Flavor and Top Physics - WG1

Theoretical Summary

Gustavo Burdman

University of São Paulo

Flavor in the LHC Era

CERN, March 26, 2007

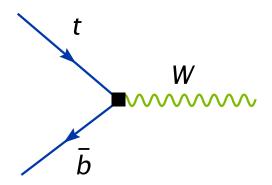
Outline

- Theoretical Motivation
- ightharpoonup New physics in top interactions: Wtb, V_{tb} , neutral interactions.
- Flavor changing neutral interactions of the top: FCNCs in top decay and production.
- Signals of new physics strongly coupled to the top: discovering a theory of flavor at the LHC

Physics Beyond the SM and the Top quark

- The top is the least tested quark.
- We will have very large data samples at the LHC.
- It might play a role in EWSB
 - Through radiative breaking (SUSY, Little Higgs models)
 - Through new strong interactions (Topcolor)
- Electroweak Symmetry breaking is strongly coupled to the top:

$$y_t \sim \sqrt{2} \frac{m_t}{v} \sim O(1)$$

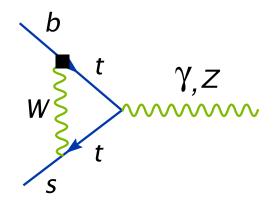

- Are there other states strongly coupled to the top?
 - Maybe associated with EWSB, or
 - Maybe associated with the origin of fermion masses (or at least with m_t).

Physics Beyond the SM and the Top

Two ways to study the top:

- New physics above a scale Λ is integrated out. Leads to anomalous couplings of top with gauge bosons, Higgs, rare top decays, etc.
- New states strongly coupled to top, are produced and then decay to top pairs, single top.

• The Wtb coupling:



$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{L} P_{L} + V_{R} P_{R}) t W_{\mu}^{-}$$

$$-\frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu \nu} q_{\nu}}{M_{W}} (g_{L} P_{L} + g_{R} P_{R}) t W_{\mu}^{-} + \text{h.c.},$$

▶ Dim-4 (V_L, V_R) , and Dim-5 (g_L, g_R) anomalous Wtb couplings

• Constraints from B physics: $b \to s\gamma$ and $b \to s\ell^+\ell^-$.

• Leading operator for $b \rightarrow s \gamma$ is

$$O_7 = \frac{e}{16\pi^2} m_b \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu}$$

Wilson coefficient receives the anomalous coupling contribution

 \blacksquare Branching ratio for $E_{\gamma}>1.6$ GeV, and matching scale $\mu_0=160$ GeV, is (M. Misiak)

$$\mathcal{B}(B \to X_s \gamma) \times 10^4 = (3.15 \pm 0.23) - 4.14 \left(V_L - V_{tb} \right) + 411 V_R$$

$$- 53.9 g_L - 2.12 g_R - 8.03 C_7^{(p)}(\mu_0)$$

$$+ \mathcal{O} \left[\left(V_L - V_{tb}, V_R, g_L, g_R, C_7^{(p)} \right)^2 \right],$$

To be compared to

$$\mathcal{B}(\bar{B} \to X_s \gamma) = \left(3.55 \pm 0.24 + 0.09 \pm 0.03\right) \times 10^{-4}$$

lacksquare This results in bounds on V_L , V_R , g_L , g_R

	$V_L - V_{tb}$	V_R	g_L	g_R	$C_7^{(p)}(\mu_0)$
upper bound	0.04	0.0024	0.003	0.08	0.02
lower bound	-0.24	-0.0004	-0.018	-0.46	-0.12

at 95% C.L., each obtained with all others vanishing.

- ullet If all allowed, no significant bound from $b o s \gamma$.
- ▶ Need to update study including $b \to s\ell^+\ell^-$, and $B^0 \bar{B^0}$ mixing.
- For ATLAS sensitivity see Nuno Castro's talk.

(J. Alwall, J. Frederix, J. M. Gerard, A. Giammanco, M. Herquer, E. Kou, V. Lemaitre, F. Maltoni)

ullet Need direct measurement of V_{tb} . Tevatron measurement of

$$R \equiv \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

translated into $|V_{tb}|$ if unitarity assumed.

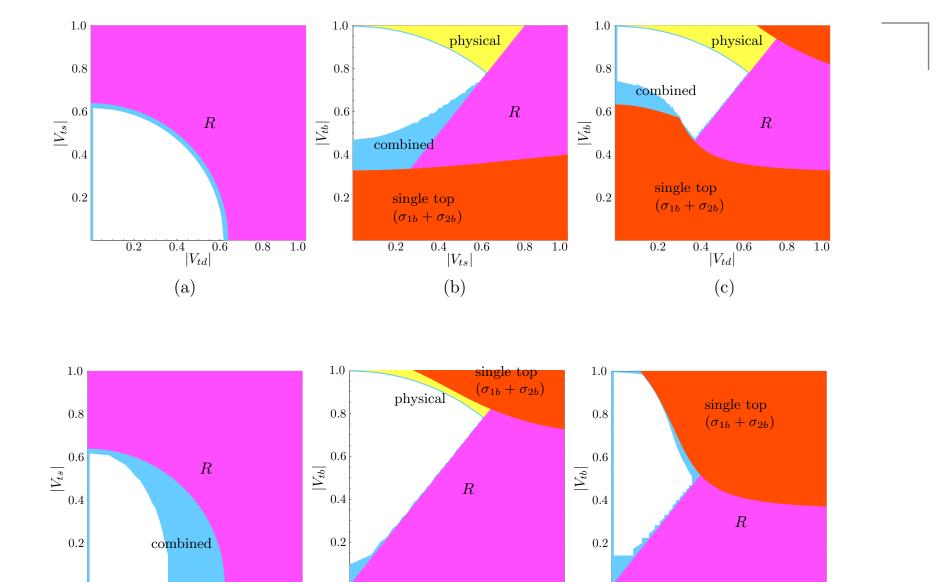
■ Measurements give: $R = 1.12^{+0.27}_{-0.23}$ (CDF) $R = 1.12^{+0.19}_{-0.17}$ (D0)

$$\Rightarrow R > 0.61$$
 at 95% C.L.

New D0 measurement of single top:

$$\sigma^{\text{s-ch}} + \sigma^{\text{t-ch}} = 4.9 \pm 1.4 \text{ pb}$$

$$\sigma^{\text{s-ch}} = 1.0 \pm 0.9 \text{ pb}$$


$$\sigma^{\text{t-ch}} = 4.2^{+1.8}_{-1.4} \text{ pb}$$

Plus the CDF upper bounds:

$$\sigma^{\mathrm{s-ch}} + \sigma^{\mathrm{t-ch}} < 2.7 \mathrm{\ pb}$$

$$\sigma^{\mathrm{s-ch}} < 2.5 \mathrm{\ pb}$$

$$\sigma^{\mathrm{t-ch}} < 2.3 \mathrm{\ pb}$$

0.6

0.8

1.0

0.4

 $|V_{ts}|$

(e)

0.2

0.2

0.6

0.4

(d)

 $|V_{td}|$

0.8 1.0

0.6

0.4

 $|V_{td}|$

(f)

0.2

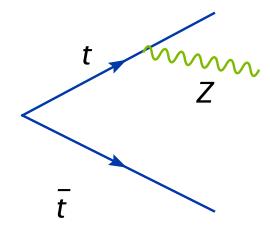
0.8

- Message: Still considerable room for extra fermions mixing with SM fermions
- LHC with $10fb^{-1}$ should measure $|V_{tb}|$ with 5% (CMS study).

Neutral Anomalous Couplings

- Many models of EWSB predict a few percent deviation in the Ztt̄ coupling. How well do we know it?
- For instance, Dim-4 operators:

$$\mathcal{L} = -\frac{g}{2c_W} \bar{t} \, \gamma^\mu \left(N_L^t P_L + N_R^t P_R \right) t \, Z_\mu$$

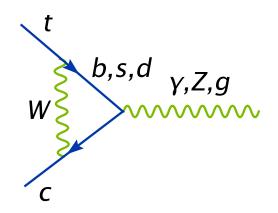

Description Bounds from T, R_b :

$$T \sim N_R^t - N_L^t + V_L$$
 $R_b \sim N_L^t - \frac{1}{4}N_R^t$

• $b \rightarrow s\ell^+\ell^-$ about to be constraining (need better than 10% in the Br).

Neutral Anomalous Couplings

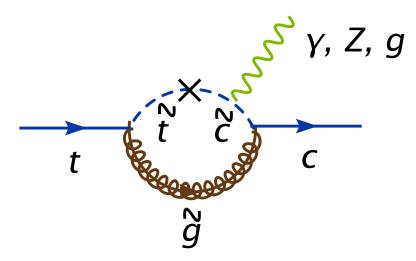
- ullet Many BSM theories give "sizable" deviation of up to a few %
- How well can we measure $Zt\bar{t}$?



At the LHC, very hard to get better than 10% (U. Baur et al.).

■ Need to make use of $b \to s\ell^+\ell^-$.

Flavor Changing Neutral Currents of the Top


• In the SM, $t \rightarrow cV$ is greatly suppressed:

- **9** E.g. $t \rightarrow c\gamma$ vs. $b \rightarrow s\gamma$:
 - Top mode is more efficiently GIM suppressed: $(m_b/M_W)^2$ instead of $(m_t/M_W)^2$.
 - Top mode competes with $t\to bW$, which is O(1) w.r.t. to $\lambda\sim\theta_C$. $b\to s\gamma$ vs. $b\to c\ell\nu$, $O(\lambda^2)$.
 - QCD not so important in $t \to c\gamma$.
- Typical SM predictions $Br(t \rightarrow cV) \sim (10^{-14} 10^{-12})$

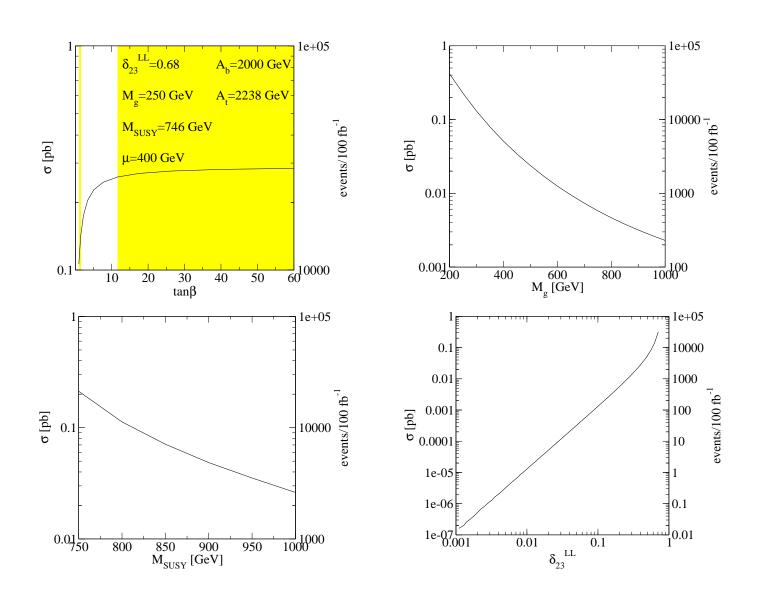
FCNCs of the Top - SUSY

• Squark mixing induces FCNC at one loop: δ_{23}^{LL} , δ_{23}^{RR} , δ_{23}^{LR}

● Branching ratios as large as $Br(t \to c\gamma) \sim 10^{-5}$ if LR mixing allowed.

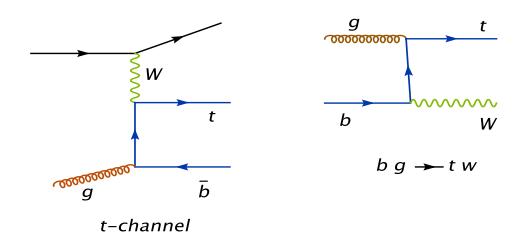
FCNCs of the Top - SUSY

We can also consider the single top production induced by this FCNC vertices


Particularly t c g (J. Guasch, W. Hollik, S. Peñaranda, J. Solà)

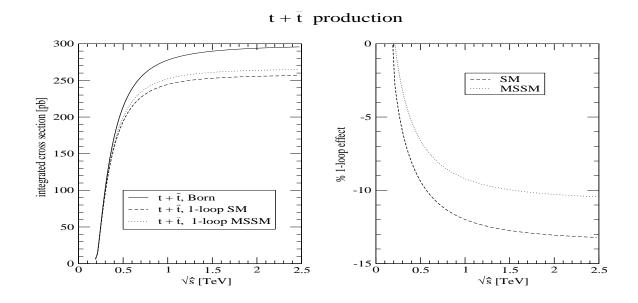
• Compute $\sigma_{tc} \equiv \sigma(pp \to t\bar{c})$:

$$\sigma_{tc} \sim \left(\delta_{23}^{(t)LL}\right)^2 \frac{m_t^2 (A_t - \mu/\tan\beta)^2}{M_{\text{SUSY}}^4} \frac{1}{m_{\tilde{g}}^2}$$


- Correlations with $b \to s \gamma$:
 - $\bullet \tan \beta$
 - $m{\mathcal{L}}$
 - $\delta_{23}^{(t)LL}$ related to $\delta_{23}^{(t)LL}$ through CKM rotation.

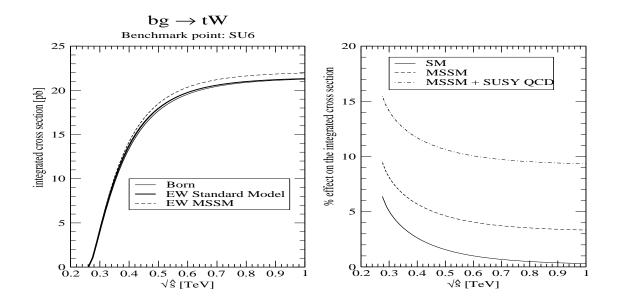
FCNCs of the Top - SUSY

SUSY Contributions to Single Top Production


Compute the NLO electroweak (SM and SUSY) contributions (M. Beccaria, G. Macorini, F. M. Renard and C. Verzegnassi)

- t channel (W-gluon fusion): Largest $\sim 250~pb$ ($\sim 6\%$ SM QCD correction).
- Associated production ($bg \rightarrow tW$): $\sim 30 \ pb$ (10% SM QCD, 6% SUSY QCD).
- s-channel: $\sim 10~pb$ (50% SM QCD correction).

EW Corrections to Single Top Production


t-channel (W-gluon fusion)

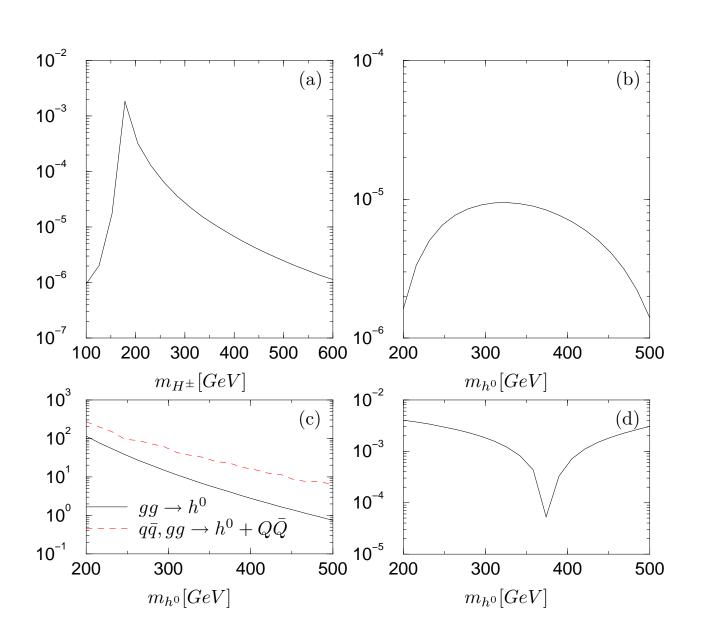
- True SUSY effect is small here: $\leq 2\%$.
- One loop SM EW correction is large: $\sim 13\%$. Larger than the SM NLO QCD effect.

SUSY Contributions to Single Top Production

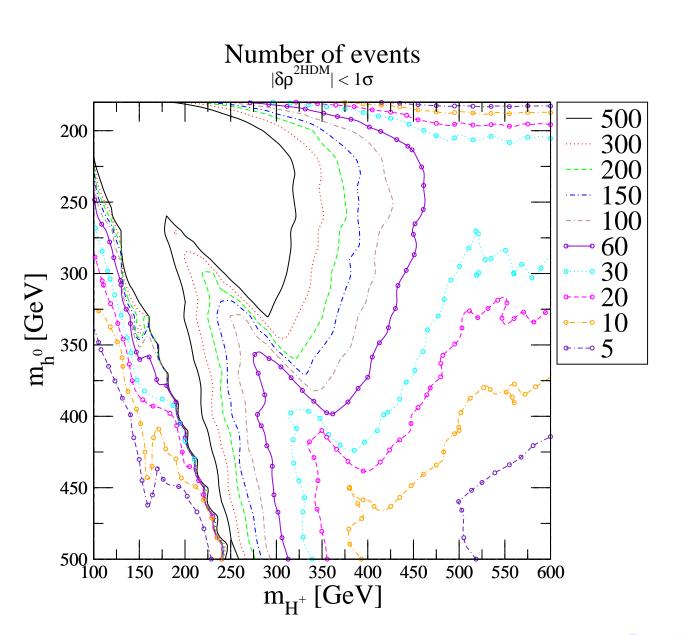
Associated production ($bg \rightarrow tW$)

- The SUSY effect can be large here: as much as $\leq 13\%$, depending on the energy.
- The pure NLO EW SM effect is negligible.
- Complementarity between t-channel and associated production.

FCNCs of the Top - Higgs


Loop induced FCNC decays Higgs bosons into a top in a 2HDM (S. Béjar, J. Guasch, J. Solà)

Compute


$$\sigma(pp \to h \to tc) = \sigma(pp \to hX) Br(h \to tc)$$

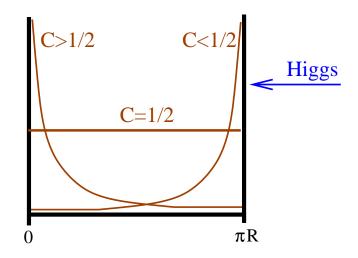
- Taking into account constraints from
 - $b \rightarrow s\gamma$: $m_{H^{\pm}} \gtrsim 350 \ GeV$,
 - perturbativity: $0.1 \lesssim \tan \beta \lesssim 60$,
 - custodial symmetry: $|\delta \rho^{\rm 2HDM}| \lesssim 0.1\%$
- For the 2HDMII, sizable branching ratios for lightest CP-even into tc

FCNCs of the Top - Higgs

FCNCs of the Top - Higgs

New Physics and Top production

- Also consider direct production of new physics strongly coupled to top
- Typically, associated to the origin of fermion masses
- Example: Warped Extra Dimensions (Randall-Sundrum) with matter and gauge fields in 5D bulk:


localization of fermions ← fermion mass hierarchy

- ⇒ in addition to solving the Hierarchy Problem, Theory of Flavor.

 What are the signals? All over flavor physics?
- Is there a signal at the LHC ? (P. Aquino, O. Eboli, G.B.)

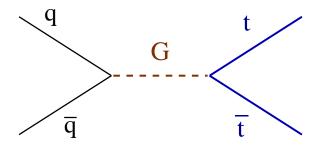
Flavor Models in WED

O(1) flavor breaking in bulk can generate fermion mass hierarchy:

Fermions localized toward the TeV brane can have larger Yukawas, Those localized toward the Planck brane have highly suppressed ones.

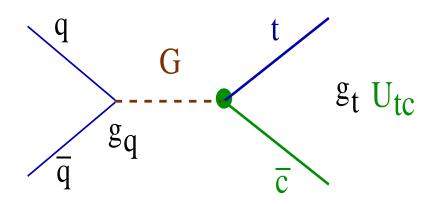
● But fermions at $\simeq \pi R \Rightarrow$ strong couplings to 1st KK gauge bosons. E.g. 3rd generation quarks might have large couplings \rightarrow flavor violation.

Signals for a Theory of Flavor


- Assume a generic RS bulk model:
 - Bulk fermions and gauge bosons.
 - Bulk masses (c's) ⇒ Fermion masses / CKM.
- Model(s) satisfy all EWPC (S, T, $Z \rightarrow b\bar{b}$, etc.).
- Assume typical masses $m_{KK} \simeq O(1)$ TeV

How do we test this flavor theory at the LHC?

Signals for Flavor Violation


What is the best signal for flavor violation?

Flavor diagonal vertices:

Compare $t\bar{t}$ resonances with light quark resonances. Observing these is hard.

Single Top Production at High Invariant Mass

- Signal: t + jet, very large invariant mass (>1.5 TeV).
- Use $t \to b\ell\nu$.
- ullet Typically few hundred fb^{-1} .

Single Top Production at High Invariant Mass

Results for $U_R^{tq} = 1$.

Process	$M_G=1~{\sf TeV}$			$M_G=2~{\sf TeV}$		
	σ — Cut I	σ — Cut II	$\sigma-{\sf Cut}\;{\sf III}$	σ — Cut I	σ — Cut II	σ — Cut III
pp o tj	148 fb	103 fb	103 fb	5.10 fb	2.18 fb	2.18 fb
pp o Wjj	243 fb	42.0 fb	21.0 fb	25.4 fb	3.79 fb	0.95 fb
pp o Wbb	11.1 fb	4.07 fb	3.19 fb	0.97 fb	0.45 fb	0.06 fb
pp o tb	1.53 fb	0.70 fb	0.61 fb	0.04 fb	0.02 fb	0.02 fb
$pp o t ar{t}$	44.4 fb	15.1 fb	14.2 fb	1.60 fb	0.29 fb	0.24 fb
Wg fusion	32.0 fb	5.23 fb	5.23 fb	1.20 fb	0.10 fb	0.10 fb

Single Top Production at High Invariant Mass

Reach in U_R^{tq}

M_G [TeV]	$30fb^{-1}$	$100fb^{-1}$	$300fb^{-1}$
1	0.24	0.18	0.14
2	0.65	0.50	0.36

Conclusions/Outlook

- The top quark is a natural window to physics beyond the SM
 - Its mass is of the order of the weak scale $m_t \sim v$
 - It is strongly coupled to the (mystery) Higgs sector
 - It appears to be involved in EWSB
- The LHC will have access to lots of top quarks
 - We can measure its couplings with precision \Rightarrow constrain heavy new physics through loops, tree-level suppressed interactions: Wtb, V_{tb} , neutral couplings, FCNCs, etc.
 - Check for consistency of emerging picture at the TeV scale (e.g.: corrections to single top in the MSSM).
- It will have access to the energy frontier: new physics states might couple strongly to top. Maybe even a window to the theory of flavor.