Experimental prospects for rare tau decays

Michael Roney University of Victoria

FLAVOUR IN THE ERA OF THE LHC

a Workshop on the interplay of flavour and collider physics

March 2007 CERN

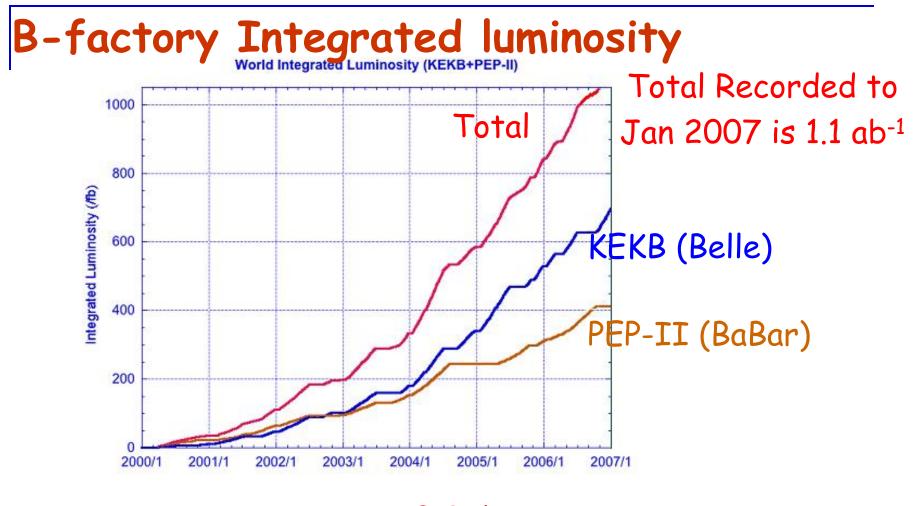
Outline

- Status of LFV limits from B-factories
- Projections: 10³⁶ SuperB Flavour Factory
- Status of LHC studies of LFV from tau decays (thanks to Thomas Kress, Manuel Giffels, L. Perchalla, Achim Stahl (CMS) and Mikhail Shapkin LHCb)
- comments on Lepton Universality from tau decays

LFV predictions very model dependent (see talks on Tuesday of this meeting)

- specific models give LFV process rates
- a single LFV process will not determine the underlying mechanism
- Strategy: combine results from different measurements - complementarity
 - $\hfill all \hfill \mu$ -e LFV processes: radiative decays, μ –e conversion
 - all tau decay channels
 - The many models correlate between various LFV, so e.g. $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$ and $\tau \rightarrow e\gamma$ needed
 - K & B LFV decays
 - neutrino oscillations
 - □ g-2, EDMs
 - direct production at colliders and LHC
 - ...

3 Experimental Prospects for Rare Tau Decays

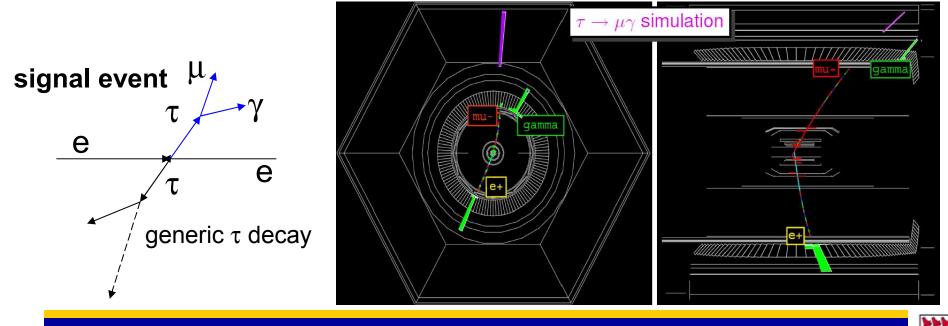

B-Factory Detectors

Both operating at $\Upsilon(4S)$ Belle: 8 GeV e⁻/3.5 GeV e⁺ BaBar: 9 GeV e⁻/3.1 GeV e⁺

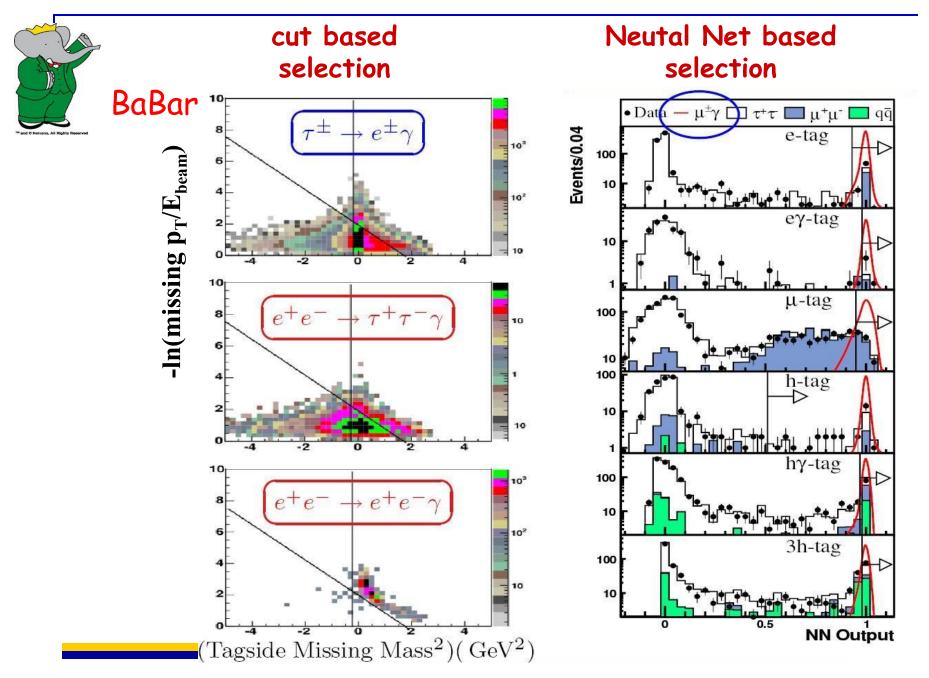
BELLE

 $e^+e^- \rightarrow \tau^+\tau^-$ cross section ~0.9nb Total sample > 10⁹ $\tau^+\tau^-$ events

 \rightarrow search for new physics in rare/forbidden decays

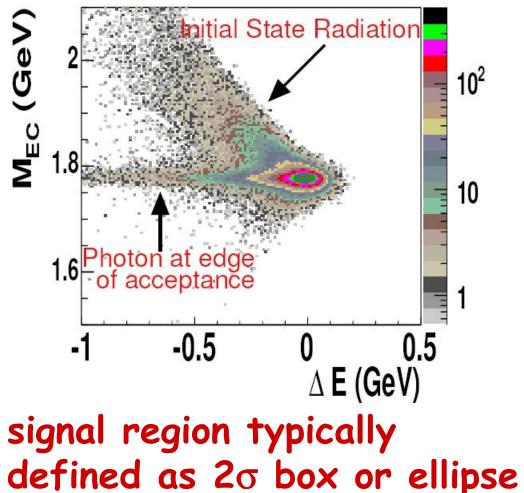

J.M.Roney, Victoria

5 Experimental Prospects for Rare Tau Decays


General event Selection Approach

Divide event into hemispheres in the centre-of-mass

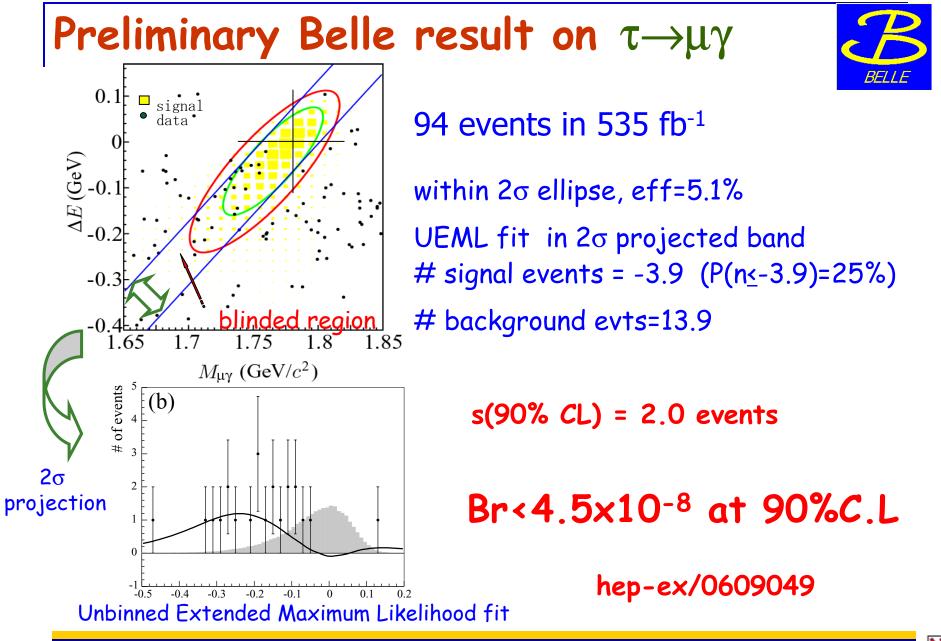
- generic τ decay hemisphere: 1-prong (e, μ, π, ρ) or 3 prong τ decay depending on signal and dominant non-τ backgrounds
 [e⁺e⁻→μ⁺μ⁻γ, e⁺e⁻ → e⁺e⁻ γ, e⁺e⁻ → hadrons, γγ]
 e.g. avoid electron tag for τ→eγ to minimize Bhabha backgrounds
- All searches are 'blind';MC used to optimize selection for 'best expected limit' \rightarrow small no. of background events and ϵ ~ 2-10%

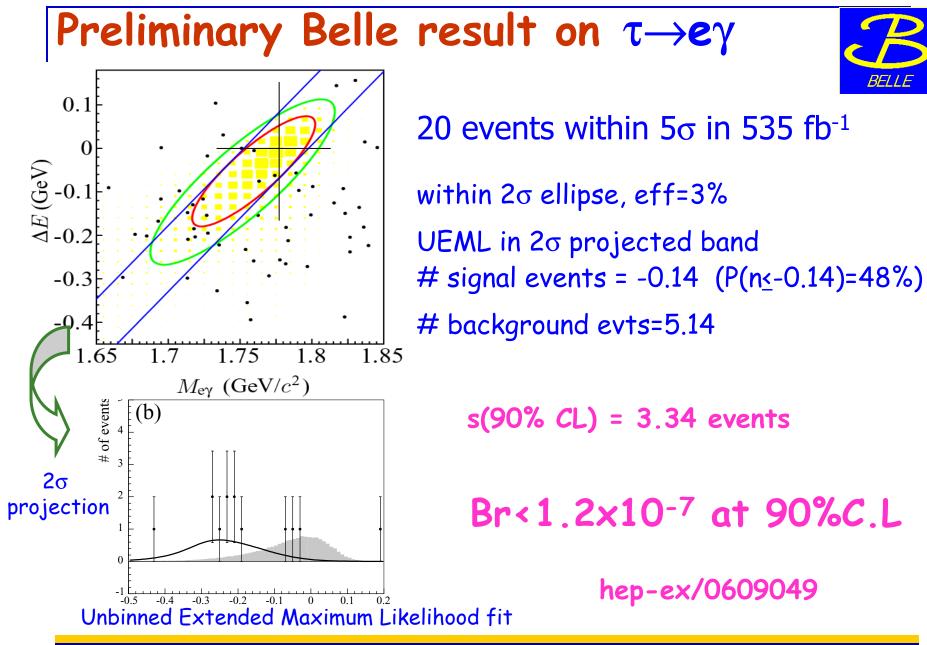


7 Experimental Prospects for Rare Tau Decays

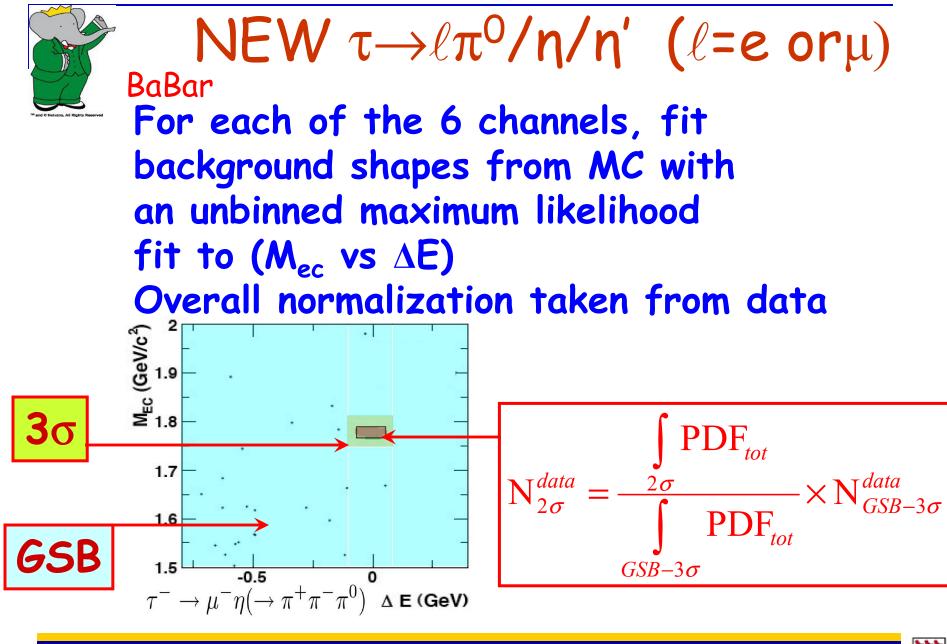
Signal: no neutrinos \rightarrow powerful mass and beam energy information mass: $m_{\mu\gamma} = m_{\tau}$

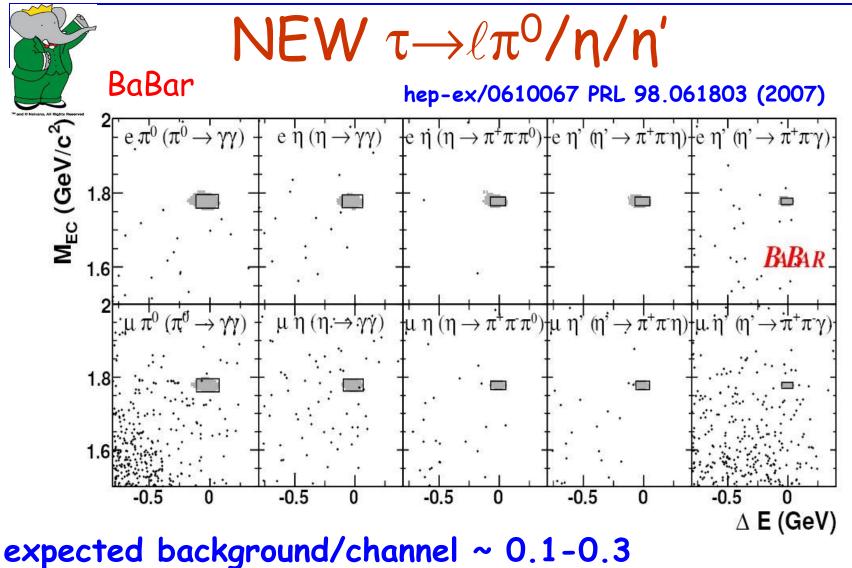
Babar uses beam energy constrained mass & γ vertex at μ point of closest approach to beamspot in x,y $\sigma(M_{EC})\sim 9MeV$ (cf no mass or vertex constraint $\sigma\sim 24MeV$)


Beam Energy: $\Delta E = E_{\mu\gamma} - E_{beam} \sim 0$ $\sigma (\Delta E) \sim 50 \text{MeV}$


Efficiency for searches typically have the following components:

trigger acceptance/reconstruction topology (1vs1, 1 vs 3: hemispheres) Particle ID Cuts Signal-Box cum. 90% 70% 63% 70% 44% 50% 22% 50% 11% 50% ~5%





Total expected background/channel ~ 0.1-0.5 Total expected background=3.1, Observed=2

13 Experimental Prospects for Rare Tau Decays

Summary of $\tau \rightarrow \ell$ Pseudo Scalar 90%CL Upper Limits						
	τ-	Belle * Phys.Lett.B639:159-164,2006 hep-ex/0609013		BaBar PRL 98.061803 (2007)		
	Decay Mode	Br 10-7	Lum. fb ⁻¹	Br 10 ⁻⁷	Lum. fb ⁻¹	
	e⁻K ⁰ ₅	<0.56*	281			
	μ⁻K ⁰ ₅	<0.49*	281			
	$\mu^- \pi^0$	<1.2	401	<1.1	339	
	μ-η	<0.65	401	<1.5	339	
	μ−η ′	<1.3	401	<1.4	339	
	$e^-\pi^0$	<0.8	401	<1.3	339	
	e⁻ŋ	<0.92	401	<1.6	339	
	e⁻η′	<1.6	401	<2.4	339	

14 Experimental Prospects for Rare Tau Decays

Summary of 90%CL Upper Limits on LFV $ au$ decays					
Channel	Bel	le	BaBar		
Channel	Br (10- 7)	L (fb ⁻¹)	Br (10- 7)	L (fb ⁻¹)	
μ-γ	<0.5*	535	<0.7	232	
$\mu^- \pi^0$	<1.2*	401	<1.1	339	
μ-η	<0.7*	401	<1.5	339	
e⁻γ	<1.2*	535	<1.1	232	
e ⁻ π ⁰	<0.8*	401	<1.3	339	
e⁻η	<0.9*	401	<1.6	339	
lll	<(2-4)	87	<(1-3)	92	
ℓhh′	<(2-16)	158	<(1-5)	221	
* Preliminary					

Combining BaBar and Belle: Sw. Banerjee Tau06

- efficiency combined from weighted luminosity
- Add no. events observed in data, Nobs(data)
- Add no. expected background events, b
- Obtain 90%CL Cousins & Highland Upper Limit*:
 - Poisson distributed toy MC with mean (s+b)
 - signal: $s=2\mathcal{L}\sigma_{\tau\tau}BR_{UL}(\epsilon\pm\sigma_{\epsilon})$
 - $\hfill\square$ expected background: b± σ_{b}
 - s & b are each Gaussian distributed

vary BR_{UL} until 10% of toy MCs yield # events < Nobs(data)

the 'expected upper limit' obtained setting s=0 for Poisson distributed values of 'Nobs' for expected background b

* Cousins-Highland NIM A320, 331 (1992), Barlow CPC 149 97 (2002)

16 Experimental Prospects for Rare Tau Decays

Combining BaBar and Belle: Sw. Banerjee Tau06 hep-ex/0702017

	L	E	Background events		${\cal B}_{ m UL}^{90}~(imes 10^{-8})$	
	(fb^{-1})	(%)	Expected	Observed	Expected	Observed
$ au^\pm o e^\pm \gamma$						
BABAR	232.2	4.70 ± 0.29	1.9 ± 0.4	1	12	11
Belle	535.0	2.99 ± 0.13	$5.14^{+2.6}_{-1.9}$	5	1	12
BABAR & BELLE	767.2	3.51 ± 0.13	7.0 ± 2.3	6	12	9.4
$ au^\pm o \mu^\pm \gamma$						
BABAR	232.2	7.42 ± 0.65	6.2 ± 0.5	4	12	6.8
Belle	535.0	5.07 ± 0.20	$13.9^{+3.3}_{-2.6}$	10		4.5
BABAR & BELLE	767.2	5.78 ± 0.24	20.1 ± 3.0	14	11	1.6

17 Experimental Prospects for Rare Tau Decays

Combining BaBar and Belle: Sw. Banerjee Tau06 hep-ex/0702017

Channel	BABAR		BELLE		BABAR & BELLE	
	$B_{ m UL}^{90}~(10^{-8})$	$\mathcal{L}(fb^{-1})$	$B_{ m UL}^{90}~(10^{-8})$	$\mathcal{L}(fb^{-1})$	$B_{\rm UL}^{90}(10^{-8})$	$\mathcal{L}(fb^{-1})$
$ au^{\pm} ightarrow e^{\pm} \gamma$	11	232.2	12	535.0	9.4	767.2
$ au^{\pm} ightarrow \mu^{\pm} \gamma$	6.8	232.2	4.5	535.0	1.6	767.2
$ au^{\pm} ightarrow e^{\pm} \pi^0$	13	339.0	8.0	401.0	4.4	740.0
$ au^{\pm} ightarrow \mu^{\pm} \pi^{0}$	11	339.0	12	401.0	5.8	740.0
$ au^{\pm} ightarrow e^{\pm} \eta$	16	339.0	9.2	401.0	4.5	740.0
$ au^{\pm} ightarrow \mu^{\pm} \eta$	15	339.0	6.5	401.0	5.1	740.0
$ au^\pm o e^\pm \eta'$	24	339.0	16	401.0	9.0	740.0
$ au^\pm o \mu^\pm \eta'$	14	339.0	13	401.0	5.3	740.0

LFV in tau decays: how far can we go?

 BR_{90}^{UL} depends on backgrounds:

In absence of signal, for large N_{bkg} : $N_{90}^{UL} \sim 1.64 \times \sqrt{N_{bkg}}$

For N_{bkg}~0 and no events observed, $N_{90}^{UL} \sim 2.3 + 1.2 \times \sqrt{N_{bkg}}$

(Feldman&Cousins)

Analyses usually keep handful of events:

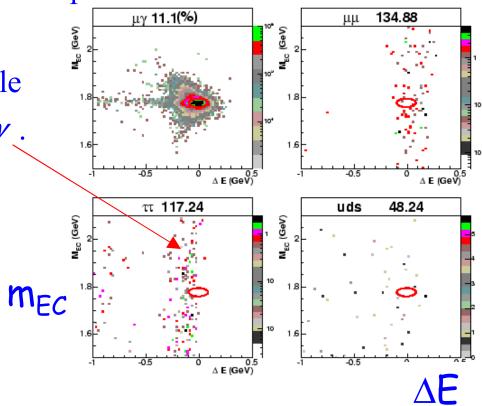
expected limit not improved much if alot of signal efficiency lost

Trivial to project expectations if same analyses used:

Limits scale ~
$$\sqrt{N_{bkg}}$$
 / $\mathcal{L} \sim 1/\sqrt{\mathcal{L}}$ for large N_{bkg}

Gives a worst case scenerio:

Combining Babar & Belle assuming comparable


sensitivities, this drops to $\sim 4x10^{-8}$ for $\sim 1ab^{-1}$ per exp't.

LFV in tau decays $\tau \rightarrow \mu \gamma$

More realistic scenerio: analysis developed with little efficiency loss but all background is solely the irreducible background from $\tau \rightarrow \mu \nu \nu + ISR\gamma$.

This represents $\sim 1/5$ of the Babar background.

LFV in tau decays $\tau \rightarrow \mu \gamma$

Limit then determined by scaling reduced background by \mathcal{L}

Gives scenerio for expected limits with

irreducible backgrounds of $\sim 1-2x10^{-8}$ for 1/ab (Babar+Belle)

For a SuperB factory with 100x luminosity, this leads to $\sim 2-3 \times 10^{-9}$

NB: Not clear how to do this without some efficiency losses •dropping mu-tag - significant efficiency loss •using lifetime information - improved vertexing helps! •more refined tagging analysis

LFV in tau decays $\tau \rightarrow \mu \gamma$

Can reduce 'irreducible' background by improving mass resolution. Increase EM Calorimeter granularity: photon direction is a resolution limiting factor. e.g. if $\mu\gamma$ mass resolution improves from 8.9MeV to 6MeV, the irreducible background scenario limit could improve by 25%.

Can also include γ polar angle as a discriminating variable

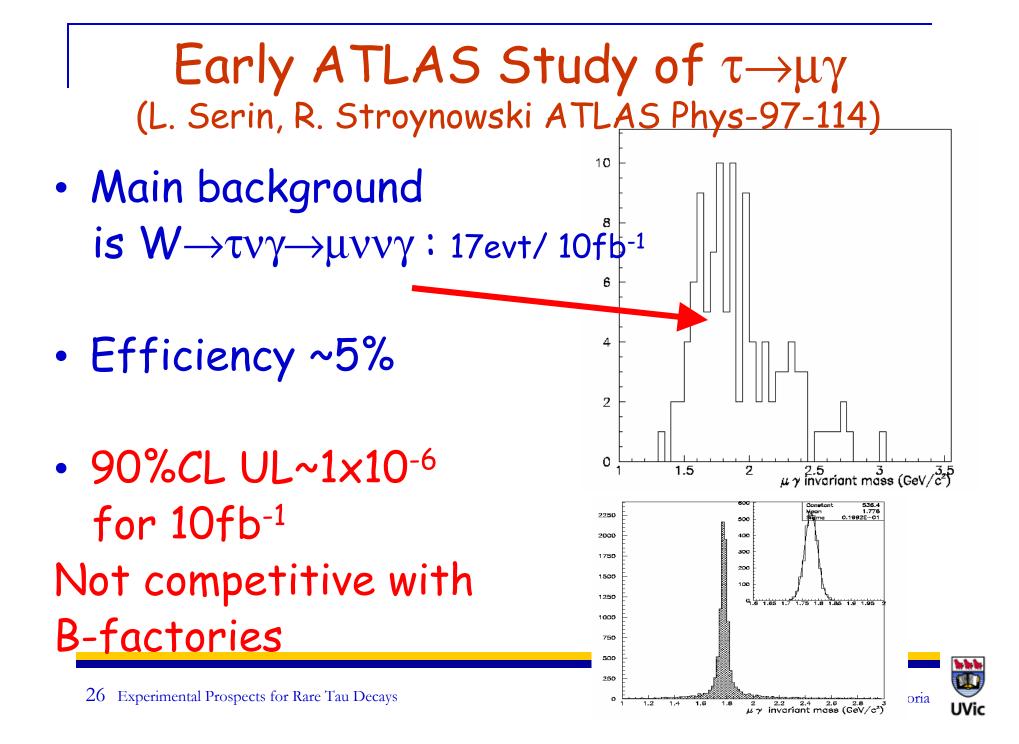
LFV in tau decays $\tau \rightarrow \ell \ell \ell$, $\tau \rightarrow \ell h h'$, $\tau \rightarrow \ell \eta / \eta'$

Situation different for neutrinoless 3-prong decays: no significant irreducible background (analogous QED radiative decays are suppressed by another α factor and lepton masses) ... negligible effect Backgrounds are at O(1) event per mode level.

With no change to the analyses 1ab⁻¹ expected 90%CL UL ~3-9x10⁻⁸ 1 expt

Best case scenario analysis with no 'irreducible' backgrounds, so expected limits could scale as $\mathcal{L}_{...}$ get limits for $1ab^{-1}$ of ~ 10^{-8} For SuperB, with 75 ab^{-1} , expected limit ~ 2×10^{-10}

Summary of SuperB Projections of benchmark LFV decays

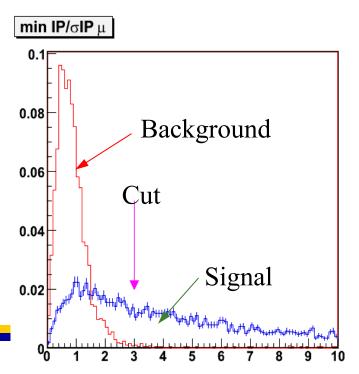

Probing 10⁻¹⁰-10⁻⁹

75 ab ⁻¹	BR 90%CL UL (x10 ⁻⁹)
$\tau \rightarrow \mu \gamma$	2
$\tau \rightarrow e\gamma$	2
$\tau \rightarrow \mu \mu \mu$	0.2
$\tau \rightarrow eee$	0.2
$\tau \rightarrow \mu \eta$	0.4
$\tau \rightarrow e\eta$	0.6
$\tau {\rightarrow} \ell K^0{}_S$	0.2

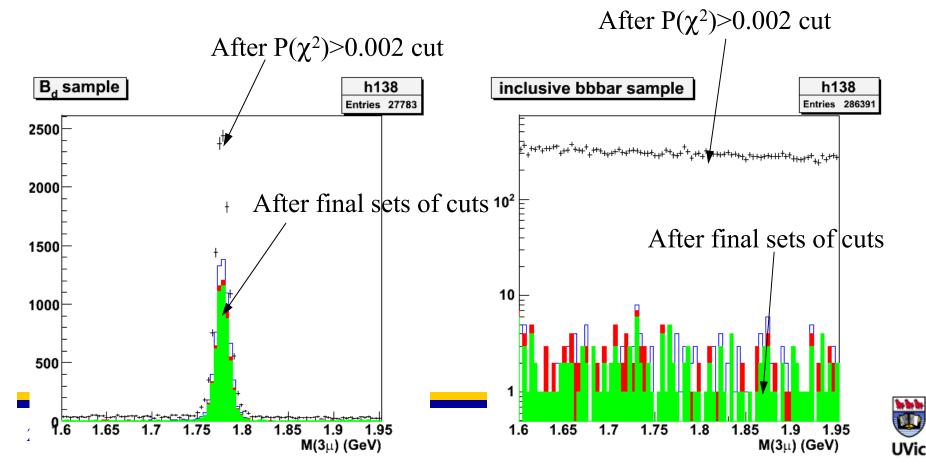
Early (1997) ATLAS Study of $\tau \rightarrow \mu \gamma$ (L. Serin, R. Stroynowski ATLAS Phys-97-114) Study Based on fast MC Source of taus: Drell-Yan $qq' \rightarrow W \rightarrow \tau v$ ~2x10⁸ for 10fb⁻¹ Selection: \square $|\eta| < 2.5$ for both $\mu\gamma$ \square 10<P_T(μ)<20GeV \Box E_T(γ)>20GeV $\Box \int (\Delta \eta^2 + \Delta \phi^2) > 0.08$ • $M(\mu\gamma)$ with 2σ of $M\tau$ (σ ~20MeV)

LHCb Study of $\tau \rightarrow \mu \mu \mu$ (M. Shapkin, TauO6 proceedings)

At LHC, main sources of τ leptons are:


- $B^0/B^{\pm}/B_s \rightarrow X \tau v_{\tau}$ (Br = 2.5 %)
- $D_s \rightarrow X \tau v_{\tau} (Br \sim 7.5 \%)$ D_s from B decays & produced in c-quark fragmentation

After 1 LHCb year: $\int Ldt = 2 \text{ fb}^{-1}$, $\varepsilon \approx 0.35 \text{ N}_{\tau}(LHCb) = 70 \text{ x } 10^9$


LHCb Study of $\tau \rightarrow \mu\mu\mu$ (M. Shapkin, Tau06 proceedings)

- 3 standard identified muons ($P_{+} > 0.4 \text{ GeV}$)
- Common vertex for $3\mu P(\chi^2) > 0.002$
- IP significance: $\mathrm{IP}/\sigma_{\mathrm{IP}} > 3$ for all μ
- $|V_{3\mu} V_{Pvtx}| / \sigma > 3$
- $4mm < (Z_{3\mu} Z_{Pvtx}) < 37mm$
- R_{xy} (between 3μ & Pvtx) > 0.1mm

28 Experimental Prospects for Rare Tau Decays

LHCb Study of $\tau \rightarrow \mu\mu\mu$ (M. Shapkin, Tau06 proceedings) $M(3\mu)$ for signal and background after different cuts

LHCb Study of $\tau \rightarrow \mu \mu \mu$ (M. Shapkin, TauO6 proceedings)

• For $L_{int} = 2 \text{ fb}^{-1}$: $N_{\tau} \approx 7 \cdot 10^{10} \cdot \varepsilon$ inclusive **b** as the main source of background:

 $N_{bg} = 0.5 \cdot 10^{12} \text{ fb} \cdot 2 \text{ fb}^{-1} \cdot 0.35 \cdot \varepsilon_{bg} = 3.5 \cdot 10^{11} \cdot \varepsilon_{bg}$

• For the mass window of ±10MeV

• $\varepsilon_{sig} = 4.7\%; \varepsilon_{bkg} = 4.6 \times 10^{-7}$

• For $\int Ldt = 2fb^{-1} N_{\tau} = 3.5 \times 10^9$; $N_{bkg} = 1.6 \times 10^5$ Br($\tau \rightarrow \mu \mu \mu$) < 1.2 × 10⁻⁷

Initial CMS Study of $\tau \rightarrow \mu\mu\mu$

(Perugia: R. Santinelli, M. Biasini, CMS Note 2002/037)

• $\sigma(pp \rightarrow \tau + X) \sim 120 \,\mu b$ $\sigma(pp \rightarrow Z \rightarrow \tau \tau) = 3nb$ $\sigma(pp \rightarrow W \rightarrow \tau + v) = 19nb$ $\sigma(pp \rightarrow D^+ \rightarrow \tau + v + X) \sim 4\mu b^*$ $\sigma(pp \rightarrow B_x \rightarrow \tau + v + X) \sim 24\mu b^*$ $\sigma(pp \rightarrow D_s \rightarrow \tau + v + X) \sim 92\mu b^*$ *with large uncertainty N_{events}(/10fb⁻¹) 3×10^7 2×10^8 4×10^{10} 2.4×10^{11} 1.2×10^{12}

Initial CMS study with GEANT3 simulation & 2002 CMS reconstruction code

31 Experimental Prospects for Rare Tau Decays

Summary of W,Z, B_x Selection

(Initial CMS Study of $\tau \rightarrow \mu\mu\mu$ CMS Note 2002/037)

- TRIGGER: 2 L1 muons $P_T > 8 \text{GeV}$ and $P_T > 5 \text{ GeV} || 1 \text{ L1 muon } P_T > 20 \text{GeV}$
- 3 L3 reconstructed muons with total charge=+/-1
- W $\rightarrow \tau v$:
 - Topological and isolation cuts around 3 muons
 - $E_{T}miss > 20GeV$
- $Z \rightarrow \tau \tau$:
 - Topological and isolation cuts around 3 muons
 - tag a second tau
 - $P_T(3muons) > 20GeV$
 - total mass of 2 taus > 70GeV
- **B**_×→τν+X:
 - 3 muons inside b-tagged jet
 - 2nd b-tagged jet opposite signal in azimuth
- No pair of muons with mass ~ $M\phi$ --suppresses $D_s \rightarrow \mu \nu \phi \rightarrow \mu \mu \mu \nu$
- 3 muon mass within 25MeV of M τ ($\sigma{\sim}13MeV)$

Summary of W,Z, B_x Reach for 30fb⁻¹

(Initial CMS Study of $\tau \rightarrow \mu\mu\mu$ CMS Note 2002/037)

- $W \rightarrow \tau v$:
 - efficiency ~10%
 - □ background= 2.4±3
 - □ 90%CL UL ~ 4 × 10⁻⁸
- $Z \rightarrow \tau \tau$:
 - efficiency ~ 10%
 - □ background= 1.8±3
 - □ 90%CL UL ~ 3 × 10⁻⁸
- $B_x \rightarrow \tau v + X$:
 - efficiency ~ 2×10^{-5}
 - □ background=3±3
 - □ 90%CL UL ~ 2 × 10⁻⁷

New CMS Study of $\tau \rightarrow \mu\mu\mu$

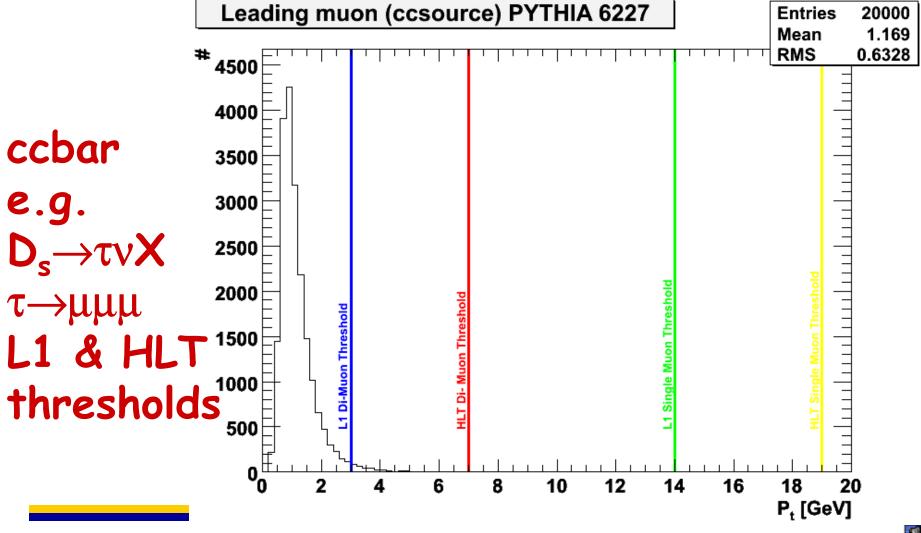
(Aachen: M. Giffels, L. Perchalla, T. Kress, A. Stahl)

 Using GEANT4 and current CMS reconstruction code - more detailed detector & trigger simulation

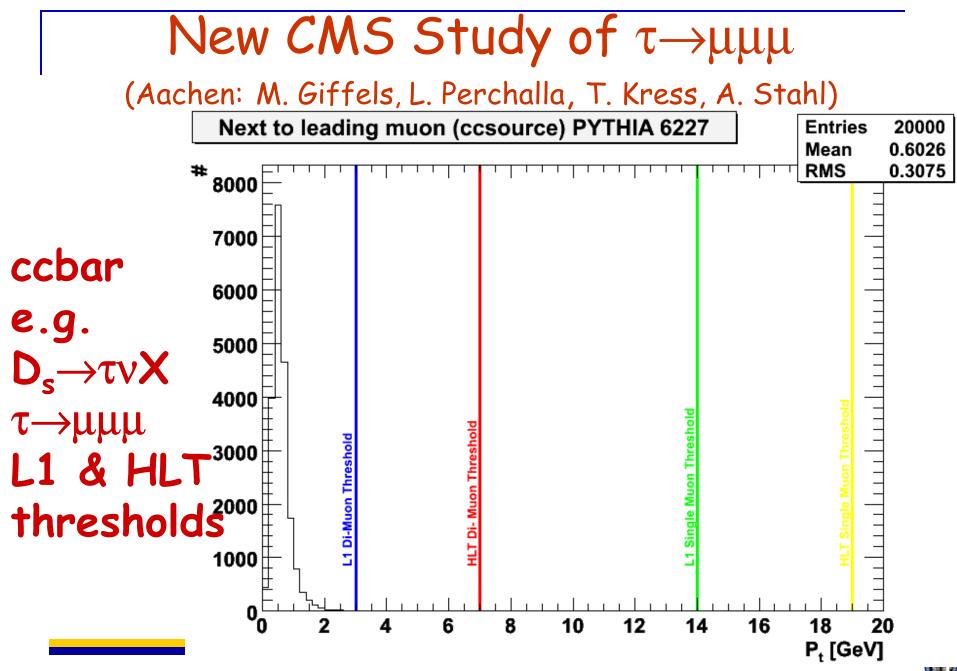
work in progress

- Initially looked like D_s was not such a hopeless source of taus
- □ gave hope of limits ~10⁻¹⁰

BUT spectrum in Pythia 6.324 was too hard...
a bug 🙁 ...

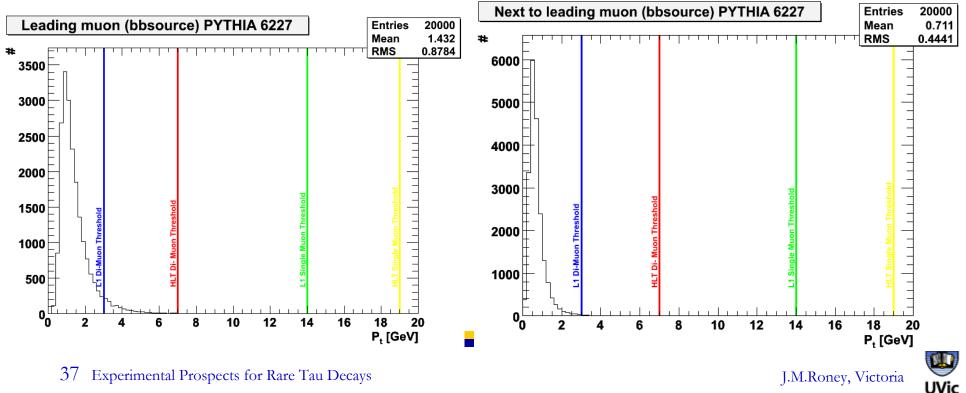

Run Pythia 6.2 and recover similar conclusions of initial study:

must depend on W and Z production



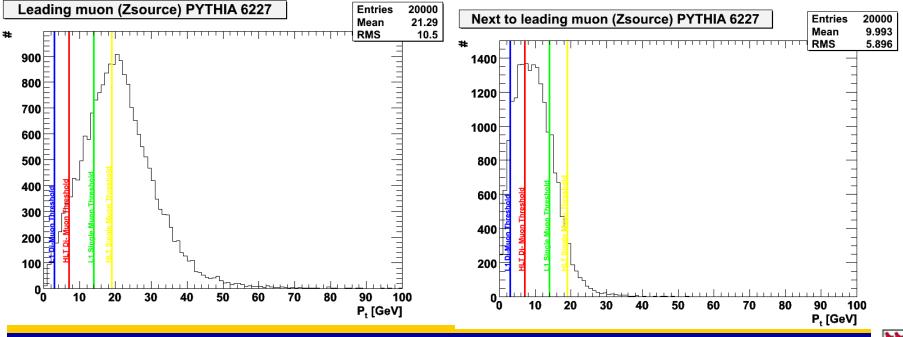
New CMS Study of $\tau \rightarrow \mu\mu\mu$

(Aachen: M. Giffels, L. Perchalla, T. Kress, A. Stahl)


36 Experimental Prospects for Rare Tau Decays

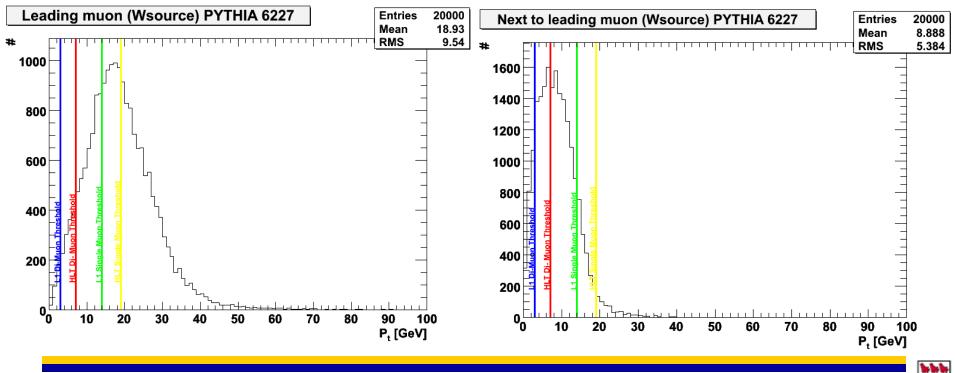
New CMS Study of $\tau \rightarrow \mu\mu\mu$

(Aachen: M. Giffels, L. Perchalla, T. Kress, A. Stahl)


B_x $\rightarrow \tau v$ **X**; $\tau \rightarrow \mu \mu \mu$ **L1 & HLT thresholds** for single muon and two muons

New CMS Study of $\tau \rightarrow \mu\mu\mu$

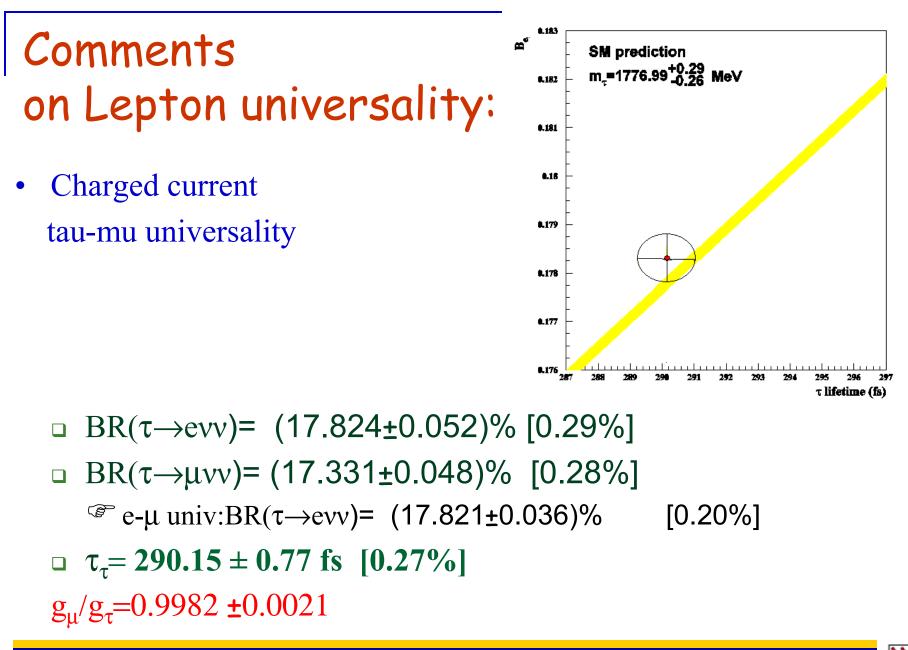
(Aachen: M. Giffels, L. Perchalla, T. Kress, A. Stahl)



New CMS Study of $\tau \rightarrow \mu\mu\mu$

(Aachen: M. Giffels, L. Perchalla, T. Kress, A. Stahl) $W \rightarrow \tau v$; $\tau \rightarrow \mu \mu \mu$ L1 & HLT thresholds for single muon and two muons

Comments on Lepton universality:


• Charged current universality: tau decays

$$\begin{aligned} \boldsymbol{\tau}_{\boldsymbol{\tau}} &= \boldsymbol{\tau}_{\boldsymbol{\mu}} \left(\frac{g_{\boldsymbol{\mu}}}{g_{\boldsymbol{\tau}}} \right)^2 \left(\frac{m_{\boldsymbol{\mu}}}{m_{\boldsymbol{\tau}}} \right)^5 \boldsymbol{\mathcal{B}}(\boldsymbol{\tau}^- \to e^- \bar{\boldsymbol{\nu}}_e \boldsymbol{\nu}_{\boldsymbol{\tau}}) \frac{f(m_e^2/m_{\boldsymbol{\mu}}^2) r_{RC}^{\boldsymbol{\mu}}}{f(m_e^2/m_{\boldsymbol{\tau}}^2) r_{RC}^{\boldsymbol{\tau}}} \\ \boldsymbol{\tau}_{\boldsymbol{\tau}} &= \boldsymbol{\tau}_{\boldsymbol{\mu}} \left(\frac{g_e}{g_{\boldsymbol{\tau}}} \right)^2 \left(\frac{m_{\boldsymbol{\mu}}}{m_{\boldsymbol{\tau}}} \right)^5 \boldsymbol{\mathcal{B}}(\boldsymbol{\tau}^- \to \boldsymbol{\mu}^- \bar{\boldsymbol{\nu}}_{\boldsymbol{\mu}} \boldsymbol{\nu}_{\boldsymbol{\tau}}) \frac{f(m_e^2/m_{\boldsymbol{\tau}}^2) r_{RC}^{\boldsymbol{\mu}}}{f(m_{\boldsymbol{\mu}}^2/m_{\boldsymbol{\tau}}^2) r_{RC}^{\boldsymbol{\tau}}} \\ \text{where} \end{aligned}$$
$$\begin{aligned} f(x) &= 1 - 8x + 8x^3 - x^4 - 12x \ln x \quad \text{(phase space ratios)} \end{aligned}$$

- □ BR($\tau \rightarrow evv$)= (17.824±0.052)% [0.29%]
- □ BR($\tau \rightarrow \mu \nu \nu$)= (17.331±0.048)% [0.28%] RATIO OF BRANCHING RATIOS:
- $\Box g_{\mu}/g_{e} = 0.9999 \pm 0.0020$ from tau decays

□ pion decays: 1.0021±0.0016

B-factories consider measuring leptonic branching ratios at 0.1% level

- Issues of systematic errors:
 - LEP measurements rely on data control samples for establishing the detector response for electrons and muons: same can be done at B-factories
 - Non-tau backgrounds can be controlled at B-factories: tradeoff statistics for reduced systematics
 - Cross contamination from other tau decays: use of control samples & may require improved simultaneous measurements of some non-leptonic modes
 - Normalization has been a dominant error at Y(4s): (no. of produced taus entering the BR denominator)
 - Solution Normalize to $N_{\mu\mu}$ but requires $\sigma(\tau\tau)/\sigma(\mu\mu)$ at <0.1% level and counting $N_{\mu\mu}$ at 0.1% level

Consider ratio of leptonic branching ratios

- Access Lepton universality... statistical sensitivity... using BELLE figures for yields of e-rho mu-rho decays - ~250k in ~30/fb
- Ratio of BR for 75/ab would have statistics to play-off systematic uncertainties.
- Could reach well below (perhaps x10) better than current 0.2%
- STUDIES WITH CURRENT DATA NEEDED
- Very difficult work understanding lepton ID

Summary

- BaBar and Belle have looked in many channels for evidence of LFV in τ decay: limits have pushed into 10^{-8} zone and parameter space in beyond the SM theories are being eaten
- There is still much data to come at e.g. BaBar expects 940fb⁻¹ and has analysed only a 230-340fb⁻¹ of that... BELLE will collect at least 1000fb⁻¹
- SuperB factories will probe 10⁻¹⁰ 10⁻⁹
- LHC experiments ~restricted to $\tau \rightarrow \mu\mu\mu$ and should reach 10⁻⁸ levels similar to existing B-factories
- Lepton universality: systematics questions current Bfactories working on this

additional slides

45 Experimental Prospects for Rare Tau Decays

Summary of $\tau \rightarrow \ell \gamma$, $\ell \ell \ell$

τ -	Belle		BaBar	
mode	Br , 10 ⁻⁷	Lum. fb ⁻¹	Br, 10 ⁻⁷	Lum. fb ⁻¹
μ-γ	<0.45	535	<0.68	232
e⁻γ	<1.2	535	<1.1	232
$\mu^- e^+ \mu^-$	<2.0	87.1	<1.3	91.5
µ−e-e+	<1.9	87.1	<2.7	91.5
μ-μ-μ+	<2.0	87.1	<1.9	91.5
e-µ-µ+	<3.3	87.1	<2.0	91.5
µ+e-e-	<2.0	87.1	<1.1	91.5
e ⁺ e ⁻ e ⁺	<3.5	87.1	<2.0	91.5

46 Experimental Prospects for Rare Tau Decays

Summary	of	$\tau \rightarrow$	lh	h'
---------	----	--------------------	----	----

90%CL Upper Limits

τ-	Belle Phys.Lett.B640:138 144,2006		BaBar prl95(2005)191801		
mode	Br, 10 ⁻⁷	Lum. fb ⁻¹	Br, 10 ⁻⁷	Lum. fb ⁻¹	
e ⁻ π ⁺ π ⁻	<7.3	158	<1.2	221	
e ⁺ π ⁻ π ⁻	<2.0	158	<2.7	221	
e ⁻ π ⁺ K ⁻	<7.2	158	<3.2	221	
e ⁻ π ⁻ K ⁺	<1.6	158	<1.7	221	
e ⁺ π ⁻ Κ ⁻	<1.9	158	<1.8	221	
e⁻K⁺K⁻	<3.0	158	<1.4	221	
e⁺K⁻K⁻	<3.1	158	<1.5	221	

47 Experimental Prospects for Rare Tau Decays

Summary of $\tau \rightarrow \ell$ Vector 90%CL Upper Limits Phys.Lett.B640:138 144,2006

$ au^-$	Belle		τ-	Belle	
mode	Br, 10 ⁻⁷	Lum. fb ⁻¹	mode	Br, 10 ⁻⁷	Lum. fb ⁻¹
e -ρ ⁰	<6.4	158	μ ⁻ ρ ⁰	<2.0	158
e ⁻ K [*] (892) ⁰	<3.0	158	μ⁻K*(892) ⁰	<3.9	158
e ⁻ K [*] (892) ⁰	<4.0	158	μ ⁻ Κ [*] (892) ⁰	<4.0	158
e⁻ø	<7.4	158	μ⁻φ	<7.7	158

48 Experimental Prospects for Rare Tau Decays

CP-violation via Dipole Moments

- Baryon asymmetry requires non-SM sources of CPV thus motivating searches for evidence of CPV outside the SM
- Electric Dipole Moment, d, is T,P-odd
 (so under CPT CP-odd): d≠0 → CPV
 d E S interaction for spin-½ particle relativistically:

$$H_{T,P-odd} = -d \cdot \vec{E} \cdot \vec{S} / S \quad \rightarrow \quad \mathbf{L} = -d \frac{i}{2} \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$$

49 Experimental Prospects for Rare Tau Decays

CP-violation via Dipole Moments

- EDM can be generalized to Z-fermion and gluon-fermion interactions giving rise to weak dipole (WDM) and chromoelectric dipole moments of fermions
- Neutron EDM: |d_n|<6x10⁻²⁶ e cm (90%CL) [Harris et al, PRL 82, 904 (1999)]
- Electron EDM via Tl (paramagnetic): |d_e|<1.6x10⁻²⁷ e cm (90%CL)

[Regan et al, PRL 88, 071805 (2002)]

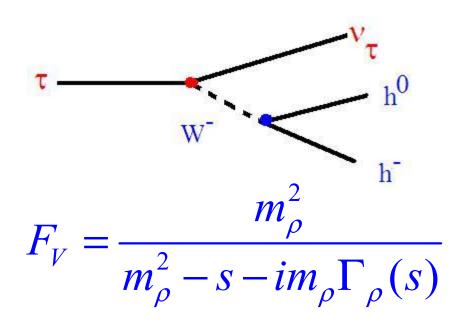
(cf SM: $|d_n^{KM}| \sim 10^{-34} \text{ cm } \& |d_e^{KM}| < 10^{-38} \text{ cm}$)

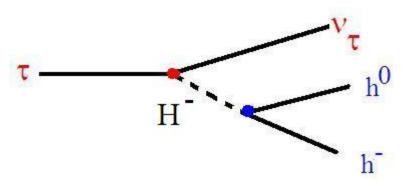
• In general, dipole moment has s dependence and is complex. (For electron and neutron EDM results, s=0 and EDM is real)

CP-violation via τ Dipole Moments In light of d_e<1.6x10⁻²⁷ e-cm limit is $\sigma(\text{Re}(d_{\tau}))=O(10^{-20})$ e-cm (100/ab reach) interesting?

If $d_{\ell} \sim e \frac{m_{\ell}}{\Lambda^2}$ then $d_{\tau}^{\text{MIN}} \sim 3554 d_{e} \rightarrow d_{e}$ (equiv)=3x10⁻²⁴e-cm

missing by ~x2000, less if Λ is different, but > factor 10 'unnatural'.


In multi-Higgs models $d_{\ell} \sim e \frac{m_{\ell}^{3}}{\Lambda^{4}}$ in this case, $d_{\tau}^{\text{MIN}} \sim 4 \times 10^{10} d_{e} \rightarrow d_{e}$ (equiv)=3x10⁻³¹e-cm sensitive to values of Λ of >~60GeV.


Leptoquark models (Bernreuther et at, PLB 391, 413 (1997) give:

 $d_{e}: d_{\mu}: d_{\tau} = m_{u}^{2}m_{e}: m_{c}^{2}m_{\mu}: m_{t}^{2}m_{\tau} = 1 : 14 \times 10^{6} : 4 \times 10^{12}$

Now generally felt that looking for EDM via CPV tau production un likely to bear fruit of new physics (see also e.g. Tsai PhysLettB 378(1996)

CP-violation in τ Decay Y.S. Tsai, PRD55, 3172 (1995)

$$F_{S}=\left|\Lambda\right|e^{i\Theta_{CP}}\left|f_{S}\right|e^{i\delta_{S}},$$

 $f_S = 1$ or BW(scalar h⁰h⁻)

Interference between F_v and F_s because of CPV manifested in $\tau \text{+}$ -- $\tau \text{-}$ decay angle distributions

52 Experimental Prospects for Rare Tau Decays

CP-violation in τ Decay

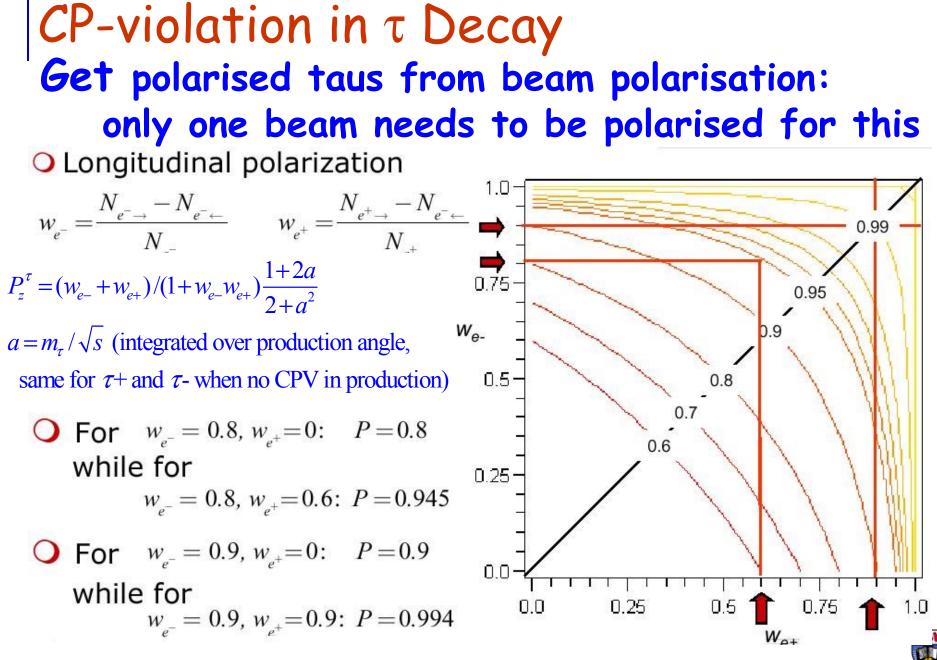
Unpolarised taus •Measure BR's of tau decays with >=2 hadrons

e.g. $BR(\tau^- \to \pi^- \pi^0 V_{\tau}) \neq BR(\tau^+ \to \pi^+ \pi^0 \overline{V}_{\tau})$ (need to understand inelastic final state interactions to interpret an observed CPV)

•Measure CP or T-violating correlations in $\tau + \tau -$ events

$\underset{\text{Polarised taus}}{\text{CP-violation in }\tau\text{ Decay}}$

•Use T-odd rotationally invariant products e.g.


 $P_Z^{\tau} \cdot (\vec{p}_{K+} \times \vec{p}_{\pi 0}) = P_Z^{\tau}$ component of τ polarization along beam axis

averaged over production angle in τ + and τ - decays to >=2 hadrons such as :

 $\tau^{-} \to \pi^{-} \pi^{0} v_{\tau}, \tau^{-} \to K^{-} \pi^{0} v_{\tau},$ $\tau^{-} \to \pi^{-} \pi^{+} \pi^{-} v_{\tau}, \tau^{-} \to K^{-} \pi^{+} \pi^{-} v_{\tau}$ **various observables e.g.** $f_{\pi 0}(p_{\pi 0}^{Z}) = \overline{f}_{\pi 0}(-p_{\pi 0}^{Z})$ longitudinal π^{0} momentum distributions from $\tau^{-} \to K^{-} \pi^{0} v_{\tau}$ and $\tau^{+} \to K^{+} \pi^{0} v_{\tau}$

54 Experimental Prospects for Rare Tau Decays

J.M.Roney, Victoria

UVic

CP-violation in τ Decay Question: it is better to run at threshold with lower lumi, or at Upsilon(4s) with higher lumi?Tsai gives 'Figure of Merit': $FOM = \text{luminosity} \times P_Z^{\tau} \times \text{Total Cross section}$

 $\propto \text{luminosity} \times (w_{e+} + w_{e-}) \times \sqrt{1 - a^2 a^2 (1 + 2a)}$

e.g. BEPCII@10³³ SuperB@10³⁶ SuperB(4GeV)@10³⁵

Machine	FOM/FOM BEPCII	
BESIII@ $\sqrt{s} = 4 \text{ GeV}$	1	
SBF @ <i>Y</i> (4 <i>S</i>)	178	
SBF @ \sqrt{s} =4 GeV	100	

Precision measurements of tau properties: CPT and CP

- Tau lifetime
- Tau mass
- Dipole moments

CPT

• Lifetime:

1st CPT on lifetime from BABAR (Lusiani, TAU04)

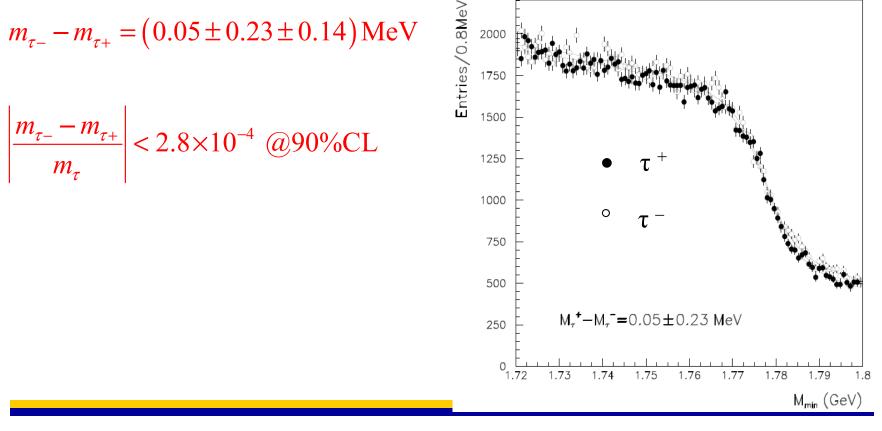
$$\frac{\tau_{\tau-} - \tau_{\tau+}}{\tau_{\tau-} + \tau_{\tau+}} = [0.12 \pm 0.32] \%$$
 preliminary,
no dedicated
systematic studies yet

THIS TEST WOULD BENEFIT FROM HIGH STATISTICS AS MANY SYSTEMATICS WOULD CANCEL

(care needed in selection to avoid known differences in hadronic interaction cross sections for π + & π -)

Statistical error only goes to 10^{-3} with 1/ab and 10^{-4} with 100/ab

 2nd generation CPT lifetime test: muon CPT lifetime (2±8)x10⁻⁵



58 Experimental Prospects for Rare Tau Decays

• Lifetime: CPT	
Preliminary tau lifetime work r (Lusiani, TAU04-Nara) gives g Data sample of: 80/fb	
Systematic Errors:	
MC statistics selection bias	: 0.22%
Background	: 0.14 - uds 0.11
Alignment&length scale	: 0.11
ISR/FSR simulation	: 0.10
Beam spot position	: 0.04
Beam spot size	: 0.04
Beam energy & boost direction	on: 0.04
Tau Mass	: 0.01

Mass: CPT BELLE update TAU06 (see Mikhail Shapkin's talk on Tuesday) using 414/fb

60 Experimental Prospects for Rare Tau Decays

CPT

• Mass:

BELLE: 0.14MeV systematic error from potential charge asymmetries assessed by comparing response of detector to: $D^0 \rightarrow K^- \pi^+; \overline{D^0} \rightarrow K^+ \pi -$ Care needed in $\Lambda_c \rightarrow p K^- \pi^+; \overline{\Lambda_c} \rightarrow \overline{p} K^+ \pi^+$ interpreting results

 $\begin{array}{l} \Lambda_{c} \rightarrow pK^{-}\pi^{+}; \Lambda_{c} \rightarrow pK^{+}\pi^{+} \\ as \ CPT \ assumed \ in \\ D^{+} \rightarrow \phi\pi^{+}; D^{-} \rightarrow \phi\pi^{-} \\ D^{+}_{S} \rightarrow \phi\pi^{+}; D^{-}_{S} \rightarrow \phi\pi^{-} \end{array}$

CPT

• Mass:

SUPER-B: 100/ab would yield a statistical error of 0.023MeV on the mass difference ~ 6 x smaller than 0.15MeV systematic error BELLE now quotes. (Reach 0.15MeV at 2.3/ab)

To fully exploit 100/ab, would need charge asymmetric momentum scales controlled at 10⁻⁵ level. VERY CHALLENGING DETECTOR SYSTEMATICS PROBLEM

Would get CPT test to 2x10⁻⁵ level of sensitivity and would be most sensitive CPT mass difference test after K⁰(10⁻¹⁸), proton and electron (10⁻⁸).

