Determination of Unintegrated Gluon Densities with $F_2^{c\bar{c}}$ at HERA

A. Cholewa, H. Jung, A. Kusina H1 Collaboration, DESY

A. Cholewa, H1 Coll.

3rd HERA and the LHC Workshop

Overview

-

- Reminder
- Fits of uPDFs
- Parameter scans
- Resulting uPDFs
- Charm in DIS and γp
- Summary and Outlook

- Why unintegrated PDFs?
- General method and distinctive features
- Sensitivity to α_s and gluons
- Different quarks, different gluons?
 - Fits to final state cross sections

Charm Production at HERA

• predominantly via Photon Gluon Fusion

A. Cholewa, H1 Coll.

3rd HERA and the LHC Workshop

Charm Production at HERA

- predominantly via Photon Gluon Fusion
 - × collinear $|ME|^2$ gives vanishing p_t

H. Jung, J. Collins: hep-ph/0508280

A. Cholewa, H1 Coll.

Charm Production at HERA

- predominantly via Photon Gluon Fusion
 - × collinear $|ME|^2$ gives vanishing p_t
 - × k_t factorisation using CCFM
 - → off shell gluons in $|ME|^2$

Charm Production at HERA

- predominantly via Photon Gluon Fusion
 - × collinear $|ME|^2$ gives vanishing p_t
 - × k_t factorisation using CCFM
 - → off shell gluons in $|ME|^2$
 - \rightarrow non-vanishing p_t

H. Jung, J. Collins: hep-ph/0508280

A. Cholewa, H1 Coll.

Fits of uPDFs - General method and distinctive features

Fits to inclusive measurements

- Using program H1FITTER by E. Perez, T. Kluge, H. Jung et al.
- access to all inclusive H1 data
 - × F_2 , jets, F_2^{cc}
- generalised fitting method
 - ***** applicable for CCFM and DGLAP
- allows choice of treatment of correlated errors
 - * H1-like , theory shifted by systematics
 - x CTEQ-like, data shifted by systematics
 - *** full covariance matrix**
 - → available options in program, not used here!
- χ^2 minimisation using MIGRAT (derivatives)

Fits of uPDFs - **General method and distinctive features**

Fitting uPDFs to inclusive measurements

- cross sections calculated by MC Generator CASCADE
- evolving gluons only \rightarrow cut on x
- initial gluon distribution

$$A_0(x) = Norm \left(\frac{1}{x}\right)^B (1-x)^C$$

- fixed evolution from grid file
- define

$$\chi^{2} = \sum \frac{\left(D - T\right)^{2}}{\Delta_{stat}^{2} + \Delta_{uncorr}^{2}}$$

- x correlated errors not used yet
- uncertainty bands on uPDFs defined by $\Delta \chi^2 = 1$ and varying parameters in orthogonal basis

$$p$$
 A_0 ε

e

Hamburg, March 2007

q

Parameter Scans - sensitivity to α_s and gluons

Consistency check

- performed fit to F₂
- $\alpha_s(M_Z) = 0.118$ used in fit to F₂
- study sensitivity to $\alpha_{_{s}}(\mu)$
- in one-loop $\alpha_s(\mu) \sim \frac{1}{1 \log \frac{\mu}{\Lambda_{QCD}}}$
- studied variation of $\Lambda_{\rm QCD}$
 - → $\Lambda_{QCD} \approx 0.13$ gives $\alpha_s(M_Z) = 0.118$
 - → lower than in former gluon densities

3rd HERA and the LHC Workshop

Parameter Scans - sensitivity to α_s and gluons

A. Cholewa, H1 Coll.

3rd HERA and the LHC Workshop

Parameter Scans - sensitivity to α_s and gluons

The large-x term

• Two parameter fit to F₂

$$A_0(x) = Norm \left(\frac{1}{x}\right)^{0.02} (1-x)^C$$

→ C = 4 seems good choice

The small-x term

Two parameter fit to F₂

$$A_0(x) = Norm \left(\frac{1}{x}\right)^B \left(1-x\right)^4$$

→ B = 0.02 seems good choice

A. Cholewa, H1 Coll.

3rd HERA and the LHC Workshop

Results

χ^2 minimisation with F₂ data

- Fitting data above starting scale $Q_0^2 = 5 GeV^2$ and below $x_{cut} = 0.005$
- Fit yields good description of F₂ resulting in

$$\frac{\chi^2}{ndf} \approx 2$$

A. Cholewa, H1 Coll.

3rd HERA and the LHC Workshop

Results

χ^2 minimisation with F₂ data

- Fitting data above starting scale $Q_0^2 = 5 GeV^2$ and below $x_{cut} = 0.005$
- Fit yields good description of F₂ resulting in

$$\frac{\chi^2}{ndf} \approx 2$$

A. Cholewa, H1 Coll.

3rd HERA and the LHC Workshop

Results - different quarks

χ^2 minimisation with F₂ data

- Fitting data above starting scale $Q_0^2 = 5 GeV^2$ and below $x_{cut} = 0.005$
- Fit yields good description of F₂ resulting in

$$\frac{\chi^2}{ndf} \approx 2$$

χ^2 minimisation with F₂^{cc} data

- Fitting data above starting scale $Q_0^2 = 1 GeV^2$ without x_{cut}
- Description of F₂^{cc} very good, giving

$$\frac{\chi^2}{ndf} \approx 1$$

Results - different quarks

χ^2 minimisation with F₂ data

- Fitting data above starting scale $Q_0^2 = 5 GeV^2$ and below $x_{cut} = 0.005$
- Fit yields good description of F₂ resulting in

χ^2 minimisation with F_2^{cc} data

- Fitting data above starting scale $Q_0^2 = 1 GeV^2$ without x_{cut}
- Description of F_2^{cc} very good, giving

$$\frac{\chi^2}{ndf} \approx 1$$

Results - different quarks

Uncertainty on gluon densities

- gluon densities from fits:
 - variable transformation of fit parameters to orthogonal basis
 - * $A_0(x) = N \cdot x^{-B} (1-x)^C$
 - × χ^2 minimisation in orthogonal basis
 - \star variation of orthogonal parameters so that $\Delta \chi^2 \!=\! 1$
 - → obtain parameters N, B and C
 - → envelope defines uncertainty band

3rd HERA and the LHC Workshop

Results - different quarks, different gluons?

A. Cholewa, H1 Coll.

Results - different quarks, different gluons?

Obtained gluon densities

- Seperate Fits to inclusive data gives nice description, BUT ...
- Resulting gluon densities show large discrepancy!
 - \times F₂^{cc} contributing to F₂
 - → difference in gluon densities hints at possible inconsistent treatment of gluons

Results - different quarks, different gluons?

Obtained gluon densities

- Seperate Fits to inclusive data gives nice description, BUT ...
- Resulting gluon densities show large discrepancy!
 - * F_2^{cc} contributing to F_2
 - → difference in gluon densities hints at possible inconsistent treatment of gluons
 - → charm production adequate testing ground

Fits using HzTOOL

- Similar fitting method applied as above
 - x SIMPLEX instead of MIGRAD (no derivatives)
- HzTOOL as interface between data and theory
- D* + jets in photoproduction hep-ex/0608042
 - * former comparison of CASCADE to data yielded $\chi^2_{paper}/ndf = 1.72$

Fits using HZTOOL

- Similar fitting method applied as a
 - x SIMPLEX instead of MIGRAD (no
- HzTOOL as interface between data
- D* + jets in photoproduction hep-ex/0608042
 - * former comparison of CASCADE t yielded $\chi^2_{paper}/ndf = 1.72$

Fits using HzTOOL

- Similar fitting method applied as above
 - SIMPLEX instead of MIGRAD (no dericatives)
- HzTOOL as interface between data and theory
- D* + jets in photoproduction hep-ex/0608042
 - * former comparison of CASCADE to data yielded $\chi^2_{paper}/ndf = 1.72$
 - * no improvement from fit: $\chi^2_{new}/ndf = 1.87$

3rd HERA and the LHC Workshop

Fits using HzTOOL

Fits using HzTOOL

A. Cholewa, H1 Coll.

3rd HERA and the LHC Workshop

Fits using HzTOOL

A. Cholewa, H1 Coll.

3rd HERA and the LHC Workshop

Fits using HZTOOL

- Similar fitting method applied as above
 - SIMPLEX instead of MIGRAD (no dericatives)
- HzTool as interface between data and theory
- D* + jets in photoproduction hep-ex/0608042
 - * former comparison of CASCADE to data yielded $\chi^2_{before} = 9.09$
 - × no improvement from fit: $\chi^2_{paper}/ndf = 1.72$
- D* + jets in DIS hep-ex/0701023
 - ***** Fit done by Aleksander Kusina

Fits using HzTOOL

- Similar fitting method applied as a
 - x SIMPLEX instead of MIGRAD (no
- HzTool as interface between data
- D* + jets in photoproduction hep-ex/0608042
 - * former comparison of CASCADE t yielded $\chi^2_{paper}/ndf = 1.72$
 - × no improvement from fit: χ^2_{new}/new
- D* + jets in DIS hep-ex/0701023
 - ***** Fit done by Aleksander Kusina

Fits using HzTOOL

- Similar fitting method applied as a
 - x SIMPLEX instead of MIGRAD (no
- HzTool as interface between data
- D* + jets in photoproduction hep-ex/0608042
 - * former comparison of CASCADE t yielded $\chi^2_{paper}/ndf = 1.72$
 - × no improvement from fit: χ^2_{new}/new
- D* + jets in DIS hep-ex/0701023
 - ***** Fit done by Aleksander Kusina
 - x improved data description

Fits using HzTOOL

- Similar fitting method applied as a
 - x SIMPLEX instead of MIGRAD (no
- HzTOOL as interface between data
- D* + jets in photoproduction hep-ex/0608042
 - * former comparison of CASCADE t yielded $\chi^2_{paper}/ndf = 1.72$
 - × no improvement from fit: χ^2_{new}/new
- D* + jets in DIS hep-ex/0701023
 - ***** Fit done by Aleksander Kusina
 - x improved data description
 - x sensitive to gluon density

Fits using HzTOOL

- * improved data description
- x sensitive to gluon density

Fits using HzTOOL

- x improved data description
- x sensitive to gluon density
- x steep rise towards low x also observed

Summary and Outlook

- Fits of uPDFS to inclusive measurements including uncertainty bands
- ***** F2 and F2cc yield different gluon densities
 - → gluon from charm much steeper towards low x
- Fits to final state charm cross section (DIS, γp) with HzTOOL
 - → steep rise at low x also present

Summary and Outlook

- Fits of uPDFS to inclusive measurements including uncertainty bands
- x F2 and F2cc yield different gluon densitie
 - → gluon from charm much steeper towar low x
- Fits to final state charm cross section (DI with HzTOOL
 - → steep rise at low x also present
 - → sensitive to low x via η

Summary and Outlook

- Fits of uPDFS to inclusive measurements including uncertainty bands
- x F2 and F2cc yield different gluon densitie
 - → gluon from charm much steeper towar low x
- Fits to final state charm cross section (DI with HzTOOL
 - → steep rise at low x also present
 - → sensitive to low x via η
 - → statistics still limit sensitivity

3rd HERA and the LHC Workshop

Summary and Outlook

- Fits of uPDFS to inclusive measurements including uncertainty bands
- x F2 and F2cc yield different gluon densitie
 - → gluon from charm much steeper towar low x
- Fits to final state charm cross section (DI with HzTOOL
 - → steep rise at low x also present
 - → sensitive to low x via η
 - → statistics still limit sensitivity
- ***** Latest HERA years proved quite successful

3rd HERA and the LHC Workshop

A. Cholewa, H1 Coll.

3rd HERA and the LHC Workshop

Summary and Outlook

- Fits of uPDFS to inclusive measurements including uncertainty bands
- ***** F2 and F2cc yield different gluon densities
 - → gluon from charm much steeper towards low x
- Fits to final state charm cross section (DIS, γp) with HzTooL
 - → steep rise at low x also present
 - → sensitive to low x via η
 - → statistics still limit sensitivity
- x Latest HERA years proved quite successful
 - → since 2001 factor 30 more D*s!
 - → more precise charm measurements possible, both inclusive and final state cross sections
 - → use data to constrain uPDFs

Cholewa. H1 Coll.

