

Diffractive dijet and D* production at ZEUS

Isabell-Alissandra Melzer-Pellmann DESY Hamburg, ZEUS

> HERA-LHC-Workshop March 13th-16th , 2007

Isabell-A. Melzer-Pellmann HERA-LHC-Workshop 2007

Outline

- Introduction
- Diffractive structure functions
- Diffractive dijet production in DIS (result from EPS2005)
- Diffractive D* in photoproduction (Q²≈0) (new result - will be sent to Directorate in the next days)
- Summary and Outlook

Inclusive diffraction and factorisation theorem

Diffractive structure function:

$$F_{2}^{D(3)}(\beta,Q^{2},x_{IP}) = \frac{\beta Q^{4}}{4\pi\alpha^{2}(1-y+y^{2}/2)} \cdot \frac{d\sigma^{D}_{ep \to e'Xp'}}{d\beta dQ^{2}dx_{IP}}$$

QCD Factorisation:

 σ_{measure} = universal diffractive PDF \otimes hard ME

Factorisation proven for DDIS and exclusive hard diffraction by Collins.

Rapidity gap due to exchange of colorless object with vacuum quantum numbers

NLO DGLAP FIT \Rightarrow PDF

Isabell-A. Melzer-Pellmann

HERA-LHC-Workshop 2007

Comparison to Tevatron

Isabell-A. Melzer-Pellmann

Comparison to Tevatron

Why is the TEVATRON cross section lower? Idea: suppression due to secondary interactions by add. spectators

Test at HERA with resolved part of photoproduction Kaidalov et al.: rescaling of resolved part by 0.34 (for dijets, less for charm due to enhancement of direct part) Use of dijet and charm data: Hard scale: E_T of jet or charm mass > tests of universality of PDF's (=QCD factorisation) > test of DGLAP evolution

Diffractive Dijets: DIS (EPS2005)

Data sample: 98-00 ep data with $\mathcal{L} = 65 \text{ pb}^{-1}$

Event selection:

> diffractive cuts:

- η_{max} < 2.8
- x_{IP} < 0.030

> dijet cuts:

- ≥ 2 jets
- $E_T^{*jet1(2)} > 5(4)$ GeV in $\gamma^* p$ frame
- |η^{jet1(2)}| < 2
- > Kinematic range:
 - $5 < Q^2 < 100 \text{ GeV}^2$
 - 100 < W < 250 GeV

3711 events after all cuts

NLO calculation: DISENT with the following PDFs: > H1 2002 fit prel. > ZEUS-LPS fit Photon PDF: GRV-G-HO

Note: Final ZEUS analysis expected in few months

Diffractive D*(2010): γP (new!)

D*(2010)[±]: reconstructed using decay chain:

D*(2010)⁺ \Rightarrow D^o π^+ $K^- \pi^+$ soft pion

Event selection:

- diffractive cuts:
 - η_{max} < 3.0
 - x_{IP} < 0.035
 - subset for cleaner diffr. events: x_{IP} < 0.01
- > D* cuts:
 - p_T(D*) >1.9 GeV
 - |η(D*)| < 1.6
- > Kinematic range:
 - Q² < 1 GeV²
 - 130 < W < 300 GeV

- Identification of D* with mass difference method.
- Background estimated using wrong charge combinations.

Diffractive D*(2010): _γP (new!)

90% of events produced in **direct process** (due to color enhancement), only **10% resolved** (hadron-like).

NLO calculation:	
 > H1 fit 2006 A and B > ZEUS-LPS fit 	 H1 2002 fit (prel) was not multiplied by factor 0.81 to account for proton-dissociative contribution (now done for H1 fit 2006)
Photon PDF: GRV-G-HO	 Improved analysis GLP fit (describing shape but not normalisation): taken out because new fit done in slightly different kinematic range on new M_x data behaves different

In addition: calculation of **ratio diffractive/inclusive**:

- NLO uncertainties cancel out
- more precise test of PDFs
- inclusive NLO calculation:
- FMNR with CTEQ5M

Diffractive D*: γP (new!)

<u>Conclusion:</u> Data very well described by NLO

- strongly supports factorisation in direct γP
- no conclusion for resolved γP (contribution only about 10 %): experimental and theoretical uncertainties too large to test significant suppression of hadron-like process
- Ratio diffractive/inclusive D* (R_D) about 6% for DIS and γP .

Conclusions and Outlook

Test of diffractive PDFs with ep dijets and charm (D*) data:

- > DIS (dijets and D*):
 - > NLO QCD calculations with diffr. PDFs describe data
 - factorisation confirmed
- > γΡ:
 - NLO QCD calculations with diffr. PDFs describe D* data
 - factorisation holds for direct γP
 - too large uncertainties to draw conclusion for resolved γP
 - > only dijet data contains large resolved contribution
 - no suppression of resolved component with respect to direct wait for new results for final conclusion on factorisation

Outlook: final dijet data to come soon...

BACKUP

р

W

р

Diffrative DIS at HERA

Deep Inelastic Scattering at HERA:

diffraction contributes substantially to the cross section (~ 10% of low-x events)

Inclusive DIS: Probe partonic structure of the proton $\rightarrow F_2$

Diffractive DIS: Probe structure of the exchanged color singlet $\rightarrow F_2^D$

p can stay intact or dissociate

Q²: 4-momentum exchange
W: γ p centre of mass energy
x: fraction of p momentum carried by struck quark
x_{IP}: fraction of p momentum carried by the Pomeron (IP)

$$x_{IP} = \frac{q \cdot (p - p')}{q \cdot p} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2}$$

β: fraction of IP momentum carried by struck quark

$$\beta = \frac{Q^2}{2q \cdot (p - p')} \approx \frac{Q^2}{Q^2 + M_X^2} = \frac{x}{x_{IP}}$$

Isabell-A. Melzer-Pellmann

Х

Event selection with M_{x} method

Forward Plug Calorimeter (FPC):
CAL acceptance extended in pseudorapidity from η=4 to η=5
> higher M_x (a factor 1.7) and lower W
> p-dissociation events: for M_N > 2.3 GeV

energy in FPC > 1GeV recognized and rejected

- flat vs $\ln M_x^2$ for diffractive events
- exponentially falling for decreasing M_{x} for non-diffractive events

Event selection with LPS

- > t-measurement
- $> x_{IP}$ measurement (access to high x_{IP} range)
- > free of p-dissociation background
- > small acceptance \rightarrow low statistics

Isabell-A. Melzer-Pellmann

HERA-LHC-Workshop 2007