Heavy Flavour in CMS

A. Starodumov

ETH Zurich on behalf of the CMS Collaboration

> HERA and the LHC 3rd workshop March 12-16, 2007

æ

<ロト <回 > < 回 > < 回 > .

Outline

- Introduction
 - CMS detector
 - Subsystems
 - Start-up scenario
- Overview
 - HF program in CMS
 - Simulation
 - b tagging
- HF Physics in CMS
 - B Physics
 - Heavy Flavour in Heavy Ions
- Conclusion

크

▲御▶ ▲理▶ ▲理▶

The CMS Experiment

The Compact Muon Solenoid

- Length 22 m , diameter 15 m, 12.5 kton
- Magnetic field 4Tesla

Muon system

- DT, CSC, RPC
- $p_{\perp} > 3 \text{GeV}$

All-silicon tracker

- $|\eta| < 2.5$
- pixel: 3 layers
- strip tracker: 10 layers

Pixel detector startup plans

- 2007: minimal commissioning system
- 2008: three layers for first physics run

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

크

Construction and Installation

Interior of one half of the Tracker Inner Barrel

Feb 28 central wheel YB0 touching-down in the UXC55 cavern

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The CMS Muon System

Three types of gaseous particle detectors for muon identification

- Drift Tubes (DT) in the central barrel region: position and momentum measurements
- Cathode Strip Chambers (CSC) in the endcap region: position and momentum measurements
- Resistive Parallel Plate Chambers (RPC) in both the barrel and endcaps: fast information for the Level-1 trigger

The CMS Tracker

- All-silicon tracker
 - Few measurement layers
 - Very precise measurements
- Pixel Detector
 - hit resolution: 10 –15 μm
- Silicon Strip Detector
 - 10 -14 points

The CMS Trigger Strategy

- Level 1
 - muons and calorimeters Latency: $3.2 \mu s$ 40 MHz \rightarrow 100 kHz
- High-level trigger (HLT)
 - fast (local) reconstruction 100 kHz → 100 Hz

B-physics triggers

- Level 1: single- or di-muon trigger single-muon: $p_T > 14 GeV/c$ di-muons: $p_T > 3 GeV/c$
- HLT: exclusive and inclusive b, c triggers at \sim 5Hz

exclusive B decays: partial (local) reconstruction

LHC start-up and CMS objectives

• 2007 - 900GeV Collision:

- Engineering Run \rightarrow few days (?)
- Nominal luminosity $(10^{28} \rightarrow 10^{32}) \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ [R.Bailey]
- Initial detector commissioned, learn how to operate it

2008 - 14TeV Collision:

- Pilot Run \rightarrow 1 fb⁻¹ [J. Virdee]
- Nominal luminosity $(10^{28} \rightarrow 10^{32})$ cm⁻²s⁻¹, bx=75 25 ns [R.Bailey]
- Low luminosity detector commissioned, calibration and alignment

2009 - 14TeV Collision:

- Physics Run \rightarrow 5 fb⁻¹ [J. Virdee]
- Nominal luminosity (4 \times 10 32 \rightarrow 10 $^{33})\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$, bx=25 ns [R.Bailey]
- Detector calibrated and aligned, physics data taking

Bottom production

$$\sigma_{b\overline{b}} \sim 500 \, \mu b$$

$$N_{b\overline{b}} = 5 \times 10^{11} / \text{fb}^{-1}$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

HF program in CMS

B Physics

- $b\overline{b}$ production x-section @ 14TeV (low p_T)
- bb production mechanisms @ 14TeV
- inclusive and exclusive B decays (CP, CKM, FCNC, NP ...)
- HF spectroscopy

b jets

- $b\overline{b}$ production x-section @ 14TeV (50 GeV/ $c < p_T < 1500$ GeV/c)
- crucial ingredient in many physics studies and searches
 - $> t\bar{t} \rightarrow W^+W^-b\bar{b}$
 - > Higgs searches: $H \rightarrow b\overline{b}, t\overline{t}H, b\overline{b}H(A)$ etc
 - > b jets in decays of SUSY particles

Heavy ions

- production x-section of J/Ψ and Υ families (with $\mu^+\mu^-$ final state) in PbPb @ 5.5TeV
- direct probe of QGP formation
- sensitive to "Colour Glass Condensate"

æ

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Simulation I

MC generator - PYTHIA 6.227, CTEQ5L

- MSEL 5 for fast study and debugging Gluon-gluon Fusion (GF): $gg(q\overline{q}) \rightarrow b\overline{b}$
- MSEL 1 with $b\overline{b}$ selection for real study (~1% initial efficiency) GF + Flavour Excitation (FE) $gb \rightarrow gb$ + Gluon Splitting (GS) $g \rightarrow b\overline{b}$

・ロト ・日下・ ・ 日下

Simulation II

- MC generator plans
 - PYTHIA 6.4 with Color Octet Mechanism, CTEQ6.1
 - EvtGen plugin

Detector simulation

- GEANT4 based CMSSW
- Detailed detector geometry description
- Realistic material budget
- Beam test based detector response

16 92%

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Material Budget - Module

28.58%

power cable kapton cable

크

Andrey Starodumov

b-jets tagging

Track counting (TC)

- measurement of charged tracks Impact Parameter (IP), $< n_b^{ch} > \sim 5$
- n (2 or 3) tracks with IP > IP_{cut}
- decreasing order, IP of n-th track is discriminant
- extra cut: dist(track-jet axis)<0.65mm
- Track probability (TP)
 - measurement of charged tracks (IP)), $< n_b^{ch} > \sim 5$
 - include all charged tracks in a jet
 - probability to originate from primary vertex Ptr
 - logP_{iet} is a discriminant
- Combined secondary vertex (CSV)
 - fully reconstructed secondary decay vertex: 100 μ m $< L_t <$ 2.5*cm*, L_t/σ_t > 3
 - invariant mass of charged tracks: $1.5 \text{ GeV}/c^2 < M < 6.5 \text{ GeV}/c^2$
 - several other cuts (IP, energy ratio etc)
 - discriminating variable based on Likelihood ratio technique
- Soft lepton (SL) b tag
 - electrons or muons inside hadronic jets (20%)
 - several other variables (IP, rel. p_T etc)

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

b-tagging performance

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

13/31

크

B Physics Menu

Past

- $B_d \rightarrow \pi^{\pm} \pi^{\mp}$ and $B_s \rightarrow K^{\pm} K^{\mp}$: CP violation, angles α and γ
- $B_d \rightarrow J/\Psi K_s \rightarrow \mu^+ \mu^- \pi^+ \pi^-$: CP violation, angle β , NP(?)
- $B_s \bar{B_s}$ mixing in $B_s \rightarrow D_s^- \pi^+ \rightarrow K^- K^+ \pi^- \pi^+$

Present

- Inclusive b production: differential x-sections
- $B_s \rightarrow J/\Psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$: measurement of $\Delta \Gamma_s$
- $B^0_{\ }
 ightarrow \mu^+ \mu^-$: FCNC rare decay, possible hint for NP
- $B_c^{\pm} \rightarrow J/\Psi \pi^{\pm} \rightarrow \mu^+ \mu^- \pi^{\pm}$: mass and lifetime of B_c

Future (planned topics)

- $B^{\pm} \rightarrow J/\Psi K^{\pm} \rightarrow \mu^+ \mu^- K^{\pm}$: measurement of $\sigma_{b\overline{b}}$ (14 TeV)
- $B
 ightarrow \mu + X$: lifetime measurements, early 'engineering physics'
- J/Ψ vs μ : $b\overline{b}$ correlation studies, $b\overline{b}$ production mechanisms

-
$$B^0_s \rightarrow \phi \mu^+ \mu^-$$
, $B \rightarrow K^* \mu^+ \mu^-$: search for NP

- B_c³, η_b, X(3872) ...: spectroscopy
- $\tau \rightarrow 3\mu$: lepton flavour violation

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

$B_d \rightarrow J/\Psi K_s$ and low p_T reconstruction

•
$$A_{CP} = A_{CP}^{\textit{mix}-\textit{ind}} \oplus A_{CP}^{\textit{dir}}, A_{CP}^{\textit{dir}} \sim 0_{SM}$$

- 2000: CMS planned $\delta(sin2\beta)_{CMS} = 0.015_{stat}$ in 30 fb⁻¹ ($p_T^{\pi} > 0.7$ GeV/c)
- 2006: HFAG quoted $\delta(sin2\beta)_{exp} = 0.040(0.023)_{stat}$
- 2009: CMS can probe NP measuring A^{dir}_{CP} at level of 1-2% (?)
- New method for low p_T > 0.2 GeV/c hadron reconstruction
 - only silicon pixel hits used (3 layers), simple helix
 - good efficiency, high resolution and negligible fake rate (proved by full simulation)

(日) (四) (三) (三)

Inclusive b production [V.Andreev, 2 HERA-LHC]

- Measure differential b-jet x-section: $d\sigma/dp_T$ and $d\sigma/d\eta$
- Key issue is data purity
 - select b-jets with muon inside
 - fit data with MC shapes of muon transverse momentum with respect to b-jet axis
- Trigger
 - L1: single muon with $p_T > 19$ GeV
 - HLT: muon + b-jet of $E_T > 50$ GeV
- Off-line Analysis
 - b-jet tagging with CSV b tag algorithm
 - take most energeric b-jet in event as B-particle candidate
 - apply muon tag (muon in b-jet)
- 16M b-events collected @ 10 fb⁻¹

μ

b-Jet

Image: A matrix and a matrix

Inclusive b production

muon p_T spectrum fit: b (dash), c (dot-dash), uds (dot)

x-section uncertainties: stat (\blacktriangle), sys (\blacksquare), total (\bullet)

 $B_s
ightarrow J/\Psi \phi$

Study properties of B_s system

- width and mass difference of two weak eigenstates: ΔΓ_s, Δm_s
- height of the Unitarity Triangle (η) and possible hint for NP: $\phi_{CKM} = 2\lambda^2 \eta \sim 0.03_{SM}$

Trigger

- L1: dimuon with $p_T > 3$ GeV
- HLT 1: partial (~6hits) track reconstruction
- HLT 2: J/Ψ and vertices reconstruction
- HLT 3: kinematical (*p*_T, mass) and topological (*L_{xy}*, Δα etc) cuts
- HLT 4: φ and B_s reconstruction and corresponding cuts

Off-line Analysis

- almost the same as HTL but with complete information
- angular analysis to measure ΔΓ_s
- Results
 - ~10k events collected @ 1.3 fb⁻¹
 - Rel. errors on Γ_s, ΔΓ_s, ΔΓ_s, ΔΓ_s/Γ_s are 3.4%, 19%, 20%

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $B_s \rightarrow J/\Psi \phi$

 $\Delta m_{\phi} \sim 3\,{
m MeV}/c^2$

 $\Delta m_{B_s} \sim 14 \, {
m MeV}/c^2$

 $\sigma_{sv} \sim 77 \,\mu \mathrm{m}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$B^0 \rightarrow \mu^+ \mu^-$: Motivation

- Highly supressed in SM: $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (3.42 \pm 0.54) \times 10^{-9}$
- Sensitive to BSM: $\mathcal{B} \propto \tan^6 \beta$ (MSSM) or $\tan^4 \beta$ (2HDM)
- 'Measurements' of $\tan \beta$
- Current limit: $\mathcal{B} \leq 0.8 imes 10^{-7}$ at 90% C.L. (CDF public note 8176)

$B^0 \rightarrow \mu^+ \mu^-$: Fully simulated channels

Sample	Generator cuts/channels	N _{Gen}	$\sigma_{\rm vis}[{\rm fb}]$	$N_{\mu ID}$ in 10 fb ⁻¹
$B_s^0 \rightarrow \mu^+ \mu^-$	$p_{\perp}{}^{\mu}>$ 3 GeV, $ \eta^{\mu} <$ 2.4	5000		390
$b\overline{b} \rightarrow \mu^+\mu^- + X$	$p_{\perp}^{\mu\mu} > 5 \text{GeV}, p_{\perp}^{\mu} > 3 \text{GeV}, \eta^{\mu} < 2.4$ $5 < m_{\mu\mu} < 6 \text{GeV}, 0.3 < \Delta R(\mu\mu) < 1.8$	14472	1.74E + 07	1.74 × 10 ⁸
B _s decays	$B_{\rm s} \to K^- K^+$	1000	2.74E + 05	274
	$B_s \rightarrow \pi^- \pi^+$	1000	9.45E + 03	3
	$B_s \rightarrow K^- \pi^+$	1000	3.08E + 04	16
	$B_{\rm s} \to K^- \mu^+ u$	1000	2.80E + 05	2.80×10^{4}
	$B_s \rightarrow \mu^+ \mu^- \gamma$	1000	1.29E + 01	130
	$B_s \rightarrow \mu^+ \mu^- \pi_0$	1000	3.77E + 01	377
B _d decays	$B_d \to \pi^- \pi^+$	1000	8.34E + 04	21
	$B_d \rightarrow \pi^- K^+$	1000	3.74E + 05	187
	$B_d \to \pi^- \mu^+ \nu$	1000	1.25E + 06	6.25×10^{4}
B _u decay	$B_u \to \mu^+ \mu^- \mu^+ \nu$	1000	2.24E + 03	2.24×10^{4}
B _c decays	$B_c \rightarrow \mu^+ \mu^- \mu^+ \nu$	1000	2.01E + 01	201
	$B_c ightarrow J/\Psi \mu^+ u$	1000	1.89E + 03	1.89×10^{4}
Λ _b decays	$\Lambda_b \to p \pi^-$	1000	4.22E + 03	1
	$\Lambda_b \rightarrow \rho K^-$	1000	8.45E + 03	1
QCD hadrons	5 < M(hh) < 6 GeV	4000	2.24E + 11	1.12×10^{8}

B decays before selection cuts

 $b\overline{b} \rightarrow \mu^+\mu^- + X$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

$B^0 \rightarrow \mu^+ \mu^-$: Result

- Signal selection efficiency $\varepsilon_S = 0.019 \pm 0.002_{stat}$ In 10 fb⁻¹: $n_S = 6.1 \pm 0.6$ signal events
- Background rejection $\varepsilon = 2.6 \times 10^{-7}$ In 10 fb⁻¹: $n_B = 13.8^{+22.0}_{-13.8}$ background events
- Extract upper limit with Bayesian procedure (CDF)

$$egin{aligned} \mathcal{B}(B^0_s o \mu^+ \mu^-) &\leq & rac{N(n_{obs}, n_B, n_S)}{arepsilon_{ ext{gen}} arepsilon_{ ext{total}} N_{B_s}} \ &\leq & 1.4 imes 10^{-8} (90\% C.L. \end{aligned}$$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

 $B_c^{\pm}
ightarrow J/\Psi \pi^{\pm}$

Measure mass and life time of B_c in decay

- 120 $J/\Psi \pi^{\pm}$ selected in 1 fb⁻¹
- mass resolution 22.0(stat) \oplus 14.9(sys) MeV/c² (M(B_c) \sim 6.4 GeV/c²)
- lifetime error $44(stat) \oplus 10(sys)$ fs ($\tau(B_c) \sim 460$ fs)

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

크

$\mathsf{PbPb} o Q\bar{Q} + \overline{X} o \mu^+\mu^- + X$

- Measure production x-section of J/Ψ and Υ families
 - colour screening effect for different QQ states
 - gluon saturation effect on low-x nuclear PDFs
- After 1 month (0.5 nb⁻¹)
 - \sim 180000 J/ ψ and \sim 25000 Υ
 - All Υ states measured down to $p_T = 0$ GeV/c
 - J/ψ states measured down to $p_T \approx 4$ GeV/c

< A

Credits

- Andrea Bocci, CMS TS-2006/004 Jet flavour tagging with the CMS experiment
- Stefan Koenig, pixel material budget plots
- Ferenc Sikler, CMS CR 2007/007 Low p_T Hadronic Physics with CMS
- Valery Andreev et al, CMS Note 2006/120 Measurement of open beauty production at LHC with CMS
- Thomas Speer et al, CMS Note 2006/121 Study of the decay $B_S^0 \rightarrow J/\Psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$
- Urs Langenegger et al, CMS CR-2006/071 Study of $B^0 \to \mu^+ \mu^-$ in CMS
- Guoming Chen et al, CMS Note 2006/118 Feasibility to study the B_c meson at CMS
- Olga Kodolova et al, CMS Note 2006/089 Quarkonia measurements in heavy-ion collisions in CMS

・ロト ・四ト ・ヨト ・ヨト

Conclusion

- HF plays an important role in Physics programm of CMS
- CMS detector allows successful HF programm thanks to
 - Muon trigger system: dimuon trigger for very low p_T(µ) > 3 GeV/c
 - Tracker system: very good momentum (~1%) and hence mass resolution
 - Vertex system: high impact parameter (20 100 µm) and vertex resolutions

CMS is ready to

- Study properties of HF states (B_s, B_c etc)
- Search for New Physics in rare B decays
- HF (b jets) is a powerful ingredient for Higgs, SUSY searches
- HF (quarkonia) provide a way to investigate properties of high-density QCD matter

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

ヘロト 人間 とくほとく ほとう

Breakdown of a normal year (R.Bailey)

Andrey Starodumov H

Heavy Flavour in CMS

PYHTIA 6.2 Tunes

A = 192 MeV!	Parameter	Tune DW	Tune DWT	ATLAS	Tune QW	Tune QWT	Tune QK	Tune QK
K-factor Sjöstrand)	PDF	CTEQ5L	CTEQ5L	CTEQ5L	CTEQ6.1	CTEQ6.1	CTEQ6.1	CTEQ6.
	MSTP(2)	1	1	1	1	1	1	1
	MSTP(33)	0	0	0	0	1	1	1
	PARP(31)	1.0	1.0	1.0	1.0	1.0	1.8	1.8
	MSTP(81)	1	1	1	1	1	1	1
	MSTP(82)	4	4	4	4	4	4	4
UE Parameters	PARP(82)	1.9 GeV	1.9409 GeV	1.8 GeV	1.1 GeV	1.1237 GeV	1.9 GeV	1.9409 G
	PARP(83)	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	PARP(84)	0.4	0.4	0.5	0.4	0.4	0.4	0.4
	PARP(85)	1.0	1.0	0.33	1.0	1.0	1.0	1.0
	PARP(86)	1.0	1.0	0.66	1.0	1.0	1.0	1.0
	PARP(89)	1.8 TeV	1.96 TeV	1.0 TeV	1.8 TeV	1.96 TeV	1.8 TeV	1.96 Te
	PARP(90)	0.25	0.16	0.16	0.25	0.16	0.25	0.16
	PARP(62)	1.25	1.25	1.0	1.25	1.25	1.25	1.25
	PARP(64)	0.2	0.2	1.0	0.2	0.2	0.2	0.2
	PARP(67)	2.5	2.5	1.0	2.5	2.5	2.5	2.5
	MSTP(91)	1	1	1	1	1	1	1
	PARP(91)	2.1	2.1	1.0	2.1	2.1	2.1	2.1
	PARP(93)	15.0	15.0	5.0	15.0	15.0	15.0	15.0

February 27, 2007

Rick Field – Florida/CMS

Page 3

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

æ

Reco b-jet vs Gen B-particle

æ

▲□ → ▲ □ → ▲ □ →

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・