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Motivation

● Task: Compare the performance of file system/disk array A vs B 
relevantly for HEP experiments (e.g. tender requirements)

● Three possible options:

● Run the real jobs

– hard to setup, hard to only measure the disk performance
● Use a synthetic benchmark

– easy to run, but does it give relevant results?
● Use trace and replay mechanism

– again, does it give relevant results?
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Trace-and-replay mechanism

● Trace - record all operations that affect storage 
performance (read, write, seek... + metadata 
operations – stat, access, mkdir)

● Modify (optional) – change delays between calls, ignore some 
operations, change file locations...

● Replay - replay the recorded operations back

– with the same delays between individual calls

● Theory: as we perform the same disk operations (in 
the same order and time), we should get the same 
behavior as the original application
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Choosing the right benchmark

● Does it really matter?
● Real-life use case: comparison of two similar NASes:

Storage A (ARC1880ix-24)

● Intel Xeon E5620
● 12GB RAM 
● Areca 1880ix-24 (2GB)
● 12x 2TB Seagate ES 
● All drives in RAID6

Storage B (ARC1680ix-12)

● Intel Xeon E5620
● 12GB RAM 
● Areca 1680ix-12 (2GB)
● 12x 2TB WD GP RE4
● All drives in RAID6
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Choosing the right benchmark

● Two benchmarks:

● iozone – 1 thread per 1TB of usable capacity, each 
thread reads and writes sequentially 8GB:

iozone -Mce -t20 -s8g -r512k -i0 -i1 -F [FILES]

(actual benchmark used  for tender evaluation at 
FZU in 2010)

● real-life ATLAS analysis

● 1 job per 1TB of usable capacity 
● strictly sequential, forward seeking 
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Choosing the right benchmark

Storage A with ARC1880 RAID controller aprox. 25% slower in read test
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Choosing the right benchmark

ATLAS
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IOreplay – benchmark using trace-and-replay

● Trace 

● several options possible

– LD_PRELOAD, blktrace, systemtap, strace...
● difference in the overhead, ease of use

● We decided to use strace

● installed on virtually every Linux
● works without root privileges, no modifications needed
● ability to trace already running applications (strace -p)
● considerable overhead at high system calls/sec rate
● unable to record memory-mapped IOs
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IOreplay – benchmark using trace-and-replay

● Example of strace output:
.....
1765 1279445178.319030 open("/etc/group", O_RDONLY) = 21 <0.000088>
11155 1279445178.319168 read(3, ""..., 10) = 10 <0.000081>
1765 1279445178.319261 read(21, ""..., 512) = 512 <0.000081>
1765 1279445178.320078 close(21) = 0 <0.000078>

● One has to keep mapping between file descriptor 
numbers and real files

● across all traced processes

– e.g. 21 == /etc/group at process 1765

● There are surprisingly many system calls that can 
modify it (pipe, dup, socket, clone...)
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IOreplay – benchmark using trace-and-replay

● Problem: application traced on one server but we want 
to benchmark another one

● with different mount points
● with missing files

● One has to prepare the environment

● accessed files should be at least of the same size
● not every file is performance significant ( files in 

/etc...)
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IOreplay – benchmark using trace-and-replay

● IOreplay has measures to ease the preparation:

● “dry” run that only reports missing files
● ability to define files that should be ignored 
● ability to define mapping between original file name 

and file name on the machine being benchmarked
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IOreplay – benchmark using trace-and-replay

● How fast to replay the calls? 

● Multiple modes available in ioreplay

● diff -  keep the delays between calls (active waiting)
– should give the same behavior as the original application
– uses CPU instruction counter for fast time determination

● asap – deliver the calls as fast as possible
– absolute execution times differ
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IOreplay – benchmark using trace-and-replay

● Result: realistic replaying and scaling 

real ATLAS analysis job (ROOT 5.26 data format), run on 8-core machine
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IOreplay – benchmark using trace-and-replay

● Result: realistic replaying and scaling 

● provided that recording (strace) didn't have high 
overhead

● other aspects (usage of memory, network) can also 
have considerable impact

● You should always confirm it yourself
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IOreplay – benchmark using trace-and-replay

● Trace the job: 

strace -q -a1 -s0 -f -tttT -oTRACE_FILE -e 
trace=file,desc,process,socket APP <PARAMS>

● Define files that should be ignored (e.g. don't access shared software 
area): 

cat ignore.txt
/software/atlas..../...
/software/atlas..../...
...

● Define files that should be mapped:

cat mapping.txt
/scratch/user...AANT1._00001.root atlas/datafile.01
/scratch/user...AANT1._00002.root atlas/datafile.02
/scratch/user...AANT1._00003.root atlas/datafile.03

Step by step usage
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IOreplay – benchmark using trace-and-replay

● Create zero-filled missing files (20-lines script):

 ./create-file-atlas.sh

● Run ioreplay:

./ioreplay -r -f TRACE_FILE -i ignore.data.only -m 
mapfile.data.only -t asap

Step by step usage
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Evaluation of distributed filesystems - methodology

● Lustre v. 1.8.4, 100MB stripes, 3 servers per file

● HDFS (Hadoop) v0.21, 128MB blocks, using FUSE to 
provide file system layer, 2 replicas of all files

● GPFS v3.4.0.2, 256K blocks, 2metadata replicas, 1 
data replica

● using IOreplay with 4 different real-life jobs

● running 1,2,4,8,10,20 concurrent instances

● measuring average job-time and network usage
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Evaluation of distributed filesystems - methodology

ATLAS analysis, CMS reconstruction and analysis jobs

● AtlasOld – unordered ROOT files, 9x 250MB out of 1GB files 
read. The seeks were usually within few megabytes.

● AtlasNew – ordered ROOT files, 9x 250MB out of 1GB read. 
Strictly sequential with client caching.

● CMSAn - 1984MB read from 4GB file. Strictly sequential, caching, 
small gaps between individual calls. 

● CMSReco - 424MB read from a 4GB file (just beginning of the 
file). Mostly sequential, backward seeking by ~30MB every 
30MBs. 
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Testbed

SL5.4, kernel 2.6.18-194.17.1.el5
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Evaluation of distributed filesystems
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Evaluation of distributed filesystems
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Evaluation of distributed filesystems
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Conclusion

● No single 'silver bullet'

● it really depends on application
● Hadoop seems to be the most network-demanding solution, 

GPFS the least one (block size advantage?)

● Hadoop works well with sequential access, but loses a lot with 
backward seeking

● Replaying of traces works and is fairly easy to setup

● useful for a standalone (no dependencies) local access 
performance testing

● useful for tenders - FZU will probably use it this year
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Thank you for your attention!

Questions?

● The software is freely available at:

http://code.google.com/p/ioapps/

http://code.google.com/p/ioapps/
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