BSM and Flavour in the Lepton Sector

Plan of talk:

I. The Flavour Problem

II. The SUSY Flavour Problem

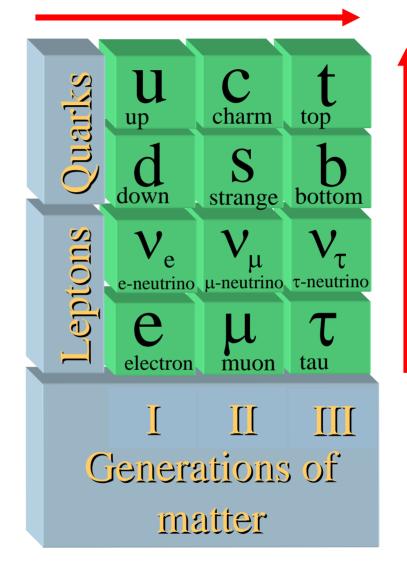
III. Flavour Dependent Leptogenesis

Vertical

The Flavour Problem

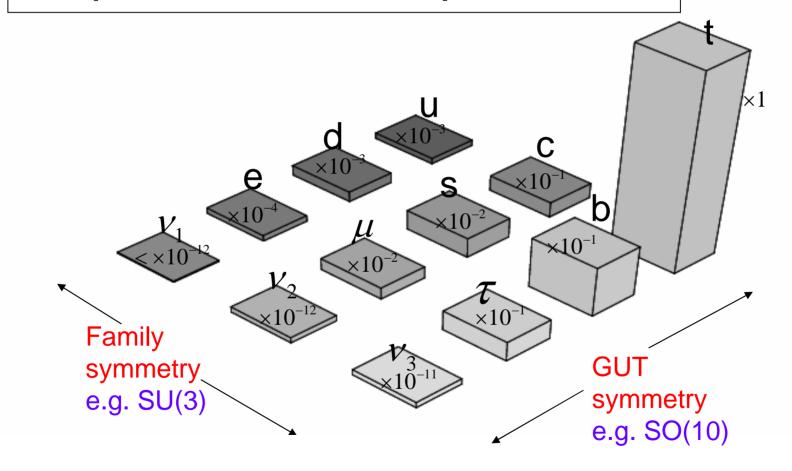
I. Why are there three families of quarks and leptons?

Horizontal



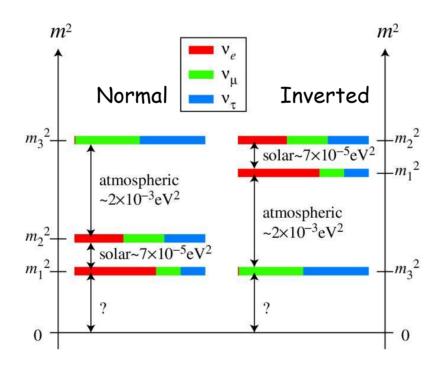
The Flavour Problem

II. Why are quark and charged lepton masses so peculiar?



The Flavour Problem

III. Why are neutrino masses so small?



The Flavour Problem IV. Why is lepton mixing so large?

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$V_{1}$$

$$\theta_{12}$$

$$V_{2}$$

$$\theta_{13}$$

$$V_{2}$$

$$\theta_{14}$$

$$V_{2}$$

$$\theta_{15}$$

$$\theta_{16}$$

$$V_{2}$$

$$\theta_{17}$$

$$\theta_{18}$$

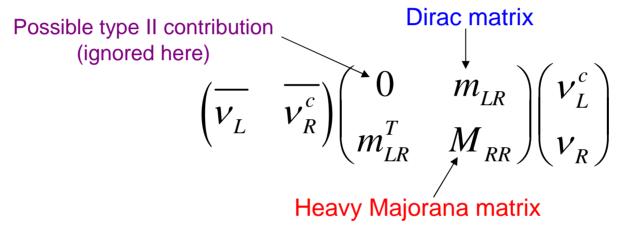
$$V_{1}$$

e.g.Tri-bimaximal

Harrison, Perkins, Scott

c.f. small quark mixing
$$V_{ij}$$
 u_{iL} u_{iL} u_{iL} u_{iJ} u_{i

See-saw mechanism can account for small neutrino mass



$$m_{LL}^{v} = m_{LR} M_{RR}^{-1} m_{LR}^{T} \sim m_{LR}^{2} / M_{RR}$$

Sequential dominance can account for large neutrino mixing

SFK

Diagonal RH nu basis

$$M_{\rm RR} = \begin{pmatrix} X & 0 & 0 \\ 0 & Y & 0 \\ 0 & 0 & Z \end{pmatrix} \qquad Y_{\rm LR}^{\nu} = \begin{pmatrix} A & B & C \end{pmatrix}$$

$$Y_{\rm LR}^{\nu} = \begin{pmatrix} A & B & C \end{pmatrix}$$

$$m_{LL}^{V} = \frac{AA^{T}}{X} + \frac{BB^{T}}{Y} + \frac{CC^{T}}{Z}$$

Sequential

dominance Dominant Subdominant

Decoupled

$$|A_1| = 0,$$
 $|A_2| = |A_3|,$
 $|B_1| = |B_2| = |B_3|,$
 $|A^{\dagger}B| = 0$

$$|A_1| = 0,$$
 $|A_2| = |A_3|,$
 $|B_1| = |B_2| = |B_3|,$
 $A^{\dagger}B = 0$
 $|A_3| = 0$
 $|A_3| = |B_3|$
 $|A_3| = |A_3|$
 $|A_3| =$

Tri-bimaximal

Constrained SD

Non-Abelian family symmetry

Need
$$Y_{LR}^{\nu} = \begin{pmatrix} 0 & B_1 & - \\ A_2 & B_2 & - \\ A_3 & B_3 & - \end{pmatrix}$$
 with CSD
$$\begin{vmatrix} |A_1| & = & 0, \\ |A_2| & = & |A_3|, \\ |B_1| & = & |B_2| = |B_3|, \\ A^{\dagger}B & = & 0 \end{vmatrix}$$

2 → 3 symmetry (from maximal atmospheric mixing)

 $1 \leftrightarrow 2 \leftrightarrow 3$ symmetry (from tri-maximal solar mixing)

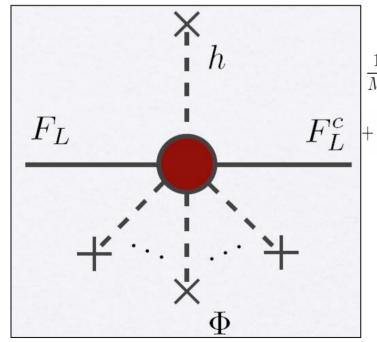
Examples of suitable non-Abelian family symmetries:

SFK, Ross; Velasco-Sevilla; Varzelias
$$SU(3)$$
 Δ_{27} Discrete subgroups preferred by vacuum alignment

A₄ Pati-Salam Model

Family symmetry must be broken

- Flavons break family symmetry
- Yukawas as `little flavour magnets'



SFK, Malinsky

field	$SU(4) \otimes SU(2)_L \otimes SU(2)_R$	A_4	U(1)	Z_2
F	(4, 2, 1)	3	0	+
F_1^c	$(\overline{4}, 1, 2)$	1	+2	1540
F_2^c	$(\overline{4}, 1, 2)$	1	+1	+
F_3^c	$(\overline{4},1,2)$	1	-3	200
h	(1, 2, 2)	1	0	+
H, \overline{H}	$(4,1,2), (\overline{4},1,2)$	1	± 3	+
$H', \overline{H'}$	$(4,1,2), (\overline{4},1,2)$	1	∓ 3	+
Σ	(15, 1, 3)	1	-1	
ϕ_1	(1, 1, 1)	3	+4	+
ϕ_2	(1, 1, 1)	3	0	+
ϕ_3	(1, 1, 1)	3	+3	
ϕ_{23}	(1, 1, 1)	3	-2	0000
$ ilde{\phi}_{23}$	(1, 1, 1)	3	0	200
ϕ_{123}	(1, 1, 1)	3	-1	+

$$\frac{1}{M}y_{23}F.\phi_{23}F_1^ch + \frac{1}{M}y_{123}F.\phi_{123}F_2^ch + \frac{1}{M}y_3F.\phi_3F_3^ch + \frac{1}{M^2}y_{GJ}F.\tilde{\phi}_{23}F_2^c\Sigma h$$

$$F_{L}^{c} + \frac{1}{M^{2}}y_{13}F.(\phi_{2} \times \phi_{3})F_{3}^{c}h + \frac{1}{M^{2}}y_{13}'F.(\phi_{2} * \phi_{3})F_{3}^{c}h + \frac{1}{M^{3}}y_{23}^{i}I_{i}(F,\tilde{\phi}_{23},\tilde{\phi}_{23},\phi_{3})F_{3}^{c}h$$

$$Y_{LR}^{f} = \begin{pmatrix} 0 & y_{123}\varepsilon_{123}^{f} & \overline{y}_{13}\varepsilon_{2}^{f}\varepsilon_{3}^{f} \\ y_{23}\varepsilon_{23}^{f} & y_{123}\varepsilon_{123}^{f} + C^{f}y_{GJ}\tilde{\varepsilon}_{23}^{f}\sigma & \overline{y}_{23}(\tilde{\varepsilon}_{23}^{f})^{2}\varepsilon_{3}^{f} \\ -y_{23}\varepsilon_{23}^{f} & y_{123}\varepsilon_{123}^{f} - C^{f}y_{GJ}\tilde{\varepsilon}_{23}^{f}\sigma & y_{3}\varepsilon_{3}^{f} \end{pmatrix}$$

$$C^f = -2, 0, 1, 3 \text{ (for } f = u, \nu, d, e) \quad \varepsilon_x^f \equiv \frac{|\langle \phi_x \rangle|}{M_f}$$

Neutrino Sector

Vacuum alignment

Majorana magnets
$$\frac{\langle \phi_{23} \rangle}{M} = \begin{pmatrix} 0 \\ \varepsilon_{23} \\ -\varepsilon_{23} \end{pmatrix} \qquad \frac{\langle \phi_{123} \rangle}{M} = \begin{pmatrix} \varepsilon_{123} \\ \varepsilon_{123} \\ \varepsilon_{123} \end{pmatrix} \qquad \frac{\langle \phi_{3} \rangle}{M} = \begin{pmatrix} 0 \\ 0 \\ \varepsilon_{3} \end{pmatrix}$$

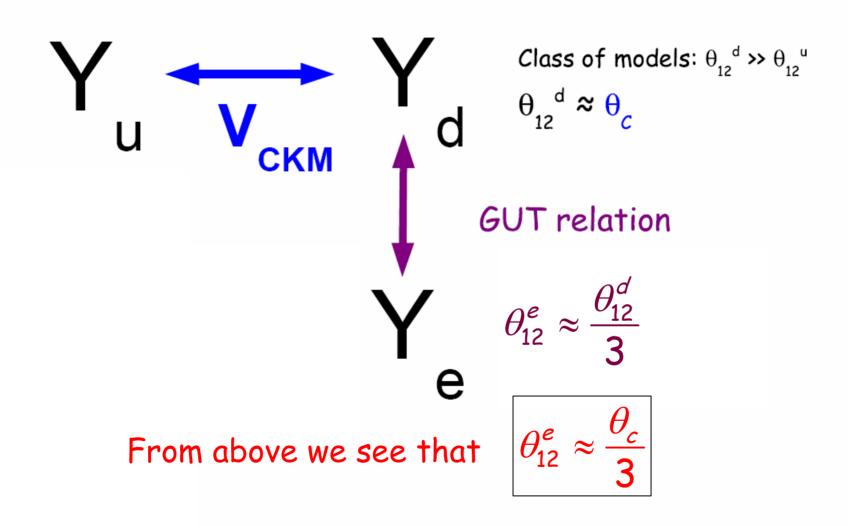
$$\frac{1}{M_{\nu}^{3}} w_{1} F_{1}^{c2} H H' \phi_{23}^{2} + \frac{1}{M_{\nu}^{3}} w_{2} F_{2}^{c2} H H' \phi_{123}^{2} + \frac{1}{M_{\nu}} w_{3} F_{3}^{c2} H^{2}$$

$$M_{RR} = \begin{pmatrix} \varepsilon_{23}^{2} \delta \\ \varepsilon_{123} \delta \\ \end{pmatrix} \qquad Y_{LR}^{\nu} \sim \begin{pmatrix} 0 & \varepsilon_{123} e^{i\delta_{2}} & 0 \\ \varepsilon_{23} e^{i\delta_{1}} & \varepsilon_{123} e^{i\delta_{2}} & 0 \\ -\varepsilon_{23} & \varepsilon_{123} e^{i\delta_{2}} & e^{i\delta_{3}} \end{pmatrix}$$

$$\frac{1}{M} F \cdot \phi_{23} v_{R}^{1} h \qquad \frac{1}{M} F \cdot \phi_{123} v_{R}^{2} h \qquad \frac{1}{M} F \cdot \phi_{3} v_{R}^{3} h$$

Satisfies constrained sequential dominance giving tri-bimaximal neutrino mixing, with charged lepton corrections

Charged Fermion Yukawa Sector



Charged Lepton Corrections

SFK,Antusch;
Masina,....
$$E_L V^{
u_L \dagger}$$

Assume I: charged lepton mixing angles are small

$$\begin{split} s_{23}e^{-i\delta_{23}} &\approx s_{23}^{\nu}e^{-i\delta_{23}^{\nu}} - \theta_{23}^{E}c_{23}^{\nu}e^{-i\delta_{23}^{E}} \\ \theta_{13}e^{-i\delta_{13}} &\approx \theta_{13}^{\nu}e^{-i\delta_{13}^{\nu}} - \theta_{13}^{E}c_{23}^{\nu}e^{-i\delta_{13}^{E}} - \theta_{12}^{E}s_{23}^{\nu}e^{-i(\delta_{12}^{E} + \delta_{23}^{\nu})} \\ s_{12}e^{-i\delta_{12}} &\approx s_{12}^{\nu}e^{-i\delta_{12}^{\nu}} + \theta_{13}^{E}c_{12}^{\nu}s_{23}^{\nu}e^{i(\delta_{23}^{\nu} - \delta_{13}^{E})} - \theta_{12}^{E}c_{23}^{\nu}c_{12}^{\nu}e^{-i\delta_{12}^{E}} \end{split}$$

Assume II: all 13 angles are very small

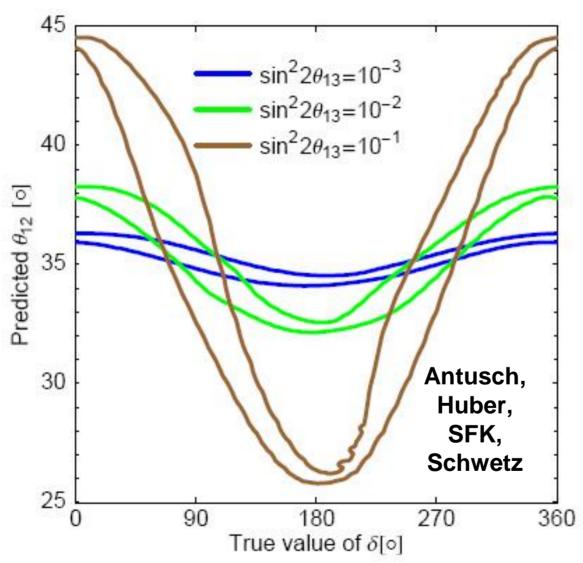
$$\rightarrow \theta_{13} \approx \frac{\theta_{12}^E}{\sqrt{2}}$$

$$\rightarrow \theta_{12} \approx \theta_{12}^v + \frac{\theta_{12}^E}{\sqrt{2}} \cos \delta$$

In a given model we can predict θ_{12}^{E} and θ_{12}^{V} .

Note the sum rule
$$\theta_{12} \approx \frac{\theta_{12}^{\nu}}{12} + \theta_{13} \cos \delta$$

Tri-bimaximal sum rule $\theta_{12} \approx 35.26^{\circ} + \theta_{13} \cos \delta$



Bands show 3 σ error for a neutrino factory determination of θ_{13} cos δ

Current 3_o

$$\theta_{12} = 33^{\circ} \pm 5^{\circ}$$
$$\theta_{23} = 45^{\circ} \pm 10^{\circ}$$
$$\theta_{13} < 13^{\circ}$$

Model Prediction

$$\theta_{13} \approx \frac{\theta_{12}^E}{\sqrt{2}} \approx \frac{\theta_C}{3\sqrt{2}} \approx 3^\circ,$$

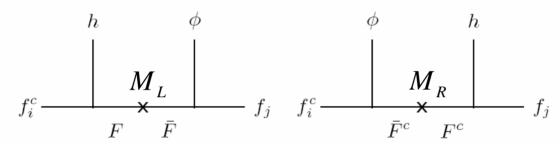
$$\Rightarrow \sin^2 2\theta_{13} \approx 10^{-2}$$

Steve King, Flavour in the Era of the LHC, Final Meeting, CERN

Do we need a family symmetry?

Ferretti, SFK, Romanino: Barr

$$W = M\bar{\Psi}\Psi + \alpha_i\bar{\Psi}\psi_i\phi + \lambda_i\Psi\psi_ih$$
 One family of "messengers" dominates Three families of quarks and



$$M\bar{\Psi}\Psi \equiv M_Q\bar{Q}Q + M_U\bar{U}^cU^c + M_D\bar{D}^cD^c + M_L\bar{L}L + M_N\bar{N}^cN^c + M_E\bar{E}^cE^c$$

Suppose $M_{Q}\ll M_{D}\ll M_{U}$ then in a particular basis $\int m_{u}=m_{d}=0$ ightharpoonup Accidental sym

$$Y_{LR}^{U} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & ab\varepsilon_{U} & ad\varepsilon_{U} \\ 0 & cb\varepsilon_{U} & 1 \end{pmatrix} \underbrace{\langle \phi \rangle}_{M_{Q}} Y_{LR}^{D} = \begin{pmatrix} 0 & ef\varepsilon_{D} & ek\varepsilon_{D} \\ 0 & gf\varepsilon_{D} & gk\varepsilon_{D} \\ 0 & hf\varepsilon_{D} & 1 \end{pmatrix}} \underbrace{\langle \phi \rangle}_{M_{Q}} \begin{cases} \frac{m_{c}}{m_{t}} \ll \frac{m_{s}}{m_{b}} \ll 1 & \text{Not bad! But...} \\ \tan \beta \sim 50 & \tan \theta_{C} \sim 1 \\ \text{Need broken} \\ \frac{m_{s}}{m_{b}} \approx |V_{cb}| & \text{Pati-Salam...} \end{cases}$$

$$\begin{cases} m_u = m_d = 0 & \longrightarrow \text{Accidental sym} \\ \frac{m_c}{m_t} \ll \frac{m_s}{m_b} \ll 1 & \text{Not bad! But...} \\ \tan \beta \sim 50 & \tan \theta_C \sim 1 \\ \frac{m_s}{m_b} \approx |V_{cb}| & \text{Need broken} \\ \frac{m_s}{m_b} \approx |V_{cb}| & \text{Pati-Salam...} \end{cases}$$

The **SUSY** Flavour Problem

 In SUSY we want to understand not only the origin of Yukawa couplings

$$W = \epsilon_{\alpha\beta} [-\hat{H}_u^{\alpha} \hat{Q}_i^{\beta} Y_{u_{ij}} \hat{U}_j^c + \hat{H}_d^{\alpha} \hat{Q}_i^{\beta} Y_{d_{ij}} \hat{D}_j^c + \hat{H}_d^{\alpha} \hat{L}_i^{\beta} Y_{e_{ij}} \hat{E}_j^c - \mu \hat{H}_d^{\alpha} \hat{H}_u^{\beta}]$$

$$\Delta W = -\epsilon_{ab} \hat{H}_u^a \hat{L}_i^b Y_{\nu_{ij}} \hat{N}_j^c + \frac{1}{2} \hat{N}_i^c M_{R_i} \hat{N}_i^c \quad \textbf{See-saw parts}$$

But also the soft masses

$$-\mathcal{L}_{soft} = \frac{1}{2} \left[M_{3}\widetilde{g}\widetilde{g} + M_{2}\widetilde{W}\widetilde{W} + M_{1}\widetilde{B}\widetilde{B} \right]$$

$$+ \epsilon_{\alpha\beta} \left[-bH_{d}^{\alpha}H_{u}^{\beta} - H_{u}^{\alpha}\widetilde{Q}_{i}^{\beta}\widetilde{A}_{u_{ij}}\widetilde{U}_{j}^{c} + H_{d}^{\alpha}\widetilde{Q}_{i}^{\beta}\widetilde{A}_{d_{ij}}\widetilde{D}_{j}^{c} + H_{d}^{\alpha}\widetilde{L}_{i}^{\beta}\widetilde{A}_{e_{ij}}\widetilde{E}_{j}^{c} + \text{h.c.} \right]$$

$$+ m_{H_{d}}^{2} |H_{d}|^{2} + m_{H_{u}}^{2} |H_{u}|^{2} + \widetilde{Q}_{i}^{\alpha}m_{Q_{ij}}^{2}\widetilde{Q}_{j}^{\alpha*}$$

$$+ \widetilde{L}_{i}^{\alpha}m_{L_{ij}}^{2}\widetilde{L}_{j}^{\alpha*} + \widetilde{U}_{i}^{c*}m_{U_{ij}}^{2}\widetilde{U}_{j}^{c} + \widetilde{D}_{i}^{c*}m_{D_{ij}}^{2}\widetilde{D}_{j}^{c} + \widetilde{E}_{i}^{c*}m_{E_{ij}}^{2}\widetilde{E}_{j}^{c}$$

 SUSY FCNC's result from off-diagonal soft masses in the basis where the charged Yukawas are diagonal (also EDMs result from soft phases)

e.g. slepton doublet mass matrix

$$m_{LL}^2 = \begin{pmatrix} (m_{LL}^2)_{11} & (\Delta_{LL})_{12} & (\Delta_{LL})_{13} \\ (\Delta_{LL})_{21} & (m_{LL}^2)_{22} & (\Delta_{LL})_{23} \\ (\Delta_{LL})_{31} & (\Delta_{LL})_{32} & (m_{LL}^2)_{33} \end{pmatrix} \tilde{v}_{\mu} \qquad \tilde{v}_{e} \\ \frac{h_{\mu}}{\mu} \qquad \frac{\mu}{g_2 v_2} \qquad \frac{g_2 v_2}{\mu} \qquad \frac{M_2}{g_2 v_2} \qquad \frac{g_2}{\mu}$$
Off-diagonal slepton $\mu_R \qquad \tilde{\mu}_{D} \qquad \tilde{\mu}_{U} \qquad \tilde{w} \qquad \tilde{w} \qquad \tilde{e}_L$

Off-diagonal slepton masses lead to LFV

$$BR(\mu \to e\gamma) < 10^{-11} \to \delta_{LL12} = \frac{(\Delta_{LL})_{12}}{m_{LL}^2} < 10^{-3}$$

Lepton Flavour Violation

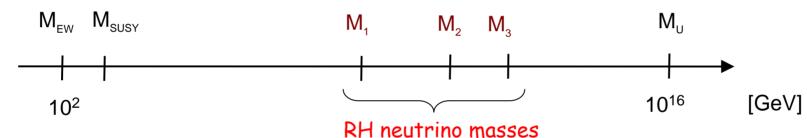
Ciuchini, Masiero, Paradisi, Silvestrini, Vempati, Vives

Process	Present Bounds	Expected Future Bounds	
$BR(\mu \to e \gamma)$	1.2×10^{-11}	$\mathcal{O}(10^{-13} - 10^{-14})$	
$BR(\mu \to e e e)$	1.1×10^{-12}	$\mathcal{O}(10^{-13} - 10^{-14})$	
$BR(\mu \to e \text{ in Nuclei (Ti)})$	1.1×10^{-12}	$\mathcal{O}(10^{-18})$	
$BR(\tau \to e \gamma)$	$1.1~\times~10^{-7}$	$\mathcal{O}(10^{-8})$	
$BR(\tau \to e e e)$	$2.7~\times~10^{-7}$	$\mathcal{O}(10^{-8})$	
$BR(\tau \to e \mu\mu)$	$2. \times 10^{-7}$	$\mathcal{O}(10^{-8})$	
$BR(\tau \to \mu \gamma)$	6.8×10^{-8}	$\mathcal{O}(10^{-8})$	
$BR(\tau \to \mu \mu \mu)$	2×10^{-7}	$\mathcal{O}(10^{-8})$	
$BR(\tau \to \mu e e)$	$2.4~\times~10^{-7}$	$\mathcal{O}(10^{-8})$	

Type of δ_{12}^l	$\mu \to e \gamma$	$\mu \to e e e$	$\mu \to e$ conversion in Ti	Type of δ_{23}^l	$ au ightarrow \mu \gamma$	Type of δ^l_{13}	$\tau \to e \gamma$
LL	6×10^{-4}	2×10^{-3}	2×10^{-3}	LL	0.12	LL	0.15
RR	=	0.09		RR	-	RR	1=
LR/RL	1×10^{-5}	3.5×10^{-5}	3.5×10^{-5}	LR/RL	0.03	LR/RL	0.04

Predicting LFV in mSUGRA

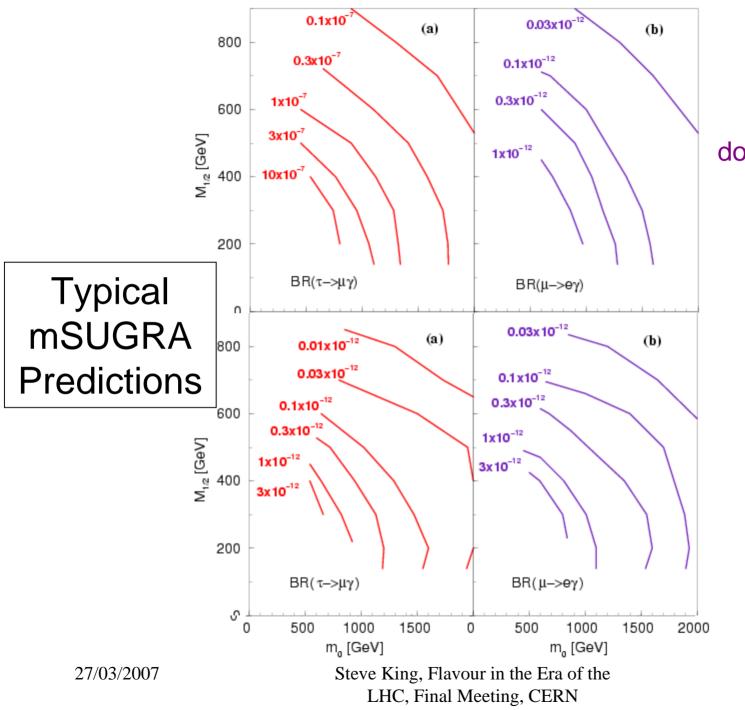
$$m_{\tilde{L}_{ij}}^{2} = m_{0}^{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \delta m_{\tilde{L}_{ij}}^{2} - M_{\tilde{L}_{ij}$$



$$\frac{dm_{\tilde{L}}^2}{dt} \approx \left(\frac{dm_{\tilde{L}}^2}{dt}\right)_{Y^{\nu}=0} - \frac{(3m_0^2 + A_0^2)}{16\pi^2} \left[Y^{\nu}Y^{\nu\dagger}\right] \qquad \text{on the see-saw}$$

Depends strongly parameters

> →WG3 contributors



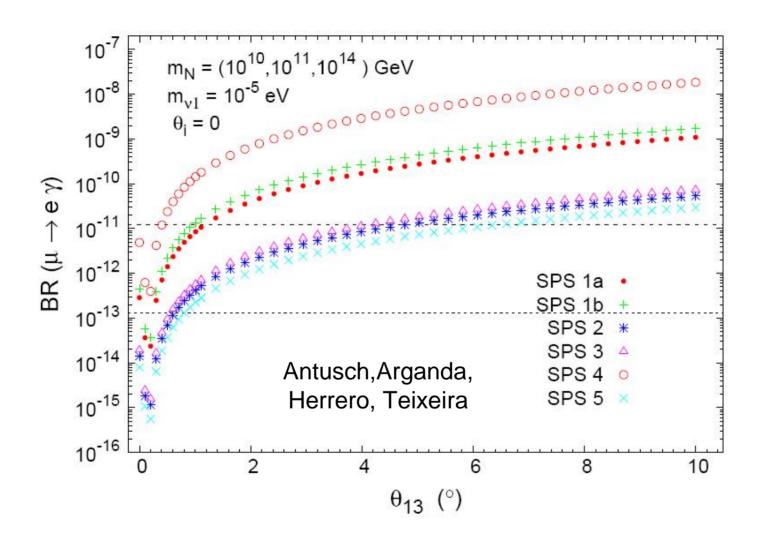
Heaviest RH neutrino is dominant ; predicts large $\tau \rightarrow \mu \gamma$

Blazek,SFK $\tan \beta = 50$

Lightest RH neutrino is dominant

19

Correlation between $\mu \rightarrow e \gamma$ and θ_{13} for HSD



Three sources of non-universality

1. Non-minimal SUGRA

--due to different families coupling to the hidden sector differently

$$m_L^2 = m_{3/2}^2 \begin{bmatrix} a \\ a \\ b_L \end{bmatrix}$$

2. D-terms

--due to broken U(1) gauge groups with family dependent charges

$$m_{L_L}^2 = m_L^2 - \mathbf{1}(3g_4^2)D_H^2 + \begin{pmatrix} q_{L1} & & \\ & q_{L2} & \\ & & q_{L3} \end{pmatrix} g_F^2 D_\theta^2$$

3. Flavon SUSY breaking

--due to flavon dependent Yukawa couplings

$$\Delta A = F_{\Phi} \partial_{\Phi} \ln Y = F_{\Phi} \partial_{\Phi} \ln \Phi^{n} = F_{\Phi} \frac{n}{\Phi}$$
$$F_{\Phi} \propto m_{3/2} \Phi \longrightarrow \Delta A \propto n m_{3/2}$$

Abel, Servant;

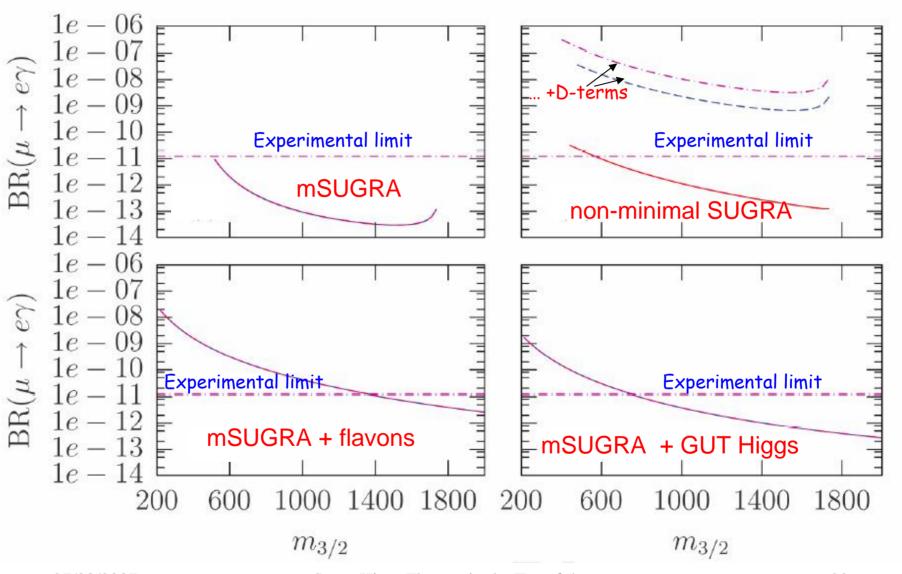
Abel, Khalil, Lebedev;

Ross, Vives;

Peddie, SFK.

$\mu \rightarrow e \gamma$ in non-Universal models

Hayes, Peddie, SFK



27/03/2007

Steve King, Flavour in the Era of the LHC, Final Meeting, CERN

SU(5) GUTs and Soft Masses

Ciuchini, Masiero, Paradisi, Silvestrini, Vempati, Vives

$$\{Q = \begin{pmatrix} u \\ d \end{pmatrix} \quad e^c \quad u^c\} \quad \subset \quad \mathbf{10},$$

$$\{d^c \ L = \begin{pmatrix} \nu \\ e \end{pmatrix}\} \subset \mathbf{5}.$$

to measure squark and slepton masses to relate quark and lepton flavour violation

Relations at the weak scale	Relations at $M_{\rm GUT}$
$(\delta_{ij}^u)_{\mathrm{RR}} \approx (m_{e^c}^2/m_{u^c}^2) (\delta_{ij}^l)_{\mathrm{RR}}$	$m_{u^c_0}^2 = m_{e^c_0}^2$
$(\delta_{ij}^q)_{\mathrm{LL}} \approx (m_{e^c}^2/m_Q^2) (\delta_{ij}^l)_{\mathrm{RR}}$	$m_{Q_0}^2 = m_{e^c_0}^2$
$(\delta^d_{ij})_{\mathrm{RR}} \approx (m_L^2/m_{d^c}^2) (\delta^l_{ij})_{\mathrm{LL}}$	$m_{d^c_0}^2 = m_{L_0}^2$
$(\delta_{ij}^d)_{\mathrm{LR}} \approx (m_{L_{avg}}^2/m_{Q_{avg}}^2) (m_b/m_\tau) (\delta_{ij}^l)_{\mathrm{LR}}^{\star}$	$A^e_{ij_0} = A^d_{ji_0}$

Flavour changing observables in the down sector Ciuchini, Masie

Ciuchini, Masiero, Paradisi, Silvestrini, Vempati, Vives

Observable	Measurement/Bound	
Sector	1–2	
ΔM_K	$(0.0-5.3) \times 10^{-3} \; \mathrm{GeV}$	
ε	$(2.232 \pm 0.007) \times 10^{-3}$	
$ (\varepsilon'/\varepsilon)_{\mathrm SUSY} $	$<2\times 10^{-2}$	
Sector	1–3	
ΔM_{B_d}	$(0.507 \pm 0.005) \text{ ps}^{-1}$	
$\sin 2\beta$	0.675 ± 0.026	
$\cos 2eta$	> -0.4	
Sector	2–3	
${\rm BR}(b\to (s+d)\gamma)(E_\gamma>2.0~{\rm GeV})$	$(3.06 \pm 0.49) \times 10^{-4}$	
$BR(b \to (s+d)\gamma)(E_{\gamma} > 1.8 \text{ GeV})$	$(3.51 \pm 0.43) \times 10^{-4}$	
${\rm BR}(b \to s \gamma)(E_{\gamma} > 1.9 \; {\rm GeV})$	$(3.34 \pm 0.18 \pm 0.48) \times 10^{-4}$	
$A_{CP}(b o s\gamma)$	0.004 ± 0.036	
$\mathrm{BR}(b \to s l^+ l^-) (0.04~\mathrm{GeV} < q^2 < 1~\mathrm{GeV}$	$(11.34 \pm 5.96) \times 10^{-7}$	
$BR(b \to sl^+l^-)(1 \text{ GeV} < q^2 < 6 \text{ GeV})$	$(15.9 \pm 4.9) \times 10^{-7}$	
	10.000	

δ^{d} parameters

$ij \backslash AB$	LL	LR	RL	RR
12	1.4×10^{-2}	9.0×10^{-5}	9.0×10^{-5}	9.0×10^{-3}
13	9.0×10^{-2}	1.7×10^{-2}	1.7×10^{-2}	7.0×10^{-2}
23	1.6×10^{-1}	4.5×10^{-3}	6.0×10^{-3}	2.2×10^{-1}

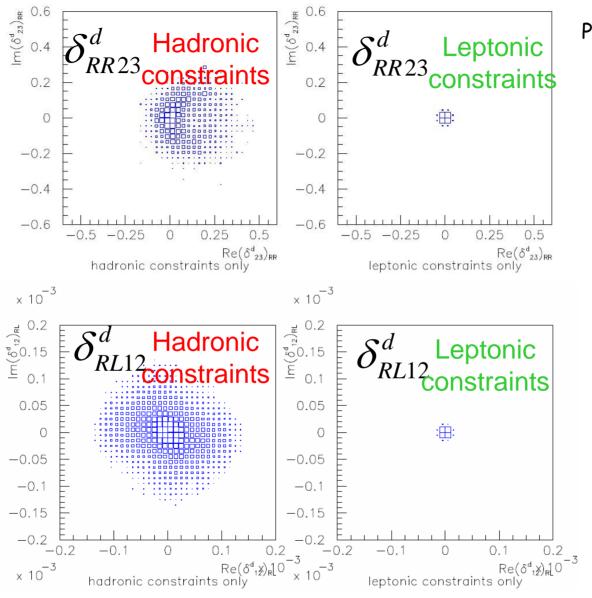
 $BR(b \to sl^+l^-)(14.4 \text{ GeV} < q^2 < 25 \text{ GeV})$

 $A_{CP}(b \rightarrow sl^+l^-)$

 ΔM_{B_o}

 $(4.34 \pm 1.15) \times 10^{-7}$

 -0.22 ± 0.26 (17.77 ± 0.12) ps⁻¹



Ciuchini, Masiero, Paradisi, Silvestrini, Vempati, Vives

Quark-lepton connection: LFV processes can constrain Quark Flavour Violation via GUTs

27/03/2007

Steve King, Flavour in the Era of the LHC, Final Meeting, CERN

SU(3) Family Symmetry and Soft Masses

$$\psi_i \in (Q_i, L_i) \sim \mathbf{3}$$
 Flavons $\phi \sim \mathbf{3}$

SFK, Ross; Ross, Velasco-Sevilla Vives

Yukawas

$$\frac{1}{M^{2}}\phi_{3}^{i}\psi_{i}\phi_{3}^{j}\psi_{j}H + \frac{1}{M^{2}}\phi_{23}^{i}\psi_{i}\phi_{23}^{j}\psi_{j}H + \dots$$

Soft masses
$$m^2 = m_0^2 \left(\delta_{ij} + a_3 \frac{\phi_3^* \phi_3}{M'^2} + a_{23} \frac{\phi_{23}^* \phi_{23}}{M'^2} + \dots \right)$$

- Leading order universal due to _ SU(3)_{fam}
- controlled by flavons

$$n^2 \sim \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} m_0^2 + \begin{pmatrix} 0 & & \\ & & 0 \\ & & & 0 \end{pmatrix}$$

•Sub-leading mainly (2,3) flavour violation controlled by flavons
$$m^2 \sim \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} m_0^2 + \begin{pmatrix} 0 \\ 0 \\ \varepsilon_3^2 \end{pmatrix} m_3^3 + \begin{pmatrix} 0 \\ \varepsilon_{23}^2 & \varepsilon_{23}^2 \\ \varepsilon_{23}^2 & \varepsilon_{23}^2 \end{pmatrix} m_{23}^3 + \dots$$

The SUSY CP Problem

Abel, Khalil,Lebedev; Ross,Vives;

- SUSY neutron EDM $d_n \sim \left(\frac{300~{\rm GeV}}{M}\right)^2 \sin\phi \times 10^{-24} e~{\rm cm}$ Why are SUSY $\phi_\mu \sim \phi_A \equiv \phi \ll 1, \ \tan\beta \sim 3 \quad \rightarrow \phi < 10^{-2}$ phases so small?
- Postulate CP conservation (e.g. $\mu H_u H_d$ real) with CP is spontaneously broken by flavon vevs
- Trilinear soft $\tilde{A}_{ij} = A_0 \left(a_3 \frac{\phi_3^i \phi_3^j}{M^2} + a_{23} \frac{\phi_{23}^i \phi_{23}^j}{M^2} + \dots \right)$

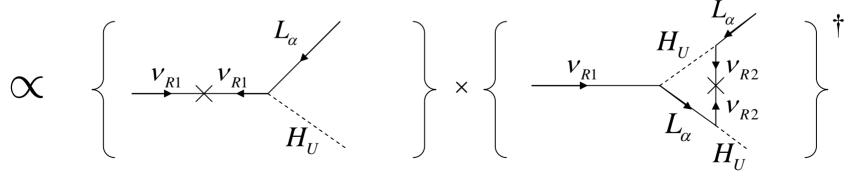
 A_0 , a_3 , a_{23} , real gives real soft masses times complex Yukawa elements \rightarrow no soft phases at leading order

Flavour Dependent Thermal Leptogenesis

Barbieri, Creminelli, Strumia, Tetradis: Endoh, Morozumi, Xiong; Pilaftsis, Underwood; Vives; Abada, Davidson, Josse-Michaux, Losada, Riotto, Ibarra: Nardi, Nir, Roulet, Racker

- •In leptogenesis neutrino CP violation is the origin of baryon asymmetry
- •For typical leptogenesis temperatures <10¹² GeV FD effects are relevant
- •Right-handed Majorana (L violating) neutrinos are produced in early universe and decay out of equilibrium giving net lepton numbers L_e , L_u , L_τ
- •Out of equilibrium Boltzmann eqs lead to L_e , L_u , L_τ partial washouts
- •Surviving L_e , L_u , L_τ are processed into B via B-L conserving sphalerons

$$\varepsilon_{\mathrm{l},\alpha} \approx \frac{\Gamma(\nu_{\mathrm{R}1} \to L_{\alpha} \overline{H}_{\mathrm{U}}) - \Gamma(\overline{\nu}_{\mathrm{R}1} \to \overline{L}_{\alpha} H_{\mathrm{U}})}{\sum_{\alpha} \left(\Gamma(\nu_{\mathrm{R}1} \to L_{\alpha} \overline{H}_{\mathrm{U}}) + \Gamma(\overline{\nu}_{\mathrm{R}1} \to \overline{L}_{\alpha} H_{\mathrm{U}})\right)} \quad \text{FD lepton asymmetry}$$

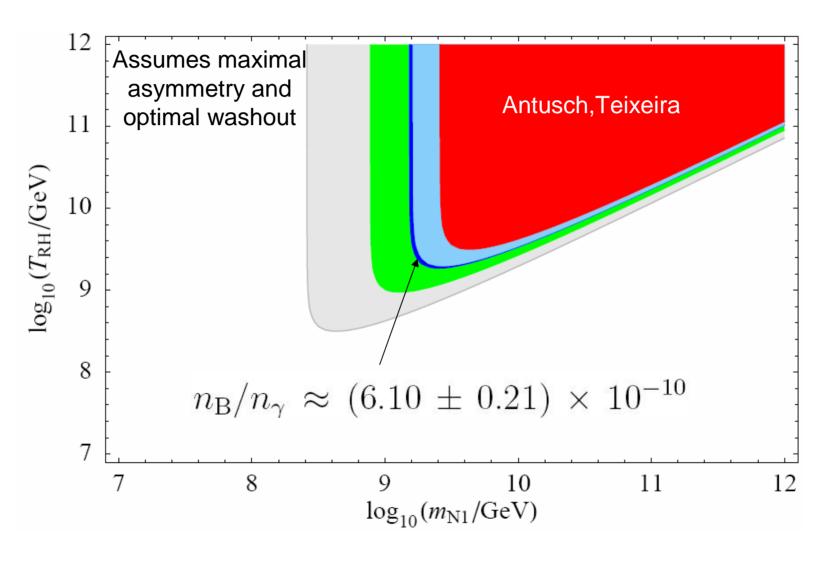


Flavour Dependent Leptogenesis with SD

Antusch, SFK, Riotto

- •What can we learn from FD Leptogenesis?
- •If the dominant RH neutrino is lightest all asymmetries are suppressed by m_2/m_3 with $\epsilon_{1,e}$ killed by a (1,1) texture zero and L_u and L_τ strongly washed out
- most popular flavour models inconsistent with FD TLG!
- •If the dominant RH neutrino is the heaviest $\epsilon_{1,e}$ is suppressed by m_2/m_3 but $\epsilon_{1,\mu}$, and $\epsilon_{1,\tau}$ may be maximal and L_{μ} and L_{τ} may have optimal washout
- this case is OK and predicts large rate for $\tau \rightarrow \mu \gamma$

Allowed regions of T_{RH} and M_{R1}



Summary

- Neutrino data is consistent with tri-bimaximal lepton mixing
- Suggests see-saw with CSD and non-Abelian fam sym
- •Yukawas as `little flavour magnets' with flavon vac alignment
- •Class of models suggest θ_{13} =3°
- •Charged lepton corrections give TBM sum rule θ_{12} =35°+ θ_{13} cos δ
- •LFV in mSUGRA distinguishes see-saw models, gives correlations
- But expect non-universal corrections in general
- •SUSY GUTs imply LFV can constrain Quark FC
- •SUSY Fam Sym enforces approx universality but expect flavon corrections
- •Flavon spontaneous CP violation solves SUSY CP Problem
- •Flavour Dependent Leptogenesis discriminates flavour models