The Next Grand Challenge: Finding CP in Leptodynamics

Ikaros Bigi (Notre Dame du Lac) reporting for

WG3 Subgroup on "C^P with charged leptons" with input from: M. Felcini, W. Fetscher, J. Imazato, M. Roney, J. Kuehn, W. Bernreuther

physical found in (down-type) quark dynamics

- Demystification completed if CP found also in leptodynamics
- Baryogensis from leptogenesis?

Need CP in leptons!

Importance well recognized as evidenced by

- projects for probing \mathcal{O}^{P} in v oscillations
- heroic efforts in finding an EDM for the electron
 Next best bet:
- $\mathcal{G}P$ in τ decays

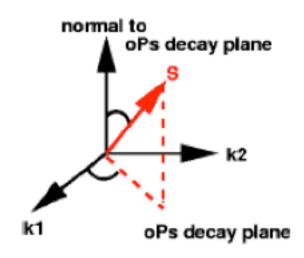
More unconventional avenues:

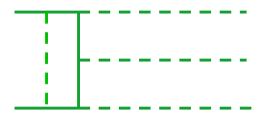
- \Box T odd correlation in μ decays
- T odd correlation in decays of polarized positronium
- T odd correlation in $K \rightarrow \mu \nu \pi / \mu \nu \gamma$ decays

Importance well recognized as evidenced by

- projects for probing \mathcal{O}^{p} in v oscillations
- heroic efforts in finding an EDM for the electron
 Next best bet:
- φ ØP in τ decays

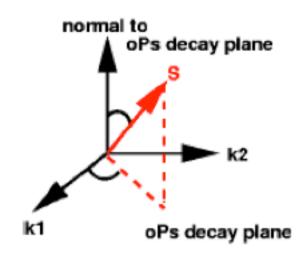
More unconventional avenues:


- \square T odd correlation in μ decays
- T odd correlation in decays of polarized positronium
- T odd correlation in $K \rightarrow \mu \nu \pi / \mu \nu \gamma$ decays


ETH-Zuerich-Cracow-PSI Collab.:

 $|\langle Po|_{+}^{(e)} \rangle = |\langle s^{(e)} (s^{(\mu)} \times p^{(e)}) / |s^{(\mu)} \times p^{(e)}| \rangle = (3.7 \pm 7.7 \pm 3.4) \times 10^{-3}$

IT T odd correl. in decays of polarized positronium (+Felcini)


- $\langle S'(\mathbf{k}_1 \times \mathbf{k}_2) / | \mathbf{k}_1 \times \mathbf{k}_2 | \rangle$
- ➡ P & CP even
- ➡ Todd
- final state interactions can generate T odd moments with T invariant dynamics

 $O(\alpha/2\pi) \le 10^{-3}$ (Bernreuther)

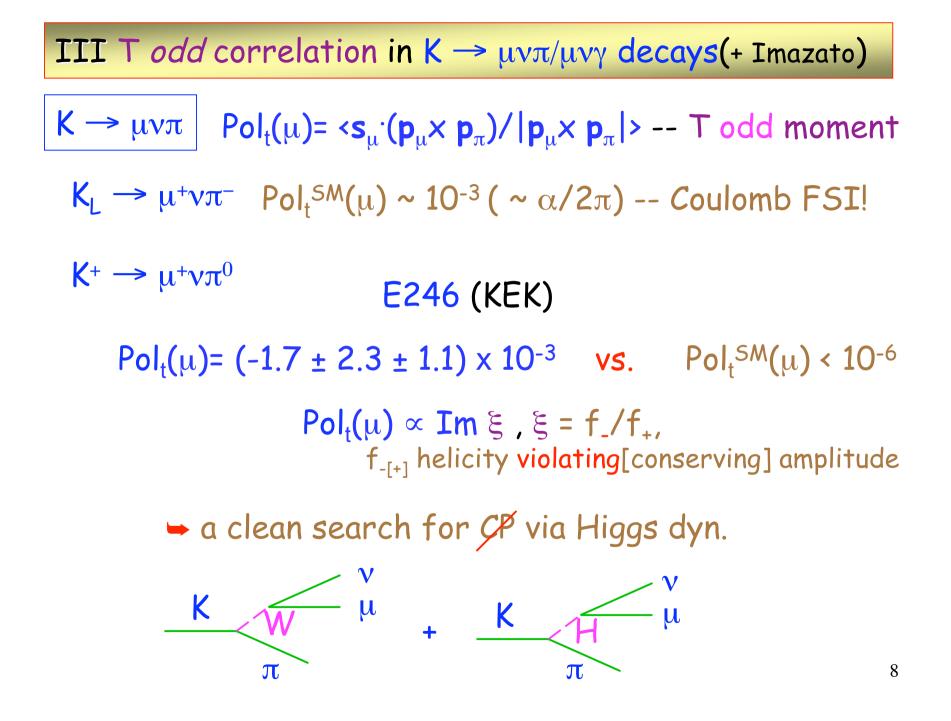
 $O(\alpha^2) \sim 5 \times 10^{-5}$

$$(\hat{S} \cdot \hat{k}_1)(\hat{S} \cdot \hat{k}_1 \times \hat{k}_2)$$
$$\mathcal{N}(\cos\theta) = N_0(1 + C_{CP}\cos\theta)$$
$$\cos\theta \equiv \cos\theta_1 \cos\theta_2$$

➡ P, T & CP odd

final state interactions cannot generate CP odd moments
 with CP invariant dynamics

i.e. bona fide CP violation!


Previous experim. (Skalsey, Van House '91): $C_{CP} = -0.0056 \pm 0.0154$

Suggestion by M. Felcini:

Can reach $\Delta C_{CP} = 5 \times 10^{-6!}$

weak effects ~ $O([G_F(2m_e)^2] \sim 10^{-11}$

interesting New Physics scenarios?

generic guestimate: direct CP presumably unsuppressed by $\Delta I = 1/2$ rule: $5 \times 10^{-6} \times 20 \sim 10^{-4}$ -- unless enhanced couplings to leptons!

Proposal TREK @ J-PARC

 $\delta \text{Pol}_{t}(\mu) \sim 10^{-4}$

 $K^{+} \rightarrow \mu^{+} \nu \gamma$

BR(K⁺ → $\mu^+ \nu \gamma$) ≈ 5.5 × 10⁻³ but: Pol_t^{FSI}(μ) ~ (1-2) × 10⁻⁴ Isidori & Hiller '99 **IV Historical Precedent**

 $K_L \rightarrow \pi^+\pi^- e^+e^-$ with BR ~ 3 x 10⁻⁷

 Φ angle between $\pi^+\pi^-$ & e^+e^- planes

- $\Box d\Gamma/d\Phi = \Gamma_1 \cos^2 \Phi + \Gamma_2 \sin^2 \Phi + \Gamma_3 \sin \Phi \cos \Phi$
- $A = 2\Gamma_3/\pi(\Gamma_1 + \Gamma_2) a T odd$ correlation

A~ 13% KTeV, NA48

- fully consistent with $\[mathodde]{P}$ through ϵ_{K}
- for a while (arguably) largest observed CP
- can trade BR for size of CP asymmetry!

V τ Decays (+Roney & Kuehn)

 \mathcal{CP} in τ decays

most promising channels: $\tau \rightarrow \nu K \pi$, $\nu K \pi \pi [\nu \pi \pi \pi \pi]$

most sensitive to Higgs dynamics

- CP asymmetries possible also in final state distributions rather than integrated rates:
 - likely to be considerably larger
 - telling about detailed structure of underlying operator
 - better control over systematics

• $\tau \rightarrow \nu K \pi \pi$, $\nu \pi \pi \pi$...: more choices for final state distributions

→ can try to `maximize' CP asymmetry at expense of statistics -- memento $K_L \rightarrow \pi^+\pi^- e^+e^-$

Three unique advantages in $e^+e^- \rightarrow \tau^+\tau^-$

- can study CP conjugate transitions --FSI can induce T odd correlations, yet not CP!
- pair produced with spins aligned:
 - $1\,\tau$ decays can `tag' the spin of the other
 - can probe spin-dependent *GP* with unpolarized beams!
- τ pair polarized, if e⁻ beam longitudinally polarized
- polarization dependent asymmetries provide

extra control over systematics

 $\tau^- \rightarrow \nu \ \text{K}^- \pi^0 / \ \text{K}^0 \pi^-$

CP odd ~ $|T^*_{SM} T_{NP}|$ vs. LFV ~ $|T_{NP}|^2$ i.e., 0.1 % CP in $\tau \rightarrow \nu K\pi$ ~ 10⁻⁸ BR for $\tau \rightarrow \mu\gamma$

- © 3-body final state
 - P in distributions in general
 Kuehn & Mirkes '96,'97
 © possibly considerably larger than integrated ones
 © yield info on underlying transition operator
 © allows consistency checks
- © presumably higher sensitivity to non-minimal Higgs dynamics
- energy distributions, angular correlations ...
- Todd moments: $\langle s_{\tau}, (p_K \times p_{\pi}) \rangle$
 - \measuredangle can extract info on s_{τ} from τ pair spin alignment C.Nelson

13

 \measuredangle can compare τ^+ with τ^-

Pioneering study by CLEO in '98:

 $\tau \rightarrow v \ K\pi\pi$

- \bigcirc can form T odd moments without τ polarization
- \odot can interfere $(K\pi\pi)_V$ with $(K\pi\pi)_A$
- more internal cross checks on `+' vs. `-' detection eff.

VI Summary

• \mathcal{S}^{p} uncovered almost exclusively in partial rates

we are just at the beginning of exploring unknown & novel territories of CP in final state distributions

those could provide specific info on the chirality of New Physics operators

T odd moments in positronium decays:

enterprising QED theorists can establish (at least) bragging rights

• $K^+ \rightarrow \mu^+ \nu \pi^0$ -- search window of 3 orders of magnitude in $P_t(\mu)$

natural place for non-minimal scalar dynamics to surface

$$\Box \not C P \sim 0.1 - 1\% \text{ in } \tau \rightarrow \nu K\pi / K\pi\pi/\pi' s --$$

there is fame within your grasp!