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•Very rare leptonic B decays (U. Nierste, M. Smizanska)
Bs, Bd → μμ BF
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•Radiative penguin B decays (P. Gambino, A. Goloutvin)

Inclusive b →s,d γ BF and CPV  (SuperB)

Exclusive B → Xs,d γ  BF, direct CPV, TDCPV 
(SuperB LHCb ATLAS)(SuperB, LHCb,ATLAS)
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Inclusive b Inclusive b →→s s γγ
A “Standard Candle”  of flavor physics

Sensitive to top quark couplingsSensitive to top quark couplings
Vtd, Vts

Ph t i DIS b f B ( h f ti )Photon is DIS probe of B (shape function, mB)

Broad sensitivity to new physics (2HDM, SUSY, LR, LED, little Higgs)
Misiak et al.

4Need NNLO precision to compare with experiment



Inclusive b Inclusive b →→s s γγ
Recent estimate of NNLO deca rate!Recent estimate of NNLO decay rate!  
Misiak et al.

7 3% precision at NNLO7.3% precision at NNLO

See e.g. hep-ph/0609224See e.g. hep ph/0609224

P S B h & N b t h h/0610067 5% hift f 2 l ti
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P.S. :Becher & Neubert, hep-ph/0610067:  -5% shift from 2-loop corrections
at  intermediate and soft scales



Inclusive b Inclusive b →→s s γγ

Experiment – NNLO Theory 
= +1.2σ

B factories
are likely to improveare likely to improve
precision to 5%

S B ld hSuper B could push 
down Eγ cutoff from current
1.8 GeV to 1.5 GeV

Super B incl. ACP precision:
0.9 % @ 5 ab-1@
0.3% @ 50ab-1

S B i l b d t t
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Super B can measure incl. b →dγ rate to 
25% with 5 ab-1



Inclusive b Inclusive b →→s s γγ
2HDM II Limit Right handed Wtb coupling

fR ~ 10-3

MSSM limits to be (re)evaluated:  ideally NLO w/ minimal and
l fl i l tigeneral flavor violation
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Exclusive b Exclusive b →→s,d s,d γγ
High precision meas rements ill be possible b t predictions complicatedHigh-precision measurements will be possible, but predictions complicated
by form factors and other non-perturbative effects

Interesting observables are direct/time-dependent CPV and rate ratios:

ΔB =1 version of  Bs mixing constraint, needs form factor ratio ξ
Sensitive to sign and 
size of C7 and C8,
AI (ργ)  sensitive to 
UT angle gamma U a g e ga a

C (direct CPV): SM b s is unobservably small (null test) b d is large ( 10%)C (direct CPV): SM  b →s is unobservably small (null test), b→d is large (~10%)  
S (TDCPV):  at most a few percent (null test)
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Exclusive b Exclusive b →→s,d s,d γ:  γ:  RR

Current B factory average, over ρ+ ρ0, ω

Agrees well with Tevatron Bs mixing

Hi h i i 0 l i S B/LHCb + l tti l l ti f
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High-precision ρ0γ sample in SuperB/LHCb + lattice calculation of
FF ratio could improve error to 3-4% (i.e. comparable to Tevatron)



Exclusive b Exclusive b →→s,d s,d γ:  γ:  Super BSuper B
B factories have unique TDCPV capability for Ks π0 γ

Current S is – 28 ± 26 %,  10% @ 5 ab-1,  3% @50 ab-1

Could be improved with photon conversion sample, KS φ γ sample
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Also S(ρ0 γ) measurement will be possible (10% @ 50 ab-1)



Exclusive b Exclusive b →→s,d s,d γ:  γ:  LHCbLHCb

Collect radiative decays with photon 
trigger

High precision ACP studies possible
Stat error < 1% in 1 year

Bs → φγ gives vertex-able TDCPV mode

Decay 2 fb-1 yield B/S

Photon polarization measured in 
Λγ decay mode 20% @ 2 fb-1

Decay 2 fb yield B/S

Bd → K*γ 35000 < 0.7

Bs → φγ 9000 < 2.4

Λb → Λγ 750 <42
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b γ

Bd → ωγ 40 < 3.5



Exclusive b Exclusive b →→s,d s,d γ:  γ:  ATLASATLAS

Trigger on muonTrigger on muon 
with  pT > 6 GeV, 
Select photons with
ET 5 G VET > 5 GeV 

Decay 20 fb-1

yield B/S

Bd → K*γ 9400 < 100

B → φγ 3200 < 400
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Bs → φγ 3200 < 400
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Electroweak penguin B decays (T. Feldmann, J. Berryhill)

Inclusive b→ sll and angular analysis of B →K*ll

(LHCb S B ATLAS)(LHCb, Super B, ATLAS)
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B B →→K K llll, B , B →→K* K* ll, b ll, b → → sllsll

Photon penguin (C7)Photon penguin (C7)   
Vector EW (C9)   
Axial-vector EW (C10)

Exclusive decays from three b→ sll penguin diagrams

New physics possible for each diagram, and also new operators 
(scalar penguins, right-handed currents)

Three-body kinematic distributions and decay rates to measure
all three (complex) penguin amplitudes

Rare process with BF ~ 10-6 

E l i d t ll d N t t di t ib ti d

14

Exclusive decay rates now well-measured; Next step: distributions and 
asymmetries



BB++ →→KK++ l ll l: LHCb: LHCb
Higgs-like scalar/pseudoscalar operators can enhance K+μμ over K+ee
Interesting cross-check on an anomalous BS →μμ signal

Super B precision in RK = BF(B →K μμ)/BF(B →Kee) is 4% @ 50 ab-1

(electrons and muons have roughly equal sensitivity) 

LHCb  has unequal sensitivity but still a significant K+ee signal:

K+ee K+μμ LHCbK+ee K+μμ
LHCb RK
precision is

LHCb

4.3% @ 10 fb-1

15P. Koppenburg, LHCb Note 2007-034



BB→→K* K* ll  AFB ll  AFB 

B→ K*ll decay kinematics uniquely described by 3 angles + dilepton mass (q2)
l- θ*

B

Cos θ* lepton- angle 

l+

Beneke, Feldmann, Seidelp g

in dilepton rest frame.  

Forward-backward asymmetric!Forward backward asymmetric!

AFB vs. Q2 :   for 1 GeV2 < Q2 < 4mc
2 describe with 2 form factors + Wilson

coefficients from QCDF (Beneke Feldmann Seidel Ali Kramer Zhu)coefficients from QCDF (Beneke Feldmann Seidel Ali Kramer Zhu)
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BB→→K* K* ll  AFB ll  AFB 

Zero of dAFB/dQ2 is a precise estimator of C9/C7, predicted to 5-8%

Ali Kramer Zhu Beneke Feldmann Seidel

Need to know better: form factors, power corrections, and isospin breaking
Long distance contamination from charmonium and light resonances is
diffic lt to estimate b t is belie ed to be a oidable fordifficult to estimate, but is believed to be avoidable for 

1 GeV2 < Q2 < 6 GeV2     (Khodjamirian)

CP asymmetry in AFB is a precision null test (Hiller Buchalla Isidori)
and so is isopin asymmetry (Feldmann Matias)

Zero of AFB can be shifted by universal extra 
dimensions (Colangelo De Fazio Ferrandes Pham)
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B B →→K*K*llll : LHCb: LHCb
Select events on dimuon trigger, K*0 μμ candidates with M = M(B) ± 50 MeV
and M(Kπ) = M(K*) ± 100 MeV

In 2 fb-1:
7200 signal, 1770 bb background, 
<1730 irreducible Kπ ll background (not well known upper bound from BaBar)<1730 irreducible Kπ ll background (not well known, upper bound from BaBar)

With bb background only, signal precision is 1.3% @ 2 fb-1
U. Egede

Δs0/s0 = 13% @ 2 fb-1

U. Egede

Extract AFB zero from
binned linear fit of dAFB/dQ2

from 2-6 GeV2

LHCb

18

LHCb



B → K*ll: LHCb transversity angle study

Mμμ
2 range

Resolutions
AT

(2) FL FL
0.05 → 0.49 0.180 0.037
0.49 → 1.96 0.400 0.033

U. Egede

1.96 → 6.25 0.470 0.018
6.25 → 9.0 0.31 0.0206.25 → 9.0 0.31 0.020

AT(2)
LHCb projections

Studying other decay angles (K* polarization, K*/μμ decay planes)
will exclude wide range of models with “wrong-handed” penguin 

t (lik TDCPV i b )
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operators (like TDCPV in b →s γ )
(Kruger and Matias)



B B →→K*K*llll : ATLAS: ATLAS

With dimuon trigger, ATLAS
should harvest signals for a 
variety of exclusive channelsvariety of exclusive channels
(BOTH K*+ and K*0 viable)

Key selection requirements areKey selection requirements are
muon particle ID and 
dimuon vertexing 

S and B @ 30 fb-1Background is dominated
by other b decays to muons

4.8%

3.5%
5.2%

20P. Reznicek et al.



B B →→K*K*llll : Super B: Super B
K*ll Si l ( K ll b k d ll Q2)K*ll Signals (no Kπll background, all Q2)
SuperB  @ 1 ab-1: 229 ±16 events
LHCb     @ 2 fb-1:  7200 ± 95 events

2 fb -1 LHCb  = 30 ab-1 Super B = 
200 fb-1 ATLAS+CMS 

i i (%)BaBar: K* polarization FL and AFB

ATLAS   @30 fb-1: 4800 ±170 events

precision (%)BaBar: K  polarization FL and AFB 
with binned fits to helicity angle 
distributions

AFB fit

21

2-3% AFB, FL precision for low Q2 

@ 50 ab-1
J. Berryhill



B B →→K*K*llll : Super B: Super B

SuperB @ 5 ab-1
Belle has extracted 
Wilson coefficients C9 and
C10 di tl f th d tC10 directly from the data
by fitting global distribution of

Ishikawa, HL6 Workshop

Extrapolating to SuperB,
A9/A7 (equivalent to AFB zero)
and A10/A7 can be measured

precision (%)
and A10/A7 can be measured 
with stat. error of 4%

H l b l th fit b t t bl th ?

22

How global can the fit be to get a comparable theory error?
Restricting to 1-6 GeV2 roughly doubles the stat errors



Inclusive b Inclusive b →→s s l+ ll+ l--
2In golden range 1-6 GeV2, inclusive BF is precision observable (7%)

rivaling b →s γ Huber Lunghi Misiak Wyler

AFB should also be a (more) precise observable

Extrapolating from most recent Belle result (153 fb-1), precision BF is
achievable with as little as 3 ab-1

Phys.Rev.D72:092005,2005.Phys.Rev.D72:092005,2005. 
Looser MX cut (and hence more data) may 
be required to avoid shape function effects 
(Ligeti Lee Stewart Tackmann)(Ligeti, Lee, Stewart, Tackmann)

Xs fragmentation and its impact on AFB
t b b tt d t d SCET

(K + 1-4π)ll

23

must be better understood.  SCET may
help. (Grinstein and Pirjol)
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•Rare B decays with taus or neutrinos 
(Y. Grossman, P. Paradisi, T. Iijima)( G oss a , a ad s , j a)

B → K νν

B→ τν Unique sensitivity at B factories

B →μν

B → DτνB → Dτν

24



Tag Side ReconstructionTag Side Reconstruction

In Y(4S) → BB,  reconstruct common, high-purity decay for
one B (“tag-side”).

qq background largely eliminated

All th d t t bl ti l t d t i l BAll other detectable particles must correspond to signal B
of interest, with low combinatorial B background

Allows study of B → “anything”
with reasonable S/B 
(BF>10-5-10-6 @ 50 ab-1)

Two popular methods:
Hadronic B decaysHadronic B decays
pure,  0.1-0.3% efficient

D0 X l ν or D* lν tagged semileptonic decays

25

D X l ν or D lν tagged semileptonic decays
Less pure, 0.5% efficient



B B →→K(*) K(*) νν νν

•B physics analog of K →πνν
•Theoretically cleaner mode than K* ll for probing C9, C10y p g ,
•Complementary to K* ll through 3rd generation sensitivity (tau –neutrinos)
•No long distance contamination
•K and K* BFs mass spectrum simply related to left- and right- Wilson coeffK and K  BFs, mass spectrum simply related to left and right Wilson coeff.

SM C 0SM CR = 0

26



B B →→K(*) K(*) νν νν
ν

νν
ν

ν lν

•B physics analog of K →πνν
•Theoretically cleaner mode than K* ll for probing C9, C10y p g ,
•Complementary to K* ll through 3rd generation sensitivity (tau –neutrinos)
•No long distance contamination
•K and K* BFs mass spectrum simply related to left- and right- Wilson coeffK and K  BFs, mass spectrum simply related to left and right Wilson coeff.

SM C 0SM CR = 0
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B B →→K(*) K(*) νν νν
Belle 253 fb-1 BaBar 82 fb-1e e 53 b

Tag side reco of: 
hadronic B decayy
(Belle, ε = 0.15%)
or D* l ν decay
(BaBar ε = 0 5%)(BaBar, ε  0.5%)

& signal side K+

& no other tracks& no other tracks
& small extra ECAL
energy
( 40%)

(10 X SM)
(ε = 40%)

( )

(20 X SM)
Belle preliminary hep-ex/0507034 

For Super B factory, 3σ Kνν SM signal @ 12 ab-1,  5σ @ 33ab-1,
18 % t @ 50 b 1 ith h d i t l

Belle preliminary hep-ex/0608047

28

18 % measurement @ 50 ab-1, with hadronic tag alone



B+ → B+ → ττ++νν

Simple decay through weak 
annihilation

Sensitive to B decay constant
fB or to charged Higgs boson

H-

tan4β modifications in 2HDM II model:

fB dependence can be removed via ratio with Δmd, error shrinks 25% → <13%B p d
(Isidori & Paradisi)

29



B+ → B+ → ττ++νν
Belle PRL 97 (2006) 251802

Tag side reco of: 
hadronic B decay (Belle, ε = 0.15%)

Belle PRL 97 (2006) 251802 

y ( , )
or D0 l X ν decay (BaBar, ε = 0.6%)

& signal side τ

24 \ 7 i l (3 5 )

& signal side τ
(Belle: leptonic or 1- or 3-prong, ε = 16%)
(BaBar: leptonic or 1-prong, ε = 13%)
& no other tracks & small extra ECAL energy 24+\- 7 signal (3.5σ)& no other tracks & small extra ECAL energy

hep-ex/0608019
HFAG BF(B → τν) = 1.34  ± 0.48 10-4

Consistent with SM.
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B+ → B+ → ττ++νν

Belle result excludes (at tan β = 30) M(H+) < 100, 130 < M(H+) < 190 GeV

Alternatively, assuming SM,  fB is measured:

31



B+ → B+ → ττ++ν:  ν:  Super B ProspectsSuper B Prospects

To scale like luminosity, BF measurement requires more precise modelling
of extra energy distribution  (use bigger control samples)gy ( gg p )

With also improved parametric uncertainties, can exclude charged higgs 
M(H+) < 575 GeV (tan β = 30) @ 50 ab-1

32

M(H )  575 GeV (tan β  30) @ 50 ab



B+ → eB+ → e++ν, μν, μ++νν

(Masiero Paradisi Petronzio)

SM rates highly helicity suppressed relative to B →τν, but
ratio with B→ τν can be enhanced by 2x (10x) for LFV SUSY 

(Masiero, Paradisi, Petronzio)

Monochromatic lepton with P* = mB/2, with tag-side mass cut or hadronic reco

Current limits @ 253 fb 1 : B e < 9 8 10 7 B < 1 7 10 6

SM B →μν will be measured at SuperB :  

Current limits @ 253 fb-1 :  B→ eν < 9.8 10-7 B →μν < 1.7 10-6

33

3σ @ 1.6 ab-1,  5σ @ 4.3 ab-1,   6% stat. precision @ 50 ab-1



B → D(*) B → D(*) τντν
Ratio of BF(B →D τν)/BF(B→ D μν)
a precise estimator of charged Higgs
amplitude.amplitude.

Large BF with large B →Dμν bkg
(remove with missing mass cut)(remove with missing mass cut)  

For tan β = 30, exclude 
M(H+) < 200 GeV @ 5 ab-1

< 500 GeV @ 50 ab 1

@5 ab-1

34

< 500 GeV @ 50 ab-1



OutlineOutline

•Very rare leptonic B decays (U. Nierste, M. Smizanska)

Bs, Bd → μμ BF

(LHCb ATLAS CMS Super B)(LHCb, ATLAS, CMS, Super B)
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BBss →→μμμμ

In SM, dominated by (helicity suppressed)
axial vector Z penguin

In general, scalar and pseudoscalar (but not vector) operators also contribute
(not helicity suppressed)
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BBss →→μμμμ
Wide variety of models enhance BF, esp. with multiple Higgs doublets and 
large tan β

Type II 2HDM, tan4 β

In MSSM, squark loops
I h t t t 6 βIncrease enhancement to tan6 β,
In general or minimal flavor violation

For constrained SUSY models (mSUGRA, CMSSM), correlations 
between Bs → μμ,  b → sγ ,  Δms, gμ -2, and SUSY Higgs sector

For SO(10) SUSY GUTS, BF and Δm of Bs, B→ τν disentangle
t b tt Y k ifi ti

37

top-bottom Yukawa unification 



BBss →→μμ μμ TodayToday
New D0 90CL limit bounds BF to 20X SM
with 2 fb-1 (Alberto Sanchez, Moriond EW)

Backgrounds still reasonable, ultimate
combined Tevatron limit could improve 
by another 2 4Xby another 2-4X 
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BBss →→μμ μμ @ LHC@ LHC
Key to LHC detection is good trigger acc. X eff. for low pT dimuons 

HLTHLT

~Hz

660 Hz

Three key offline selection criteria:
Tracking (lifetime, impact parameter, vertex chi2, track isolation)
PID (l f k t t h d i B b k d)PID (low fake rates to suppress hadronic B background)
Mass (better resolution → better significance per signal event, 
better avoidance of peaking backgrounds)
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BBss →→μμ:  μμ:  ATLASATLAS

E tExpect 
3σ evidence
with 30 fb-1with 30 fb
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BBss →→μμ: μμ: CMSCMS
CMS AN 2006/097CMS AN 2006/097

I 10 fb 1 6 i l 14 bk ( ft 100 M V di t)In 10 fb-1, 6 signal + 14 bkg (after ±100 MeV dimuon mass cut)

S/B essentially identical to ATLAS study

Results in 1.4 10-8 90% CL limit  (3X SM)
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BBss →→μμ: μμ: LHCbLHCb

Signal
Background rejected 
with a likelihood function 

bi i bb
b→ μ b → μ
Bc →J/ψ μν

combining:

Lifetime
c ψ μ

Muon IP
B IP
Mu-mu DOCA
Isolation

Before LH cuts, for 1 fb-1 S = 36 and B = 600k 
in ±60 MeV window around M(Bs) 

Peaking backgrounds are much less of a concern due to 
very good mass resolution (18 MeV)

42
Signal is extracted with a CLs  likelihood ratio method. 



BBss →→μμ:  μμ:  LHCbLHCb
1SM-like limit with few 100 pb-1

SM-like evidence with 1-2 fb-1

SM-like discovery with 4-8 fb-1
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Summary:  Three Principles of Summary:  Three Principles of 
ComplementarityComplementarityp yp y

1.Rare B decays present a host of observables with complementary 
sensitivity to new physics at the TeV scalesensitivity to new physics at the TeV scale.

2.Experimental coverage of them is complementary
B LHCBs→ μμ                                LHC
B → K* μμ AFB                 LHC & SuperB
b → sll  BF and AFB         SuperB        
b → sγ  BF and CPV         SuperB
B → Xs,d  γ CPV LHC & SuperB
B → τν and K νν BF         SuperB

3. Low PT complementary to High PT

Once the form of EWSB is revealed or constrained by high PT physics 
at ATLAS+CMS, its flavor structure, or the structure of a non-trivial
Higgs sector will be revealed or constrained further at low PT

44

Higgs sector, will be revealed or constrained further at low PT 



Probability Density Functions

PDF =   fsig x Ptheory(A7,A9,A10;q2,cosθ)/N(A7,A9,A10) x ε(q2,cosθ)
+ (1 - fsig - fpsi – fK*hh) x Pdilepton(q2,cosθ) 
+ fpsi x Ppsi(q2,cosθ) 
+ f x P (q2 cosθ)
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high cosθBl+ event since one of 
muon is low momentum
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muon is low momentum.

So we need muon detector for 
low momentum region.
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Fit Results

• We perform 1000 pseudo 
experiments with SM input 
valuesvalues 

• With 5/ab data, Means of errors 
for A9 and A10 are 11% and 13%
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Extrapolation to 50/ab
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statistical error.

• With 50/ab we can achieve 4%
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• With 50/ab, we can achieve 4% 
statistical errors for A9 and A10, which 
is comparable to total error for A7
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we can measure s0 with 5% accuracy
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Bd → K*μμ: Transversity Angles

φ
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Bd → K*μμ: Transversity Angles

θK*
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Projected upper limits : Bs μμ

ATLAS/CMS expectationATLAS/CMS expectation
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