Heavy Flavour in ALICE Open Heavy Quarks & Onium States

HERA-LHC Workshop

Rachid Guernane

LPC Clermont-Ferrand CNRS/IN2P3

Hamburg, March 14, 2007

Outline

- Heavy flavour production at the LHC
- The ALICE detector
- ALICE heavy flavour measurements
 - charm reconstruction via hadronic decays
 - beauty detection in semileptonic modes
 - quarkonia detection in di-lepton channels
- Summary & outlook

Major part of the material presented hereafter is published in the ALICE "Physics Performance Report",

J. Phys. G30 1517-1763 & J. Phys. G32 1295-2040

Heavy flavour production at the LHC Introduction

- What for?
 - heavy flavour production in hadron collisions provides a rich QCD phenomenology
 - **?** pp \rightarrow test reliability of pertubative calculations
 - : pA \rightarrow assess initial state effects
 - **:** AA \rightarrow probe the high colour-density medium
- LHC's novelties
 - hard cross section dominates
 - : $\sigma_{
 m hard}\,/\,\sigma_{
 m tot}\,\sim$ 98 % VS 50 % at RHIC
 - **:** copious production of both c & b quarks
 - large inelastic background
 - **?** messy environnement with large combinatorics $\propto (dN_{ch}/dy)^2$ with $dN_{ch}/dy = 6000$ in central Pb-Pb!
- ALICE's plus points
 - muti-purpose → several heavy flavour measurements
 within the same experiment
 - precise tracking \rightarrow resolve *D*'s & *B*'s decay vertices & vertexing
 - PID $\rightarrow \pi/K$ separation

Heavy flavour production at the LHC Hard QCD probes

- Sensitive probe of the collision dynamics
 - early creation time $\sim 1/m_Q$ ($\sim 0.1 \text{ fm/c} \ll \tau_{QGP} \sim 5 \div 10 \text{ fm/c}$) in initial parton collisions & long lifetime
 - **!** Undergo the whole collision history
- Open heavy flavours
 - Tomographic probe

- Radiative parton energy loss is both color charge & mass dependent Phys. Rev. D71 (2005) 054027
 - Significantly larger energy loss is expected for light q & g w.r.t. b quarks at the LHC
- * Need for a clean "calibration"
 - pp & pA experiments provide a compulsory benchmark
- Heavy quark p_{τ} distribution sensitive to many competing nuclear effects
 - Low- p_{τ} (< 6 GeV/c at LHC) region sensitive to non-perturbative effects (flow, quark coalescence, gluon shadowing, CGC state...)
 - **!** High- p_{τ} region sensitive to jet quenching
- Baseline for quarkonia production

Heavy flavour production at the LHC Hard QCD probes

- Quarkonium dissociation by color screening in a deconfined medium *Phys. Lett. B178 416 (1986)*
 - lQCD predicts a sequential dissolution of onium states with increasing temperature or energy density (hierarchy of their sizes)
 - **?** Quarkonium states do not melt at $T_{\rm c}$
 - J/ψ could survive up to $1.6 T_{\rm c}$ Phys. *Rev. Lett. 92 (2004) 012001*
 - Υ up to 2.3 $T_{\rm c}$ PoS LAT2005 (2006) 153 \rightarrow Good probe for LHC!
 - A "smoking gun" of QGP?
 - A puzzle instead... clearly data-driven
 - Poorly constrained cold or "normal" nuclear effects
 - Shadowing, saturation, nuclear absorption, co-movers...
 - **Recombination** mechanisms
 - Statistical hadronization *Phys. Lett. B490 (2000) 196*, Kinetic formation *Phys. Rev. C63 (2001) 054905*)
 - Might be a significant effect at the LHC for charmonium but marginal for bottomonium
 - Study quakonium yields VS centrality to clarify the interplay of true QGP-related suppression & heavy quark pair recombination

Preliminary, Mike Leitch, QM06

Heavy flavour production at the LHC A novel range of accessible x

- explore QCD in the new regime of "small" x &"large" Q^2 where a breakdown of the standard collinear factorization approach is expected
 - deep nuclear gluon shadowing at high rapidity in pA
 - **!** gluon saturation at ${m Q_S}^2$ (5.5 TeV, Pb) $\sim 10 \, \div 20 \, {
 m GeV}^2$
 - I non-linear terms in the gluon evolution
 - possible low-p_T charm enhancement Phys. Lett. B582 (2004) 157

EKS98: 35% (20%) reduction of charm (beauty) cross section in PbPb & 15% (10%) in pPb

Open heavy flavour production at the LHC pp acceptances

ALICE has acceptance down to very low p_T !

Open heavy flavour production at the LHC **Outbreak of large higher order corrections**

- LO processes result in topologies where the ${\bf Q}$ and the ${\bf Q}$ quarks are produced back-to-back and necessarily have similar $\mathbf{p}_{\mathsf{T}} \left(\Delta \varphi = \pi \& \mathbf{p}_{\mathsf{T}}^{\mathsf{Q}\mathsf{Q}} = \mathbf{0} \right)$
- Higher order contributions
 - can produce much more complicated topologies
 - become dominant at LHC energies, $K = \sigma_{\rm NLO} / \sigma_{\rm LO} = 1.4 \div 3.2$ for *b* production hep-ph/0311048
 - in the following, heavy quarks have been generated using PYTHIA (*), tuned to reproduce kinematic distributions given by NLO pQCD hep-ph/0311225
 - (*) NLO pertubative processes approximated in the PS approach by LO hard scattering (QCD 2 \rightarrow 2 processes) plus initial & final-state cascades

Heavy flavour production at the LHC The ALICE baseline

Unpreceding large cross sections!

		Pb 5 5			pp 14 TeV					
	0-5% centr.									
	ci	5	bb			(cē	bb		
σ (NN) [mb] $^{(*)}$	6.6	4	0.21			11.2		0.51		
EKS98 shadowing	0.6	5	0.86							
N per collision	11	5	4.56			0.	16	0.0072		
	${ m J}/\psi$	ψ^{\prime}	Υ	Υ'	Υ″	${ m J}/\psi$	ψ'	Υ	Υ'	Υ″
σ (AA) $[\mu b]$ (**)	48930	879	420	109	61	3.18	0.0057	0.028	0.0069	0.0041

(*) NLO in pQCD calculations from M. Mangano, P. Nason, and G. Ridolfi, *Nucl. Phys. B 273 (1992) 295* Theoretical uncertainty of a factor 2-3 (cf. CERN–2005–014)

(**) Inclusive lepton pair cross-sections from the Color Evaporation Model, Phys. Lett. B 91 (1980) 253

14 March 2007

The ALICE detector

Only dedicated HI experiment at the LHC with a large suite of detectors optimized for high efficiency tracking and particle identification across large range of momenta from below 100 MeV to above 100 GeV

Direct charm reconstruction in ALICE The $D^0 \rightarrow K^- \pi^+$ "golden" mode

- Direct measurement of the charmed meson p_{T} distribution – measure the nuclear modification factor R_{AA} of D meson
- Very challenging in an heavy-ion environment
 - $S/B\sim 10^{-6}$ in $M_{D^{\,0}}\pm 3\,\sigma$ before selection
 - need for a drastic selection procedure to reduce the background by 6-7 orders of magnitude!
- Secondary production from *b* hadron decays to be subtracted from direct production
- Detection strategy
 - exploit the long *c* lifetime ($c \tau = 124 \mu$ m)
 - events containing hadronic decays of charmed hadron are selected by requiring
 - two opposite-sign tracks displaced from the primary vertex *i.e.* w/ large impact parameters d₀
 - D^0 reconstructed momentum should point to the primary vertex ($heta_{
 m pointing} \approx 0$)
 - (K,π) invariant mass analysis to extract the D^0 yield

$D^0 { ightarrow} K^- \pi^+$

D^0 candidate reconstruction

κ

0.6

p

0.8

Έ

E

central Pb-Pb

1.2

1

Mass [GeV]

$D^0 { ightarrow} K^- \pi^+$ The results

	S/B initial (M $\pm 3\sigma$)	${f S/B}$ final $({f M}\pm 1\sigma)$	Significance S/(S+B) $^{1/2}$ (M $\pm 1\sigma$)
Pb-Pb central	5 · 10 ⁻⁶	10%	\sim 35 (for 10 ⁷ evts, \sim 1 month)
pPb min. bias	2 · 10 ⁻³	5%	$\sim { m 30}$ (for 10 $^{ m 8}$ evts, \sim 1 month)
рр	2 · 10 ⁻³	10%	\sim 40 (for 10 ⁹ evts, \sim 7 months)

Note

w/ dN_{ch}/dy = 3000, S/B larger by $\times 4$ & significance larger by $\times 2$

HERA-LHC Workshop

Perspectives for the study of charm quenching

• The method

- compare D^0 mesons p_{τ} distributions in pp & AA

$$R_{AA} = \frac{1}{N_{coll}} \times \frac{dN_{AA}/dp_{T}}{dN_{pp}/dp_{T}}$$

"High" p_⊤ (> 6 - 7 GeV/c)
▷ here energy loss can be studied
▷ only expected effect?
in-medium hadronisation...

– ''heavy-to-light'' ratios $\Delta oldsymbol{E}_g > \Delta oldsymbol{E}_q^{m=0} > \Delta oldsymbol{E}_q^{m
eq 0}$

 $R_{D/h}(p_T) = R_{AA}^D(p_T) / R_{AA}^h(p_T)$ test the **color-charge dependence** of QCD energy loss

 $R_{B/h}(p_T), R_{B/D}(p_T)$

test the masse dependence of QCD energy loss

Beauty via single electrons in central Pb-Pb collisions

- Main sources of background
 - $-\ensuremath{\mathsf{pions}}$ misidentified as electrons
 - charm decay electrons
 - Dalitz decays
 - photon conversions
 - strangeness decays

e signal	e backg	π
0.4	${\sim}10^3$	${\sim}10^4$

- Detection strategy
 - electron ID in TPC + TRD
 - impact parameter cut-off
 - : B's $m{c}\,m{ au}\sim$ 500 μ m
 - \mathbf{p}_{T} cut-off
 - : large b-quark mass \rightarrow hard spectrum

Rec. Rec.

track

В

$\begin{array}{l} B \longrightarrow e \; X \\ e \; \text{identification in TPC} \; + \; \text{TRD} \end{array}$

• Charged pion contamination reduced by 4 orders of magnitude after electron ID w/ a combined dE/dx and transition radiation selection

 $B \rightarrow e X$ **Purity & statistics**

 Signal-to-total ratio & expected statistics in 10⁷ central Pb-Pb events

 $p_{T} > 2 \text{ GeV/c}$ and $200 \le |d_0| \le 600 \mu \text{m}$ 80,000 electrons from *B* decays with a 80% purity

 $B \rightarrow e X$ p_{T} - differential cross sections

Beauty measurement using muons in central Pb-Pb collisions

• A representative fraction of *b*-quarks is detected in ALICE through their semileptonic decays

$B \rightarrow \mu \ X$ Muon detection

- Muons are identified with a high p resolution ~ 1-2 % by their ability to punch through more than 15 interaction lengths of materials
- Acceptance A_{track} is the fraction of "trackable tracks" (1/2 TC1-3, 3/4 TC4-5, 3/4 MT1-2)

	Ch	arm	Beauty			Muon Detection Efficiencies
%	μ^{\pm}	$\mu^+\mu^-$	μ^{\pm}	$\mu^+\mu^-$	$\mu^{\pm}\mu^{\pm}$	acceptance tracking
\mathcal{A}_{geom}	13	3	12	5	3	1 F
\mathcal{A}_{track}	42	19	75	46	51	
$arepsilon_{track}$	27	8	62	29	34	
$arepsilon_{trigger}^{Low}$	13	2	53	17	23	0.8
$arepsilon_{trigger}^{High}$	4	0.3	29	4	7	0.7 5 10 15 20

p_⊤ (GeV/c)

$B \rightarrow \mu X$ Invariant mass selection

 $B \rightarrow \mu X$ Beauty signal selection

$B \to \mu \; X$ Muon raw yields

- Uses 3 different data samples
- Fits with fixed shapes from the Monte Carlo & beauty amplitude as the only free parameter

 $B \rightarrow \mu X$ **b**-meson inclusive cross section

- Beauty inclusive production cross section measured over a wide p_T region
- Any deviation from pQCD scaled pp measurement could indicate effects from dense medium!

$B \rightarrow \mu \ X$ Systematic uncertainties

- Besides statistical uncertainties, systematic errors arising from various sources have been considered
 - Model for signal
 - **!** include variations in pQCD scales, strength of nuclear shadowing
 - Model for background
 - : varying the decay fraction by $\pm\,10\,\%$

- Efficiency
 - : typical conservative 10 %

- Normalization to one NN collision

p _T [GeV/c]	1.5-2	1-2.5	2.5-3	3-4	4-5	5-6	6-9	9-12	12-15	15-20
Signal	4%	4%	3%	3%	2%	2%	3%	4%	8%	12%
Eff.		10%								
Total p _⊤ -dep.	11%	11%	10%	10%	10%	10%	10%	11%	13%	16%
Decay		4%								
Norm.	9%									
Total p _⊤ -indep	10%									

 $B \rightarrow \mu X$ **Effect of energy loss in Pb-Pb**

Andrea Dainese, 2nd ALICE Physics Week, Müenster

Measuring beauty production using secondary J/ ψ from *b*-hadron decays

- $H_b \rightarrow J/\psi (1S) X$ BR = 1.16 ± 0.10% (from PDG)
- $N(H_b \rightarrow J/\psi) / N(\text{prompt } J/\psi) = 30\%$
- Needed to be disentangled for QGP direct J/ψ suppression signature
- Also sensitive to *b* quark quenching

Quarkonium detection in ALICE Two complementary measurements

	State	u range	$x^{_{Pb},_{Pb}}$ range		A	E		$\sigma_{M_{\ell^+\ell^-}}({ m MeV}/c^2)$	
	51010	9 14 6		14160		р-р	Cent. Pb-Pb	р-р	Cent. Pb-Pb
Muon spectrometer $\mu^+\mu^-$	${ m J}/\psi$	$-4 \leq y \leq$	$2.3 imes 10^{-4} \le 2$	$c_{1,2} \leq 1.4 imes 10^{-3}$	0.0446	0.67	0.70	72	70
$\triangleright B = 0.7 \text{ T}$	Υ	-2.5	$7.0 imes 10^{-4} \le 2$	$c_{1,2} \leq 4.2 imes 10^{-3}$	0.0441	0.89	0.83	99	115
Central barrel e^+e^- $\triangleright e$ id w/ TRD ($p > 1$ GeV/c)	${ m J}/\psi$		$7.0 imes 10^{-3} \le a$ $1.0 imes 10^{-5} \le a$	$\begin{array}{ccc} c_1 & \leq 3.1 imes 10^{-2} \ c_2 & \leq 4.6 imes 10^{-5} \end{array}$	0.295				90
▷ p meas. w/ ITS + TPC + TRD ▷ $B = 0.5$ T	Υ	$ y \ge 0.9$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{rcl} {c_1} & \leq 9.3 imes 10^{-2} \ {c_2} & \leq 1.4 imes 10^{-4} \end{array}$	0.266				33
$\int \frac{1}{2}$ Muon s	pectro	ometer			Cei	ntral	barre	I	
(%) eour (%)		cceptrance (%)	dip due to absorbers	(%) 80 80 80	00 (%)	1		¹² 0 (%) 8 w/	TRD-L1

Quakonium detection in ALICE Di-muon spectra in central Pb-Pb

 $\pm 2 \sigma$ around the recommon near

				u the re	esonance peak
$ ho \mathrm{d}N_{ m ch}/\mathrm{d}y = 6000$	State	S(×10³)	B (×10³)	S/B	S/(S+B) ^{1/2}
$\sim Assuming no$	${ m J}/\psi$	130	680	0.20	150
suppression /enhancement	ψ'	3.7	300	0.01	6.7
\sim Country 0 = $\frac{6}{2}$	Υ	1.3	0.8	1.7	29
\triangleright Centr. 0-5 %	Υ'	0.35	0.54	0.65	12
\triangleright 500 μ b ⁻¹ collected	Υ″	0.20	0.42	0.48	8.1
×10 ³ 30 30 15 10 5 4010 9 35	P 2.5 3 3.	χ^2 / ndf 13.54/23 LWidth 0.008234±0.001379 GSigma 0.06662±0.00140 M1 3.133±0.001 Area1 6716±100.4 M2 3.727±0.016 Area2 189.1±32.3 Cbkg 3.112e+04±1938 DT ^{μ} > 1 GeV/c	240 220 200 180 160 140 120 100 80 60 40 20 8 8.5	9 9.5 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
14 March 2007		M _{uu} (GeV/c⁺)			M _{uu} (GeV/c⁺)

Quakonium detection in ALICE Di-electron spectra in central Pb-Pb

 $\pm\,1.5\,\sigma$ around the resonance peak

$ ho \mathrm{d}N_{ m ch}/\mathrm{d}y = 3000$	State	S(×10³)	B (×10 ³)	S/B	S/(S+B) ^{1/2}
▷ Centr. 0-10 %	${ m J}/\psi$	121.1	88.2	1.4	265
$ hinspace$ 500 μ b ⁻¹ delivered	Υ	1.3	0.8	1.6	28
▷ Effective readout rate 200 Hz	Υ'	0.46	0.8	0.6	13

Combinatorial background subtracted

Summary & Outlook

- LHC is definitely a "hard probes factory"
 - ALICE despite "non-dedicated" has a full heavy flavour physics program
 - Performance fulfill requirements in the very demanding environment of central Pb-Pb collisions
 - The large available statistics of both hadronic & leptonic heavy flavour decays is reconstructed w/ high tracking efficiency & resolution and good particle identification
 - Heavy flavoured hadron production cross sections are assessed w/ small errors opening promising perspectives for the study of heavy quark dynamics in a dense medium
 - In the second second
 - First physics w/ p-p collisions ($\sqrt{s} = 0.9$ TeV) is currently under intensive preparation...
 - ...new avenues to be investigated
 - muon pair correlations, a powerful probe of higher orders
 - multi-muon topologies
 - b-jet tagging w/ soft electrons

The countdown to the first collisions has already started... Get ready for first pp runs!