

B-Production at ATLAS

HERA – LHC Workshop

March 2007,

DESY Hamburg

Martin zur Nedden Humboldt-Universität zu Berlin

B-Physics at ATLAS

- **B-physics at LHC**
- ATLAS B-physics strategy
- ATLAS detector and trigger
- ATLAS B-physics trigger strategy
- Plans for LHC commissioning running
- Plans for data taking at early running (low luminosity)
- Inclusive cross section measurement
- Outlook

B Physics at LHC

900 GeV running

1 mb

σ (proton - proton) 1 1

1 nb

1 pb

 σ_{tot}

E^{jet}>0.25 TeV

 $\sigma_{\tilde{a}\tilde{a}}(m_{\tilde{a}} = 500 \text{ GeV})$

 $\sigma_{t\bar{t}}$

m_{top} = 175 GeV

 σ_{Hiaas} m... = 500 Ge

0.01

0.1

√s TeV

σ_H m_H= 100 Ge

0.001

- **LHC:** proton-proton collisions at $\sqrt{s} = 14$ TeV, bunch crossing rate 40kHz
- High $b\bar{b}$ production cross section: ~ 500 µb ٠ (~ 1 in 100 p-p collisions $\rightarrow b\bar{b}$ pair). Those of interest must be select by B-trigger.
- **Current luminosity plans:** ٠
 - Pilot-run in 2007, 900 GeV, ~10²⁹ cm⁻²s⁻¹
 - low-luminosity: up to $2x10^{33}$ cm⁻² s⁻¹ (~10 fb⁻¹ per year)
 - high-luminosity: 10³⁴ cm⁻²s⁻¹ (~100 fb⁻¹ per year)

Beauty cross section dominates at 900 GeV and 14 TeV

- **ATLAS B-physics programme:**
 - CP violation (e.g. $B \rightarrow J/\psi(X), B \rightarrow \mu\mu$)
 - B_s oscillations (e.g. $B_s \rightarrow D_s \pi, B_s \rightarrow D_s a_1$)
 - Rare decays (e.g. $B \rightarrow \mu\mu(X), B \rightarrow K^*\gamma$)
 - **Inclusive cross section measurement**

Fermilab SSC

E710

LHC

10⁹

 10^{7}

10⁵

10³

10

Events / s for # 10²⁴ cm

CERN

UA4/5

О ьb

UA

CDF (pp)

CDF/DO

.0

UA1/2

m_{top} = 174 GeV

CDF

The Commissioning Run 2007

- The run in 2007 will primarily be a <u>detector and computing</u> <u>commissioning run</u>, much more than a physics run.
- A few weeks of stable running conditions at the injection energy.
 - At $\sqrt{s} = 900$ GeV the bb fraction of total inelastic events is ~ 10 times smaller than at 14 TeV.

B-Physics at ATLAS

ATLAS is a general-purpose experiment:

<u>emphasis on high-p_T physics</u> beyond the Standard Model.

ATLAS has also capabilities for a rich Bphysics programme:

precise vertexing and tracking, high-resolution calorimetry, good muon identification, and a dedicated and flexible B-physics trigger scheme.

ATLAS has a well-defined B-physics programme for all stages of the LHC operation, from the comissioning run all the way up to the high luminosity running.

 Strong points of ATLAS detector : tracking, calorimetry & muon detection On the other hand ATLAS has no K/π PID detector LHC luminosity periods early $<10^{33}$ cm⁻²s⁻¹ low 2×10^{33} cm⁻²s⁻¹ nominal 10^{34} cm⁻²s⁻¹

- * centrally produced events in proton-proton collisions at 14 TeV centre of mass energy
- * concentrate on multileptonic and photon decay channels
 - they are possible to trigger on
 - they are sensitive to New Physics
- Concentrate on measurements that extend the discovery potential of ATLAS for physics beyond the Standard Model

* measurements of CP violation parameters that

are predicted to be small in the SM (e.g in $B_s \rightarrow J/\psi \phi(\eta)$)

* measurements of rare B-decays ($B_d \rightarrow K^* \gamma, B_d \rightarrow K^* \mu \mu, B_s \rightarrow \phi \gamma, B_s \rightarrow \phi \mu \mu, B_s \rightarrow \gamma \mu \mu, B \rightarrow \mu \mu$)

• Focus on physics topics that will not be accessible for the B-factories

* mainly B_s , baryon and doubly heavy flavour hadrons ($B_s \rightarrow D_s \pi, B_s \rightarrow J/\psi \phi(\eta), \Lambda_b \rightarrow J/\psi \Lambda^0, \ldots$)

<u>Aim:</u> precision measurements and new physics

• **CP-violation parameters**

- <u>B-hadron parameters</u>: masses, lifetimes, widths, oscillation parameters, couplings, b-production, etc.
- <u>Search for New Physics effects</u>: very rare decay modes, forbidden

CP violation	$B_{d} \rightarrow J / \psi K_{s}^{0}(\pi\pi)$ $J / \psi \rightarrow \mu \mu / ee$	$sin(2\beta) + \Phi_{NP}$	
measurement of B _s properties	$B_{s} \rightarrow D_{s}\pi; B_{s,d} \rightarrow D_{s}a_{1}$ $B_{s} \rightarrow J / \psi (\mu \mu) \phi (KK)$ $B_{s,d} \rightarrow J / \psi (\mu \mu) \eta (\gamma \gamma)$	Δm_s , $\Delta \Gamma_s$, Γ_s , the weak phase ϕ_s	
B _c mesons	$B_c \rightarrow J / \psi \pi; B_c \rightarrow J / \psi \mu \nu$	B _c mass, τ, QCD/EW interplay	
Λ _b polarization measurements	$\Lambda_b \to J/\psi(\mu\mu)\Lambda(p\pi)$	asymmetry parameter α _b , P _b , life-time measurements	
rare decays	$B_{s,d} \to \mu^+ \mu^-; B_d^0 \to K^{*0} \mu \mu$ $\Lambda_b \to \Lambda \mu \mu; B_s^0 \to \phi^0 \mu \mu$	precise measurements of the branching ratios and asymmetries	

decays/couplings, etc.

Martin zur Nedden, HU Berlin

ATLAS Experiment

D712/mb-26/06/97

ATLAS Multi Level Trigger

ATLAS general Trigger Strategy

• About 1% of collisions produce a bb pair

- In the illustrative trigger menus (described in the HLT/DAQ TDR) more than 50% of the rate at LVL1 and almost 40% of the rate at HLT come from electron signatures
 - difficult to decrease the E_T threshold of the selected electrons/photons without additional trigger resources
 - * the key to the B-physics programme are muons based triggers, that can be identified cleanly at early stages of the trigger.
 - * Muons also give a clean flavour tag
 - trigger must be more selective than only concentrating in basic signatures (e.g 23 kHz at LVL1 from single muons of p_T>6 GeV)
 - concentrate on exclusive channels (reconstruct online the mass of the B hadron)
 - select online on transverse decay length (reconstruct primary and secondary vertex)

b-production at LHC $\sigma_{tot} = 100 \text{ mb}$ $\sigma_{bb} = 500 \text{ mb}$ (2×10¹² bb pairs/year _____at low lumi)

Trigger Strategies for B-Physics

- emphasis on high-p_T physics at LHC:
 limited bandwidth for B-triggers → highly efficient and selective trigger needed.
- Factor ~2 drop in luminosity during a fill: use of spare bandwith for B-physics triggers
- Many b-decays contain J/ψ : useful for calibration/understanding detector as well as B-physics
- B-trigger is based on single and di-muons

 $BR \sim 10$ % but clean signature at early level in trigger and give flavour tag (needed in many analyses)

- Different strategies in different lumi regimes :
 - High lumi (> $2x10^{33}$ cm⁻²s⁻¹)
 - LVL1 di-muon trigger \rightarrow events with 2 muons
 - rare decays $(B \rightarrow \mu \mu(X))$ & $J/\psi \rightarrow \mu \mu$
 - Lower lumi ($< 2x10^{33} \text{ cm}^{-2}\text{s}^{-1}$)
 - Continue di-muon trigger
 - Add triggers using LVL1 single muon trigger. High Level Trigger (HLT) reconstruction in secondary Regions of Interest identified by LVL1.
- Broad programme of B-physics in initial low luminosity period.
- Continue with rare-decay searches at high luminosity

• High luminosity:

- **di-muon trigger** ($p_T > 6 \text{ GeV}$)
- $\ B \to J/\psi(\mu\mu) \; X$
- double semi leptonic decyas
- Rare decays with di-muon , e.g. $B \rightarrow \mu\mu$, $B \rightarrow K^{0*}\mu\mu$

• Low luminosity

– add an other type of trigger:

single μ -trigger with additional LVL1 signature or a jet in calorimeter

At LVL2 2 possible approaches:

- Full reconstruction inside inner detector (time costly)
- Use LVL1 Regions of Interest (RoI) to seed LVL2 reconstruction:
 - Jet RoI: for hadronic final states (e.g. $B_s \rightarrow D_s(\phi \pi)\pi$)
 - **EM RoI**: for e/γ final states (e.g. $J/\psi \rightarrow ee$, $K^*\gamma$, $\phi\gamma$)
 - Muon RoI: to recover di-muon final-states in which second muon was missed at LVL1
- New comparison of the 2 approaches using Jet RoI for $B_s \rightarrow D_s(\phi \pi)\pi$

Example: ATLAS LVL1 Muon Trigger

- LVL1 muon trigger requires hits in different layers within coincidence window (3/4 hits for low p_T muon).
- Efficiency ~85% (inefficiency mostly due to geometrical reasons (feet and supports))

Cross sections in ATLAS for Muon Channels

Process	Cross-section at $\sqrt{s} = 14 \text{ TeV}$	Cross-section at $\sqrt{s} = 900 \text{ GeV}$
Total LHC bb cross section	500 μb	25 µb
Total LHC inelastic σ	70 mb	40 mb
$bb \rightarrow \mu 6(5) X$	4000 nb	60 nb
$bb \rightarrow \mu 6(5) \ \mu 3 \ X^*$	200 nb	2 nb
$bb \rightarrow J/\psi ~(\mu 6(5) ~\mu 3) ~X^*$	7 nb	0.1 nb
$pp \rightarrow J/\psi ~(\mu 6(5) ~\mu 3) ~X^*$	28 nb	1 nb
$pp \rightarrow \Upsilon$ ($\mu 6(5) \mu 3$)*	9 nb	1.7 nb

*) Dimuon p_T cuts for 14 TeV are (6, 3) GeV, and for 900 GeV (5, 3) GeV For both muons $|\eta|$ <2.5

• $\sqrt{s} = 0.9 \text{ TeV}, L = 10^{29} \text{ cm}^{-2} \text{s}^{-1},$

 $\sigma_{inel} = 40 \text{ mb} \leftrightarrow 4 \text{ kHz interaction rate}$

- Commissioning run for detector and trigger,
 but also for offline reconstruction and analysis chains
- Data taking with loose level-1 (LVL1) muon triggers or minimum bias triggers
- The High Level Trigger (HLT) in pass-through mode for testing
- HLT code will run to test the algorithms
- Physics potential limited, but valuable source of commissioning

Commissioning Run 2007, $\sqrt{s} = 900 \text{ GeV}, L = 10^{29} \text{ cm}^{-2} \text{s}^{-1}$

Decay	Rate	N(ev) for 1 d*	N(ev) for 30 d*	N(ev) for 60 d*
$bb \rightarrow m5 X$	60 * 10 ⁻⁴ Hz	150	4700	9000
$bb \rightarrow m5 m3 X$	2 * 10 ⁻⁴ Hz	5.2	150	300
$bb \rightarrow J/y$ (m5 m3) X	0.1 * 10 ⁻⁴ Hz	0.3	8	16
$pp \rightarrow J/y~$ ($m5~m3$) X	1 * 10 ⁻⁴ Hz	3	80	160
$pp \rightarrow \Upsilon (m5 m3)$	1.7 * 10 ⁻⁴ Hz	4.4	130	260

*) 1 full day is 8.64 * 10⁴ s, 30% data taking efficiency assumed

Event Statistics for B and Quarkonium (Muon Channels)

 $\sqrt{s} = 900 \text{ GeV}, L = 10^{29} \text{ cm}^{-2} \text{s}^{-1}, \text{ duration} \sim 30 \text{ days}$

B-Physics at ATLAS

- Heavy flavours b and c will be a source of ~ 6000 single- μ and ~500 di- μ in 30 days of beam.
- Muons from decays in flight dominate single muon events at low p_T
- LVL1 muon information will be used to test build of RoI and HLT.
- 100 J/ $\psi(\mu 5\mu 3)$ and 1700 $\Upsilon(\mu 5\mu 3)$ will be produced and can serve for first tests of mass reconstruction.
- Any HF physics to be measured?
- Low statistics will not allow to separate direct and indirect J/ψ sources. However first physics measurement may be a ratio of J/ψ and Υ – events – where muon efficiency corrections (online and offline) cancel.

Goals for first B-physics measurements:

Serve as a test of understanding detector and trigger:

calibrations, alignment, commissioning, material, field, reconstruction.

Physics:

cross section measurements at new energy - QCD tests and optimization of B-trigger strategies.

Control B channels:

to verify if we measure correctly well known B-physics quantities, later with increasing integrated luminosity – improve precisions of these.

Control B-measurements:

to prepare further high sensitive and discovery B-measurements: tagging calibrations, production asymmetries, background channels specific for rare decays – some of them new channels themselves.

ATLAS muon rates for 14 TeV and 10³³cm⁻²s⁻¹

- Figure shows all low p_T sources of muons at 14 TeV.
- Muons from hadrons decays in flight (denoted as "h" in fig.) dominate in single muon up to p_T < 8 GeV
- At 900 GeV their contribution may more important - bb fraction of total inelastic cross section ~10 times smaller than at 14TeV.
- In di-muon trigger beauty muons dominates in all acepted events over full p_T region

B-Cross Section Measurements at LHC

- 1. All LHC experiments plan to measure B-cross section in proton-proton collisions.
- 2. Measurements will cover different phase space will be complementary.
- 3. Partial phase space overlaps: LHCb, ATLAS, CMS, Alice - opportunity for cross checks
- 4. Methods of measurement for low and medium pT events in ATLAS
 - $\bullet \qquad bb \to \mu 6 \; X \; ; \qquad$
 - $bb \rightarrow J/\psi X;$
 - Exclusive channels $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{0*}$
 - b-b correlations: $B^+ \rightarrow J/\psi K^+ + \mu$ (fig. left down)

statistics in dominant inclusive, exclusive channels

	10 pb ⁻¹	100 pb ⁻¹
рр $\rightarrow \mu 6 X$	60 . 10 ⁶	600.10 ⁶
bb $\rightarrow \mu 6 X$	40.10 ⁶	400 . 10 ⁶
сс → µ6 Х	20.106	200. 10 ⁶
bb → μ6 μ3 X	2.10 ⁶	20. 10 ⁶
pp → J/ ψ(μ6μ3)	2.8 10 ⁵	2.8 10 ⁶
Υ (μ6μ3)	0.9 .10 ⁵	0.9 .10 ⁶
Β ⁺→ J /ψ K ⁺	1700	17 000
$B^0 \rightarrow J/\psi K^{0*}$	870	8700

measurements in control channels:

Sensitive tests of understanding of detector properties with strong impact on selected **B-physics measurements: masses, lifetimes**

		Statitics 100 pb-1	Statistical error on Lifetime	World today (stat + syst)
B^+	Β⁺→J/ ψ K⁺	17000	1.5 %	0.4 %
B^0	$B^0 \rightarrow J/\psi K^{0*}$	8700	2.2 %	0.5 %
B _s	$B_s \rightarrow J/\psi \phi$	900	6 %	2 %
Λ_{b}	$\Lambda_{b} \rightarrow \mathbf{J}/\psi \Lambda$	260	8 %	5%

sensitive to SUSY with 100 pb⁻¹ and later

Integral LHC Luminosity	Signal ev. after cuts	BG ev. after cuts	ATLAS upper limit at 90% CL	CDF&D0 upper limit at 90% CL
100 pb ⁻¹	~ 0	~ 0.2	6.4×10 ⁻⁸	
10 fb ⁻¹	~ 7	~ 20	1.2×10 ⁻⁸	8×10 ⁻⁸
30 fb⁻¹	~ 21	~ 60	6.6×10 ⁻⁹	

At 900 GeV

- heavy flavours b and c will be a source of ~6000 single- μ and ~500 di- μ in 30 days. These events can be selected by LVL1 muon trigger and serve for first tests of trigger and offline muon reconstruction.
- 100 J/ $\psi(\mu 5\mu 3)$ and 170 Y ($\mu 5\mu 3$) will be produced can serve for first tests of mass reconstruction

At 14 TeV for 100pb⁻¹ up to 1fb⁻¹

- Measurements of B-masses and lifetimes will serve as a sensitive test of understanding detector: alignment, material, field, reconstruction.
- Cross section measurements at new energy QCD tests and also optimization of B-trigger strategies.
- Control B-measurements to prepare further discovery B-measurements some control measurements new physics measurements themselves.
- With 100pb-1 ATLAS can achieve sensitivity 6.4×10^{-8} in discovery channel $Br(B_s^0 \rightarrow \mu^+\mu^-)$ which is at the level of today's Tevatron summary.

Inclusive Cross Section Measurement

$\sigma(pp)$ at design lumi at 14 TeV

inelastic cross section at 70 mb

inclusive b-production at 0.5 mb

ratio $\sigma_b / \sigma_{inel} = 7.1 \times 10^{-3}$ rate of <u>6 MHz</u> expected

 $\sigma(pp)$ at commisoning run (900 GeV)

inelastic cross section at 40 mb

inclusive b-production at 0.025 mb ratio $\sigma_{\rm b} / \sigma_{\rm inel} = 6.2 \times 10^{-4}$

rate of 0.3 MHz expected

At 900 GeV running

- Well measured cross sections by older experiments (TEVATRON, SppS) below and above 900 GeV
- Monte Carlo descriptions well tuned
- Good opportunity for trigger commissioning and tests
- B-tagging only using CALO and MU-system $(\mathbf{p_T}^{rel})$
- Use single-µ-trigger
- To minimize systematics: relative measurement to inclusive μ -production
- Small data sample expected (if any..): no qualified measurement,
- Only a first cross check

At 14 TeV running

- Unknown inclusive b-production cross section: precise measurement needed
- Knowledge of b-production cross section important for trigger commissioning and trigger rate prediction
- First measurement will be inclusive an should combine all available detector information:
 - Muon signature and Jet in calorimeter should be combined in the so called p_T^{rel} methode
 - Inner detector tracking system: measurement based on track/vertex information
- Use single- μ trigger, di- μ trigger and μ /e-trigger

- Maximal $p_T^{rel} \sim \Delta m$ of initial and final states
- Large B-meson mass $\rightarrow p_T^{rel}$ usable for b-flavour tagging
- Main background: leptons from D-mesons $(m_B > 5 \text{ GeV}, m_D < 2 \text{ GeV})$
- Only muon- and calorimeter data neccesary (no innder detector information needed)
 - ideal for fast triggerin on LVL2
- Connection muon \leftrightarrow associated Jet:
 - require exactly one Jet within a cone of $\Delta^2 \phi + \Delta^2 \dot{\eta} < 0.64$ arround the muon

Pythia MC (b and light flavour BG)

- Maxima of distribution clearly separated
- Suitable for soft seletcion cuts
- Good oportunity for a simple LVL2 trigger b-flavour trigger

Diploma Thesis from Sören Jetter and Michael Volkmann (HU Berlin)

Impact Parameter δ

- Shortest transversal distance from track to primary vertex
- In relativistic limit (>10 GeV) ~ life time τ
- Long B-meson life time $\rightarrow \delta$ suitable for selection criteria
- Dominant background: leptons from D-mesonen

•
$$\tau_{\rm D} = 1.0 \text{ ps} \Rightarrow <\delta_{\rm D} > \approx 140 \mu \text{m}$$

• $\tau_B = 1.4 \text{ ps} \Rightarrow <\delta_B > \approx 200 \mu m$

Signed Impact Parameter

- Positive sing correspond to B-physics events
- Negative sing due to
 - detector resolution
 - wrong association of jet secundary particle
 - wrong reconstructed jet
- Enrichment of b-flavoured events at positive impact parmeters

- Gaussian distribution reflects the detector resulution
- negative impact parameter: signal and background are looking identical
- Exponential decay at large impact parameters:
 - signal enrichment

Diploma Thesis from Sören Jetter and Michael Volkmann

Correlation of Impact parameter and p_T^{rel}

Diploma Thesis from Sören Jetter and Michael Volkmann

• relativ transversal momentum and impact parameter of muons are only weakly correlated

\rightarrow both can be used for b-flavour tagging

Martin zur Nedden, HU Berlin

B-Physics at ATLAS

- ATLAS has a well defined B-Physics strategy
 - in analysis
 - in b-tagging and triggering
- 900 GeV run very importand for trigger, detector and analysis tools commissioning
- Physics potential of 900 GeV run limited
- Many B-physics studies can be done with the first data at 14 GeV in the low luminosity phase
- First studies for b-tagging for inclusive cross section measurement