Status and prospects of Kaon experiments

Final Plenary meeting:

CERN, March 26-28 2007

Takeshi K. Komatsubara (KEK, FlavLHC WG2)

L.Littenberg's Kaon talk at the 1st meeting (Nov 05)

First V particle (1946). Just below the lead plate, in the ower right-hand quadrant, an inverted V extends to the lower right. Rochester and Butler measured the

momentum of the upper particle as 300 MeV/c and determined its charge to be positive. The other (lo particle has a negative charge (if it is moving dow or a positive charge (if it is moving upward). From experience, they argued, the two tracks would hav closer together to be an electron-positron pair. Th tracks cannot be a two-track star; if they were, the should be a visible recoiling nucleus at the apex. conservation of momentum excludes a pion decay an electron, or a muon decaying into an electron. this argument eliminates the only possible alternat Rochester and Butler concluded that this event ha a photographic record of a novel phenomenon: the of a previously unknown neutral meson.

From Image and Logic, a study of the history and practice of experimental microphysics, authore Peter Galison and published by The University of Chicago Press.

The Chicago Conference on Kaon Physics

KAON '99

Proceedings of

KAON 2001

International Conference on CP Vic

The purpose of this workshop is to present the latest experimental and theoretical developments in flavor physics with particular emphasis on the kaon system. The HEP community needs to develop a new generation of experiments that challenge the Standard Model. This requires a close collaboration of physicists working in the various subfields of high-energy physics. The format is plenary talks only, with a moderate number of talks each day to allow time for lively discussion.

arl Albrigh

Local Committee Mayda Velasco (co-chair) Peter Cooper (co-chair) Fermilab Yau Wah (co-chair U of Chicago Northern Illinois

100	
national Co	ommittee
sner	U of Pittsburgh
d Buchalla	I MU Munich
i Buras	TMU Munich
Cabibbo	U of Rome/CERN
o Ceccucci	CERN
zo Cirigliano	CALTECH
ostantini	U of Pisa
ranzini	U of Rome
rossman	Technion
iung	Nat Taiwan U
idori	INFN-Frascati
ir Kekelidze	Dubna
ettel	Brookhaven Nat L
Kobayashi	KEK
rciano	Brookhaven Nat L
Murayama	Berkeley
Nakada	CERN
ir	Weizmann Institut
o Pich	U de Valencia
Sugimoto	KEK
hirhart	Fermilab
h Wahl	Ferrara
Winston	UC-Merced
manaka	Osaka U

Inter

Dave Gerhan

Nicola

Augus Vincen

Flavio

Paolo Yuval (

Bob H Gino Is

Vladin

Steve I

Makot

Bill Ma Hitosh Tatsuy Yosef

http://www.lnf.infn.it/conference/kaon07/

analyses of NA48, KLOE, KTeV, ISTR+, E949/E787, E391a, ... continue for:

lifetimes, branching fractions, ...
 for Vus and Vud

- semi-leptonic/non-leptonic/radiative decays, ... for low energy QCD
- CPT and QM tests
- Lepton Universality and LFV
- Rare decays and CP violation
 for <u>New Physics in the LHC era</u>

See also the Kaon talks (NA48, KLOE, and KTeV) at Moriond 2007.

SM theoretical prediction: 10⁻⁶÷5·10⁻⁵

• No CP violation observed.

- Statistical uncertainties dominate.
- Results compatible with Standard Model predictions.

Lepton Universality: $\Gamma(\mathbf{K_{e2}})/\Gamma(\mathbf{K_{\mu 2}})$

If $\tan\beta = 40$ and $M_{H_{+}} = 500 \text{ GeV}$ with $|\Delta_R^{31}|^2 = 5 \cdot 10^{-4}$

$$\Delta r_{K\ SUSY}^{e-\mu} \simeq \left(\frac{m_{K}^{4}}{M_{H^{\pm}}^{4}}\right) \left(\frac{m_{\tau}^{2}}{m_{e}^{2}}\right) |\Delta_{R}^{31}|^{2} \tan^{6}\beta \approx 10^{-2}$$
A. Masiero: CERN TH seminar

The effect can be as high as 2% and therefore measurable PR D74 (2006) 011701 (A. Masiero et al.)

contents (in 35 slides):

• status `

- prospects for the Golden Mode: $K
 ightarrow \pi
 u ar{
 u}$
 - (theoretical motivation)
 - program at CERN
 - program at J-PARC

updates on J-PARC accelerator

• T odd correlation in $K \rightarrow \mu \nu \pi / \mu \nu \gamma$ decays at J-PARC

DAONE upgrade - KLOE2

Golden Modes	Standard Model	Experiment
$K^+ o \pi^+ \nu \overline{ u}$	$8.0^{+1.1}_{-1.1} \times 10^{-11}$	$14.7^{+13.0}_{-8.9} \times 10^{-11} {{E787}\atop{E949}}$
$K_L \to \pi^0 \nu \overline{\nu}$	$2.9^{+0.4}_{-0.4} imes 10^{-11}$	$< 2.1 imes 10^{-7}$ E391a

15% due to present CKM accuracy

Grossman-Nir bound PLB **398**, 163 (1997)

$$BR(K_L \to \pi^0 \nu \bar{\nu}) < 4.4 \times UL_{90\%}(K^+ \to \pi^+ \nu \bar{\nu})$$
$$1.4 \times 10^{-9}$$

Golden Modes	Standard Model	Experiment
$K^+ ightarrow \pi^+ u \overline{ u}$	$8.0^{+1.1}_{-1.1} \times 10^{-11}$	$14.7^{+13.0}_{-8.9} \times 10^{-11} {{E787}\atop{E949}}$
$K_L \to \pi^0 \nu \overline{\nu}$	$2.9^{+0.4}_{-0.4} imes 10^{-11}$	$< 2.1 imes 10^{-7}$ E391a

$$1 < 32.2 \times 10^{-11}$$

15% due to present CKM accuracy

Federico Mescia @

 $K^+ \to \pi^+ \nu \bar{\nu}$

program at CERN: NA48/3 - P326

CERN, Dubna, Ferrara, Florence, Frascati, Mainz, Merced, Moscow, Naples, Perugia, Protvino, Pisa, Rome, Saclay, San Luis Potosi, Sofia, Turin, TRIUMF

12-MARCH-2007 2007 SPS Fixed Target Programme

Colour code: blue (dark shading) = not yet allocated ; yellow (light shading) = not allocatable or Machine Development

	P1A	P1B		P2	P3			P4			Ρ5	
	21 2 May 23 May	26 23 May 18 Jun	-	37 18 Jun 25 Jul	41 25 Jul 4 Sep			36 4 Sep 10 Oct			33 10 Oct 12 Nov	
T2 -H2		E≜CMS SILC ZDC R&D 2 5 11	CMS SI R&D 9	CMS Combined 2 <mark>8</mark>	CMS Combined 1 <mark>4</mark>	CMS CMS HCAL R&D CASTC 12 14	nR ⊧ 1	PHENIX CR 9	EAMCHERCA	, NA <mark>49</mark> FUTURE 1 <mark>3</mark>	NA49 FUTUF 19	PAMELANUCLEON
T2 -H4		EA CMS → EACL 2 16	DREAM DREAM	ALECC AMS RE1 7 7 7 7	CMS ECAL 21	GLAST [°] LHI 8 1 11	Cf	LHCf BR. 7 8	AN S	CMS ECAL 21	CRY 2	STAL EA MD
T4 -H6		EA 1077 CERF 2 6 3 7	ALICE ZDC 9 7	2 CALICE CALICE ECAL	ALI <mark>C</mark> E ECAL 1 <mark>4</mark>	CALICE HEIPY RE	042 M	MONOPIX DEPFI	T - CERF 01 8	EMIMOROMA DESY TELESCOPE 6 7	SILC R&D 14	RD42 ^{MONOPIX}
T4 -H8		^{EA} RD22 2 16	[⊾] LHCb 2 ¹⁴	ATLAS ATLAS ATLAS LUCID BCM ZDC 7 7 7	LH <mark>C</mark> b 14	TOTEM LHC 14 13	b	ATLA <mark>S</mark> E 3DSI N 9	^{EA} RD 1D 6 1	22 ^{Atlas} RP 4 7	ATLAS RP 19	S RD22 14
T4 -P0		EA 100 2		P326 37		P326 41			P326 36			P326 33
T6 -M2		COMPASS	cc	MPASS 37	(COMPASS 41		(COMPA	SS	co	MPASS 33
CNGS												

SPS/PS-Coordinator: Christoph Rembser E-mail: SPS.Coordinator@cern.ch phone: 73113 (ext. +41 22 767 3113) mobile: 160497 (ext. +41 76 487 0497)

P326

Comments:

- CNGS start subject to PS/SPS Committee (SPSC) decision

- COMPASS Muon run approved

- Summer Student Courses: H6 beam line, 4 mornings/afternoons in August (week 31/32)

- SILC R&D (H2, H6) to be approved by SPSC

- Week 44 and week 45: pion beam for P0 beam line

June-Nov 2007: P326 run at SPS

$$ullet$$
 run for $~~ {f \Gamma}({f K_{e2}})/{f \Gamma}({f K_{\mu2}})$

to accumulate 150K Ke2 events

 test of new prototype detectors in the NA48 beam/detector environment:

Backgrounds

Analysis: background rejection

16 1.7 1.1	49 1.0
1.7 1.1	1.0
1.1	<01
	<0.1
negligible	e ~2
negligible	e ~1
negligible	e 1.3
0.2	0.2
ble –	_
	6
_	3.0

$K_L^0 \to \pi^0 \nu \bar{\nu}$ program at J-PARC: E14

KEK, Kyoto, NDA, Osaka, Saga, Yamagata, Arizona State, Chicago, Michigan-Ann Arbor, JINR, National Taiwan, Pusan National, Seoul, CheonBuk

J-PARC

2006.Dec

CERN COURIER March 2007

Schedule of construction and commissioning - not official -

improvements

- photon isolation
 - x8 bkg reduction

energy resolution (punch-through)

Signal Sensitivity for "Step1" = first observation

schedule

- NA48/3 : R&D endorsed by CERN Research Board
 - Aims to complete R&D by the end of 2007
 - Start of data taking in 2011
- E14 : Stage-1(scientific) approved by PAC
 - preparation of the beam line and detector upgrade
 - make 100 channel system for CsI readout and do beam test
 - Beam survey at the end of JFY2008
 - assemble detector in JFY2009
 - start Step1 expeirment in JFY2010

to be performed by the date of "5 years of LHC" (~ 2012/2013)

see also I.Bigi's report on Tuesday

Transverse muon polarization

KEK-PS experiment E246 (1996-2000)

K+ decay at rest SC toroidal spectrometer with 12 gaps Final result Phys. Rev. D73, 072005 (2006)

Parallel plate stopper with Gap drift chambers

Sensitivity estimate

 $1.0 \times 10^{7} \text{ s}$

 $9\mu A$ on T1

 $3 \times 10^{6} / s$

 2.4×10^{9}

 $3.73/\sqrt{N}$

Statistical sensitivity

Standard analysis

- Net run time
- Proton beam intensity
- *K*⁺ beam intensity
- Total number of good $K_{\mu3}$
- Total number of *fwd/bwd* (*N*) 7.2×10^8
- Sensitivity coefficient
- δP_T 1.35 ×10⁻⁴

including left/right regions

• δP_T 0.8 ×10⁻⁴

(A careful systematic error study is necessary)

$\delta P_T \ (90\% \text{ C.L.})$	10^{-2} 10^{-3} 10^{-4} 10^{-4}	2 3 4 5	SM Final State Interactions	Multi-Higgs doublet	ith sqarks mixing	parity breaking		E246 ●	stage	J-PA e-1 st	RC • tage-2	
	10 ⁻⁶	; 	 Sy	st	en	SUSY with R-	tic	E en	06 701	rs		
	Source							δP_{T}	٦.			
			$\delta_{ m z}$					<	10-'	4		
			θ_{z}					<	10-	4		
			$\theta_{\rm e}$	+,	E_{e}	+		<	10-4	4		_
	Total							~	0-4	-		

$DA\Phi NE$ upgrade

- Crabbed Waist collisions to increase the luminosity ${\cal O}(10^{33})$
 - (and to test the idea for the SuperB project)
- new SIDDHARTA experiment : 2007 --(Kaonic atoms)
- KLOE detector upgrade (KLOE2)
 - neutral kaon interferometry (CPT and QM tests)
 - rare Ks decays
 - eta and eta' decays
 - hadron cross-section measurements

- ..

conclusions:

• The study of kaon physics continues to make great strides.

 Future kaon programs at the date of *"5 years of LHC" (~ 2012/2013)* will be:

-
$$K \to \pi \nu \bar{\nu}$$

- Todd correlation in $K^+ \rightarrow \mu^+ \nu \pi / \mu^+ \nu \gamma$
- Lepton Universality
- CPT and QM tests, rare Ks decays [KLOE2]
- new super-flavor factory **J-PARC** is rising.

G. Isidori – Summary of WG6: CKM fits & NP

We know it for sure, at least from neutrino physics & dark matter [\rightarrow Masiero]

Backup slides

prospects for $K_L^0 \to \pi^0 \ell^+ \ell^-$

- theoretical uncertainties (direct-CP/indirect-CP/CPC) are under control : allowing significant test of flavor physics
- need spectrometer for tracking $(\mu^+\mu^-)(e^+e^-)$ do not need a pencil beam

• We are doing R&D of trackers for future.

