

- reasonable agreement
- work on understanding remaining differences is continuing

J. Łukasik

Summary

- ZEUS presented preliminary results on inclusive diffraction obtained with three different methods
- Results for all three methods are derived from data taken during the same time
- The results span a wide kinematic range, up to high Q²
- There is a good to reasonable agreement for the results from all three methods
- There is also a good agreement compared to H1 results for the LRG and FPS methods
- Work on understanding some remaining minor differences, in particular with respect to the relative normalisation, continues
- We try to get a consistent picture