Status and

prospects of

Kaon experiments

Final Plenary meeting:
CERN, March 26-28 2007

Takeshi K. Komatsubara (KEK, FlavLHC WG2)

L.Littenberg's Kaon talk at the 1st meeting (Nov 05)

KAMI $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ at FNAL

FNAL CKM K ${ }^{+} \rightarrow \pi^{+} v \bar{v}$ Experiment

KOPIO K ${ }_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ at BNL

Laboratori Nazionali di Frascati dell'INFN
May 21-25, 2007
http://www.Inf.infn.it/conference/kaon07/ continue for:

- lifetimes, branching fractions, ... for Vus and Vud

- semi-leptonic/non-leptonic/radiative decays, ... for low energy QCD
- CPT and QM tests
- Lepton Universality and LFV
- Rare decays and CP violation for New Physics in the LHC era

See also the Kaon talks (NA48, KLOE, and KTeV) at Moriond 2007.

Measuring

$K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}, \pi^{ \pm} \pi^{+} \pi^{-}$
Kinematic variables:

$$
\begin{gathered}
s_{i}=\left(P_{k}-P_{\pi i}\right)^{2}, i=1-3\left(3=\pi_{o d d}\right) \\
s_{0}=\left(s_{1}+s_{2}+s_{3}\right) / 3 \\
u=\left(s_{3}-s_{0}\right) / m_{\pi}^{2} \\
v=\left(s_{2}-s_{1}\right) / m_{\pi}^{2}
\end{gathered}
$$

Dalitz plot analyses
Matrix element expansion:
$|M(u, v)|^{2} \sim 1+g u+h u^{2}+k v^{2}$
Direct CP violating quantity: slope asymmetry

SM theoretical prediction: $10^{-6} \div 5 \cdot 10^{-5}$

2003 + 2004 FINAL RESULT

$\begin{aligned} A_{g} & =\left(1.8 \pm 1.7_{\text {stat }} \pm 0.5_{\text {syst }}\right) \cdot 10^{-4} \\ & =(1.8 \pm 1.8) \cdot 10^{-4}\end{aligned}$

$2003+2004$ FINAL RESULT

$$
\begin{aligned}
A_{g} & =\left(-1.5 \pm 1.5_{\text {stat }} \pm 0.9_{\text {trig }} \pm 1.1_{\text {syst }}\right) \cdot 10^{-4} \\
& =(-1.5 \pm 2.1) \cdot 10^{-4}
\end{aligned}
$$

- No CP violation observed.
- Statistical uncertainties dominate.
- Results compatible with Standard Model predictions.

Lepton Universality: $\boldsymbol{\Gamma}\left(\mathbf{K}_{\mathbf{e} 2}\right) / \boldsymbol{\Gamma}\left(\mathbf{K}_{\mu 2}\right)$

V-A couplings - helicity suppressed
$(2.472 \pm 0.001) \cdot 10^{-5}$

$$
R_{K_{0}}^{L F V}=\frac{\sum_{i} K \rightarrow e \nu_{i}}{\sum_{i} K \rightarrow \mu \nu_{i}} \simeq \frac{\Gamma_{S M}\left(K \rightarrow e \nu_{e}\right)+\Gamma\left(K \rightarrow e \nu_{T}\right)}{\Gamma_{S M}\left(K \rightarrow \mu \nu_{\mu}\right)}, i=e, \mu, \tau
$$

If $\tan \beta=40$ and $M_{H^{+}}=500 \mathrm{GeV}$ with $\left|\Delta_{R}{ }^{31}\right|^{2}=5 \cdot 10^{-4}$

The effect can be as high as 2% and therefore measurable PR D74 (2006) 011701 (A. Masiero et al.)

contents (in 35 slides) :

- status

- prospects for the Golden Mode: $K \longrightarrow \pi \nu \bar{\nu}$
- (theoretical motivation)
- program at CERN
- program at J-PARC
updates on J-PARC accelerator
- T odd correlation in $K \rightarrow \mu \nu \pi / \mu v \gamma$ decays at J-PARC
- DAФNE upgrade - KLOE2

PRL 93 (2004)

PR D74 (2006)
10% of the 1st dataset

E391a
Run-2 analysis in progress

Golden Modes	Standard Model	Experiment
$K^{+} \rightarrow \pi^{+} \nu \bar{v}$	$8.0_{-1.1}^{+1.1} \times 10^{-11}$	$14.7_{-8.9}^{+13.0} \times 10^{-11} \mathrm{E} 787$
E 949		
$K_{L} \rightarrow \pi^{0} \nu \bar{v}$	$2.9_{-0.4}^{+0.4} \times 10^{-11}$	$<2.1 \times 10^{-7} \quad \mathrm{E} 391 \mathrm{a}$

15% due to

Grossman-Nir bound PLB 398, 163 (1997)

$$
r_{i s} \times \frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)}{\Gamma\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)}=\sin ^{2} \theta \quad \text { relative CP-violating phase }
$$

isospin

breaking
correction
0.954

$$
\frac{B R\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)}{B R\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)}<\frac{\tau_{K_{L}}}{\tau_{K^{+}}} \times \frac{1}{r_{i s}}=4.371 \ldots \simeq 4.4
$$

$$
B R\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)<4.4 \times U L_{90 \%}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)
$$

Golden Modes	Standard Model	Experiment
$K^{+} \rightarrow \pi^{+} \nu \bar{v}$	$8.0_{-1.1}^{+1.1} \times 10^{-11}$	$14.7_{-8.9}^{+13.0} \times 10^{-11} \mathrm{E} 787$
E 949	个	
$K_{L} \rightarrow \pi^{0} \nu \bar{v}$	$2.9_{-0.4}^{+0.4} \times 10^{-11}$	$<2.1 \times 10^{-7} \mathrm{E} 391 \mathrm{a}$

15% due to present CKM accuracy

Federico Mescia @

$$
B\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right) \leq 4.4 B\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right) \quad[\text { Grosmann - Nir Bound }]
$$

$$
K^{+} \rightarrow \pi^{+} \nu \bar{\nu}
$$

program at CERN: NA48/3-P326

CERN, Dubna, Ferrara, Florence, Frascati, Mainz, Merced, Moscow, Naples, Perugia, Protvino, Pisa, Rome, Saclay, San Luis Potosi, Sofia, Turin, TRIUMF
K^{+}decay in flight to π^{+}plus "nothing"

12-NARCH-2007
2007 SPS Fixed Target Programme
Colour code: blue (dark shading) = not yet allocated ; yellow (light shading) = not allocatable or Machine Development

SPS/PS-Coordinator: Christoph Rembser
E-mail: SPS.Coordinator@cern.ch
phone: 73113 (ext. +41 22767 3113)
mobile: 160497 (ext. +41 76487 0497)

Comments:

- CNGS start subject to PS/SPS Committee (SPSC) decision
- COMPASS Muon run approved
- Summer Student Courses: H6 beam line, 4 mornings/afternoons in August (week 31/32)
- SILC R\&D (H2, H6) to be approved by SPSC
- Week 44 and week 45: pion beam for P0 beam line

June-Nov 2007: P326 run at SPS

- run for $\Gamma\left(\mathbf{K}_{\mathrm{e} 2}\right) / \Gamma\left(\mathbf{K}_{\mu 2}\right)$
to accumulate 150K Ke2 events
- test of new prototype detectors in the NA48 beam/detector environment:

Layout of the P326 Pion RICH

RICH
straw

muon veto

Backgrounds

Kinematically constrained

92\% of total background

- Allows us to define a signal region
- $K^{+} \rightarrow \pi^{+} \pi^{0}$ forces us to split it into two parts (Region I and Region II)

Not kinematically constrained

8% of total background

- Span across the signal region
- Rejection must rely on veotes

Analysis: background rejection

Events/year	Total	Region I	Region II
Signal (acc=17\%)	65	16	49
$\mathrm{~K}^{+} \rightarrow \pi^{+} \pi^{0}$	2.7	1.7	1.0
$\mathrm{~K}^{+} \rightarrow \mu^{+} \nu$	1.2	1.1	<0.1
$\mathrm{~K}^{+} \rightarrow \mathrm{e}^{+} \pi^{+} \pi^{-} \nu$	~ 2	negligible	~ 2
Other 3 - track decays	~ 1	negligible	~ 1
$\mathrm{~K}^{+} \rightarrow \pi^{+} \pi^{0} \gamma$	1.3	negligible	1.3
$\mathrm{~K}^{+} \rightarrow \mu^{+} v \gamma$	0.5	0.2	0.2
$\mathrm{K}^{+} \rightarrow \mathrm{e}^{+}\left(\mu^{+}\right) \pi^{0} v$, others	negligible	-	-
Total bckg.	9	3.0	6

$\Rightarrow \underline{S / B} \sim 8$ (Region I ~5, Region II ~9)

$$
K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}
$$

program at J-PARC: E14

KEK, Kyoto, NDA, Osaka, Saga, Yamagata,
Arizona State, Chicago, Michigan-Ann Arbor, JINR,
National Taiwan,
Pusan National, Seoul, CheonBuk

J-PARC

Schedule of construction and commissioning
 - not official -

detector for $K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}$

- transfer and upgrade E391a detector
- Csl calorimeter
- readout: waveform digitization
- photon veto in the beam

Calorimeter

- $7 \mathrm{~cm} \times 7 \mathrm{~cm} \times 30 \mathrm{~cm}$ (16 r.l.) Csl blocks for E391a (576 ch)

- $2.5 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 50 \mathrm{~cm}$ (27 r.l.) or $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 50 \mathrm{~cm}$ Csl blocks from KTeV (2816 ch)

improvements

- photon isolation
- x8 bkg reduction

- energy resolution (punch-through)
- suppress neutron bkg

Signal Sensitivity for "Step1" = first observation

- acceptance : 4.7\%
- $2.6 \times 10^{12} \mathrm{~K}$ L decays w/ 2E14 protons x 3E7 sec
- Sensitivity $=8 \times 10^{-12}$
3.5 SM events
- Backgound = 2 events

schedule

- NA48/3 : R\&D endorsed by CERN Research Board
- Aims to complete R\&D by the end of 2007
- Start of data taking in 2011
- E14 : Stage-1 (scientific) approved by PAC

- preparation of the beam line and detector upgrade
- make 100 channel system for Csl readout and do beam test
- Beam survey at the end of JFY2008
- assemble detector in JFY2009
- start Step1 expeirment in JFY2010
to be performed by the date of "5 years of LHC" (~ 2012/2013)

see also I.Bigi's report on Tuesday

Transverse muon polarization

KEK-PS experiment E246 (1996-2000)

K+ decay at rest
SC toroidal spectrometer with 12 gaps
Final result Phys. Rev. D73, 072005 (2006)

Parallel plate stopper with Gap drift chambers

Sensitivity estimate

Statistical sensitivity
Standard analysis

- Net run time $1.0 \times 10^{7} \mathrm{~s}$
- Proton beam intensity
$9 \mu \mathrm{~A}$ on T 1
- K^{+}beam intensity
$3 \times 10^{6} / \mathrm{s}$
- Total number of good $K_{\mu 3} \quad 2.4 \times 10^{9}$
- Total number of $f w d / b w d(N) 7.2 \times 10^{8}$
- Sensitivity coefficient
$3.73 / \sqrt{N}$
- δP_{T}
1.35×10^{-4}
including left/right regions
- δP_{T}
0.8×10^{-4}
(A careful systematic error study is necessary)

Systematic errors

Source	δP_{T}
δ_{z}	$<10^{-4}$
θ_{z}	$<10^{-4}$
$\theta_{\mathrm{e}^{+}}, E_{\mathrm{e}^{+}}$	$<10^{-4}$
Total	$\sim 10^{-4}$

DAФNE upgrade

- Crabbed Waist collisions to increase the luminosity - $O\left(10^{33}\right)$
(and to test the idea for the SuperB project)
- new SIDDHARTA experiment : 2007 -(Kaonic atoms)
- KLOE detector upgrade (KLOE2)
- neutral kaon interferometry (CPT and QM tests)
- rare Ks decays
- eta and eta' decays
- hadron cross-section measurements

conclusions:

- The study of kaon physics continues to make great strides.
- Future kaon programs at the date of "5 years of LHC" (~ 2012/2013) will be:
- $K \rightarrow \pi \nu \bar{\nu}$
- T odd correlation in $K^{+} \rightarrow \mu^{+} \nu \pi / \mu^{+} \nu \gamma$
- Lepton Universality

- CPT and QM tests, rare Ks decays [KLOE2]
- new super-flavor factory J-PARC is rising.

New physics is there !!
We know it for sure, at least from neutrino physics \& dark matter [\rightarrow Masiero]

What we don't know yet are energy scale \& flavour strucutre of NP

we should not be pessimistic...
LHC will find NP @ TeV !
...and the collective effort toward flavour physics will be rewarded!

Backup slides

prospects for $K_{L}^{0} \rightarrow \pi^{0} \ell^{+} \ell^{-}$

- theoretical uncertainties (direct-CP/indirect-CP/CPC) are under control : allowing significant test of flavor physics

- need spectrometer for tracking $\left(\mu^{+} \mu^{-}\right)\left(e^{+} e^{-}\right)$ do not need a pencil beam
- trackers in front of the calorimeter may do harm
for $\mathrm{K}_{\mathrm{L}}->\pi^{0} \pi^{0}$ background rejection (photon inefficiency);
--> trackers will not be located at the Step 1 experiment for $K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}$
- We are doing R\&D of trackers for future.

