
Evaluation of distributed file systems
using trace and replay mechanism

Jiří Horký
horky@fzu.cz

Institute of Physics, AS CR, Prague (FZU CZ)

HEPiX 2011, GSI

5. 4. 2011 HEPiX 2011, GSI 2

Outline

● Motivation
● Choosing the right benchmark
● IOreplay – benchmark using trace-and-replay
● Evaluation of distributed filesystems
● Conclusion

5. 4. 2011 HEPiX 2011, GSI 3

Motivation

● Task: Compare the performance of file system/disk array A vs B
relevantly for HEP experiments (e.g. tender requirements)

● Three possible options:

● Run the real jobs

– hard to setup, hard to only measure the disk performance
● Use a synthetic benchmark

– easy to run, but does it give relevant results?
● Use trace and replay mechanism

– again, does it give relevant results?

5. 4. 2011 HEPiX 2011, GSI 4

Trace-and-replay mechanism

● Trace - record all operations that affect storage
performance (read, write, seek... + metadata
operations – stat, access, mkdir)

● Modify (optional) – change delays between calls, ignore some
operations, change file locations...

● Replay - replay the recorded operations back

– with the same delays between individual calls

● Theory: as we perform the same disk operations (in
the same order and time), we should get the same
behavior as the original application

5. 4. 2011 HEPiX 2011, GSI 5

Choosing the right benchmark

● Does it really matter?
● Real-life use case: comparison of two similar NASes:

Storage A (ARC1880ix-24)

● Intel Xeon E5620
● 12GB RAM
● Areca 1880ix-24 (2GB)
● 12x 2TB Seagate ES
● All drives in RAID6

Storage B (ARC1680ix-12)

● Intel Xeon E5620
● 12GB RAM
● Areca 1680ix-12 (2GB)
● 12x 2TB WD GP RE4
● All drives in RAID6

5. 4. 2011 HEPiX 2011, GSI 6

Choosing the right benchmark

● Two benchmarks:

● iozone – 1 thread per 1TB of usable capacity, each
thread reads and writes sequentially 8GB:

iozone -Mce -t20 -s8g -r512k -i0 -i1 -F [FILES]

(actual benchmark used for tender evaluation at
FZU in 2010)

● real-life ATLAS analysis

● 1 job per 1TB of usable capacity
● strictly sequential, forward seeking

5. 4. 2011 HEPiX 2011, GSI 7

Choosing the right benchmark

Storage A with ARC1880 RAID controller aprox. 25% slower in read test

write read
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Iozone sequential performance (20threads)

A – Arc1880
B – Arc1680

S
pe

e
d

(K
B

/s
)

5. 4. 2011 HEPiX 2011, GSI 8

Choosing the right benchmark

ATLAS
0

200

400

600

800

1,000

1,200

1,400

20 concurrent ATLAS jobs

A – Arc1880
B – Arc1680

L
o

ng
e

st
 jo

b
tim

e
 (

s)

Storage A with ARC1880 RAID controller aprox. 300% slower !

5. 4. 2011 HEPiX 2011, GSI 9

IOreplay – benchmark using trace-and-replay

● Trace

● several options possible

– LD_PRELOAD, blktrace, systemtap, strace...
● difference in the overhead, ease of use

● We decided to use strace

● installed on virtually every Linux
● works without root privileges, no modifications needed
● ability to trace already running applications (strace -p)
● considerable overhead at high system calls/sec rate
● unable to record memory-mapped IOs

5. 4. 2011 HEPiX 2011, GSI 10

IOreplay – benchmark using trace-and-replay

● Example of strace output:
.....
1765 1279445178.319030 open("/etc/group", O_RDONLY) = 21 <0.000088>
11155 1279445178.319168 read(3, ""..., 10) = 10 <0.000081>
1765 1279445178.319261 read(21, ""..., 512) = 512 <0.000081>
1765 1279445178.320078 close(21) = 0 <0.000078>

● One has to keep mapping between file descriptor
numbers and real files

● across all traced processes

– e.g. 21 == /etc/group at process 1765

● There are surprisingly many system calls that can
modify it (pipe, dup, socket, clone...)

5. 4. 2011 HEPiX 2011, GSI 11

IOreplay – benchmark using trace-and-replay

● Problem: application traced on one server but we want
to benchmark another one

● with different mount points
● with missing files

● One has to prepare the environment

● accessed files should be at least of the same size
● not every file is performance significant (files in

/etc...)

5. 4. 2011 HEPiX 2011, GSI 12

IOreplay – benchmark using trace-and-replay

● IOreplay has measures to ease the preparation:

● “dry” run that only reports missing files
● ability to define files that should be ignored
● ability to define mapping between original file name

and file name on the machine being benchmarked

5. 4. 2011 HEPiX 2011, GSI 13

IOreplay – benchmark using trace-and-replay

● How fast to replay the calls?

● Multiple modes available in ioreplay

● diff - keep the delays between calls (active waiting)
– should give the same behavior as the original application
– uses CPU instruction counter for fast time determination

● asap – deliver the calls as fast as possible
– absolute execution times differ

5. 4. 2011 HEPiX 2011, GSI 14

IOreplay – benchmark using trace-and-replay

● Result: realistic replaying and scaling

real ATLAS analysis job (ROOT 5.26 data format), run on 8-core machine

5. 4. 2011 HEPiX 2011, GSI 15

IOreplay – benchmark using trace-and-replay

● Result: realistic replaying and scaling

● provided that recording (strace) didn't have high
overhead

● other aspects (usage of memory, network) can also
have considerable impact

● You should always confirm it yourself

5. 4. 2011 HEPiX 2011, GSI 16

IOreplay – benchmark using trace-and-replay

● Trace the job:

strace -q -a1 -s0 -f -tttT -oTRACE_FILE -e
trace=file,desc,process,socket APP <PARAMS>

● Define files that should be ignored (e.g. don't access shared software
area):

cat ignore.txt
/software/atlas..../...
/software/atlas..../...
...

● Define files that should be mapped:

cat mapping.txt
/scratch/user...AANT1._00001.root atlas/datafile.01
/scratch/user...AANT1._00002.root atlas/datafile.02
/scratch/user...AANT1._00003.root atlas/datafile.03

Step by step usage

5. 4. 2011 HEPiX 2011, GSI 17

IOreplay – benchmark using trace-and-replay

● Create zero-filled missing files (20-lines script):

 ./create-file-atlas.sh

● Run ioreplay:

./ioreplay -r -f TRACE_FILE -i ignore.data.only -m
mapfile.data.only -t asap

Step by step usage

5. 4. 2011 HEPiX 2011, GSI 18

Evaluation of distributed filesystems - methodology

● Lustre v. 1.8.4, 100MB stripes, 3 servers per file

● HDFS (Hadoop) v0.21, 128MB blocks, using FUSE to
provide file system layer, 2 replicas of all files

● GPFS v3.4.0.2, 256K blocks, 2metadata replicas, 1
data replica

● using IOreplay with 4 different real-life jobs

● running 1,2,4,8,10,20 concurrent instances

● measuring average job-time and network usage

5. 4. 2011 HEPiX 2011, GSI 19

Evaluation of distributed filesystems - methodology

ATLAS analysis, CMS reconstruction and analysis jobs

● AtlasOld – unordered ROOT files, 9x 250MB out of 1GB files
read. The seeks were usually within few megabytes.

● AtlasNew – ordered ROOT files, 9x 250MB out of 1GB read.
Strictly sequential with client caching.

● CMSAn - 1984MB read from 4GB file. Strictly sequential, caching,
small gaps between individual calls.

● CMSReco - 424MB read from a 4GB file (just beginning of the
file). Mostly sequential, backward seeking by ~30MB every
30MBs.

5. 4. 2011 HEPiX 2011, GSI 20

Testbed

SL5.4, kernel 2.6.18-194.17.1.el5

5. 4. 2011 HEPiX 2011, GSI 21

1 2 4 8 10 20
0

200

400

600

800

1000

1200

ATLASNew

GPFS
LUSTRE
HADOOP

Concurrent jobs

A
ve

ra
g

e
 jo

b
 t

im
e

 (
s)

1 2 4 8 10 20
0

500

1000

1500

2000

2500

3000

ATLASOld

GPFS
LUSTRE
HADOOP

Concurrent jobs

A
ve

ra
g

e
 jo

b
 t

im
e

 (
s)

Evaluation of distributed filesystems

5. 4. 2011 HEPiX 2011, GSI 22

Evaluation of distributed filesystems

1 2 4 8 10 20
0

100

200

300

400

500

600

700

800

900

CMSAn

GPFS
LUSTRE
HADOOP

Concurrent jobs

A
ve

ra
g

e
 jo

b
 t

im
e

 (
s)

1 2 4 8 10 20
0

100

200

300

400

500

600

CMSReco

GPFS
LUSTRE
HADOOP

Concurrent jobs

A
ve

ra
g

e
 jo

b
 t

im
e

 (
s)

5. 4. 2011 HEPiX 2011, GSI 23

Evaluation of distributed filesystems

GPFS LUSTRE HADOOP
0

1000

2000

3000

4000

5000

6000

7000

8000

Network - ATLASNew

1
2
4
8
10

In
b

o
u

n
d

 t
ra

ff
i c

 p
e

r
h

o
st

 (
M

iB
)

GPFS LUSTRE HADOOP
0

2000

4000

6000

8000

10000

12000

Network - ATLASOld

1
2
4
8
10

In
b

o
u

n
d

 t
ra

ff
i c

 p
e

r
h

o
st

 (
M

iB
)

5. 4. 2011 HEPiX 2011, GSI 24

Evaluation of distributed filesystems

GPFS LUSTRE HADOOP
0

1000

2000

3000

4000

5000

6000

7000

8000

Network - CMSAn

1
2
4
8
10

In
b

o
u

n
d

 t
ra

ff
i c

 p
e

r
h

o
st

 (
M

iB
)

GPFS LUSTRE HADOOP
0

2000

4000

6000

8000

10000

12000

Network - CMSReco

1
2
4
8
10

In
b

o
u

n
d

 t
ra

ff
i c

 p
e

r
h

o
st

 (
M

iB
)

5. 4. 2011 HEPiX 2011, GSI 25

Conclusion

● No single 'silver bullet'

● it really depends on application
● Hadoop seems to be the most network-demanding solution,

GPFS the least one (block size advantage?)

● Hadoop works well with sequential access, but loses a lot with
backward seeking

● Replaying of traces works and is fairly easy to setup

● useful for a standalone (no dependencies) local access
performance testing

● useful for tenders - FZU will probably use it this year

5. 4. 2011 HEPiX 2011, GSI 26

Thank you for your attention!

Questions?

● The software is freely available at:

http://code.google.com/p/ioapps/

http://code.google.com/p/ioapps/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

