Last meeting: CERN March 26-28 2007

WG3: testing LFV & universality

andries van der schaaf, Zürich

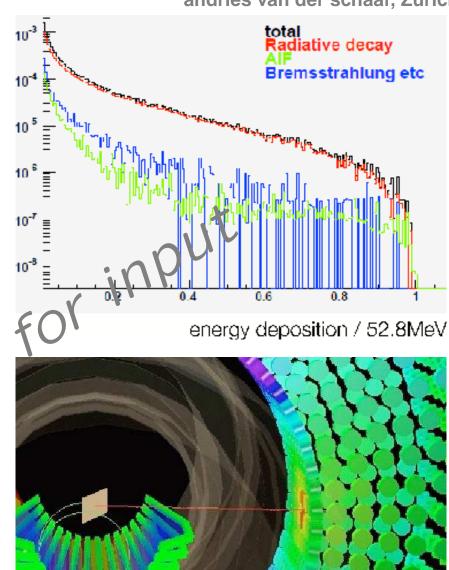
sectio	n	outline	figures	contact persons	pages	TEX	pdf
1	Introduction			Raidal/Mangano	5		
2	Theoretical framework and observables			Raidal/Mangano	26		
3	Theory of flavour			Raidal/Mangano	26		
4	Phenomenology of theories beyond the Standard Model			Raidal/Mangano	55		
5	LFV experiment			van der Schaaf	32		
5.1	rare muon decays			Mori/van der Schaaf	14		Г
5.1.1	$\mu \rightarrow e \gamma$			Mori	5		
5.1.2	$\mu \rightarrow 3e$	П		van der Schaaf	3		
5.1.3	μ - e conversion			van der Schaaf	5		
5.2	tau decay			Banerjee	8		
5.2.1	Babar/Belle			Banerjee/Igonkina	4		
5.2.2	LHC			Giffels/Kress	3		
5.2.3	Resulting constraints on model parameters			Banerjee/Igonkina	3		П
5 . 3	$B \rightarrow \mu e$			Egede	4		
5.4	in flight conversions		Ш	Forti/Giorgi/Lusiani/Marchiori/Neri	5		
6	EDM's and g-2 experiment			Semertzidis	33		Π
7	Symmetry tests experiment			Bigi	17		
8	Experimental tests of lepton universality			Bryman/van der Schaaf	13		
8.1	pion decay			Bryman/van der Schaaf	4		Г
8.2	K decay			Ceccucci	4		
8.3	tau decay			Igonkina	4		

WG3 program

www.physik.unizh.ch/~andries/WG3report

talks in this workshop series

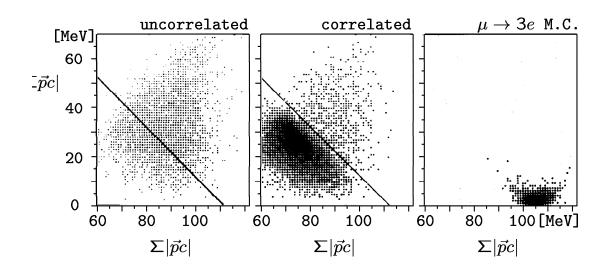
5	LFV experiment	
5.1	rare muon decays	
J. 1	LFV, status and prospects	Toshinori Mori (Tokyo University)
5.1.1	$\mu ightarrow e^+ \gamma$	rosimon mon (rokyo omversity)
3.1.1	Improving the $\mu o e^+ \gamma$ sensitivity, MEG and beyond	Alessandro Baldini (INFN - Pisa)
	Update on the status of MEG	Hajime Nishiguchi (ICEPP, Tokyo)
5.1.3	$\mu-e$ conversion	
	A High-Intensity, High-Luminosity Muon Source PRISM and	
	Search for Muon to Electron Conversion	Yoshitaka Kuno (Osaka University)
	Final result of the SINDRUM II search for mu-e Conversion	Wilhelm Bertl (PSI, Villigen)
	Prospects for a Muon to Electron Conversion Experiment at Fermilab	Jim Miller (Boston)
5.2	au decay	,
5.2.1	Babar/Belle	
	Lepton Flavour violation in tau decays: status and perspectives	Swagato Banerjee (University of Victoria)
5.2.2	LHC	
	Status and plans of $ au o 3\mu$ at CMS	Manuel Giffels (RWTH Aachen)
5.3	$B \to \mu e$	
	Search for $B \rightarrow \mu e$ with LHCb	Walter Bonivento (I.N.F.N. Cagliari, Italy)
5.4	in flight conversions	
	A study on $\mu(e)- au$ conversion in deep inelastic scattering	Yoshitaka Kuno (Osaka University)
	Study of $\mu- au$ conversion with high-intensity muon beams	Giovanni Marchiori (University of Pisa and INFN)
	Feasibility study for a fixed target $\mu o au$ conversion experiment	Alberto Lusiani (INFN)
8	lepton universality	
8.1	pion decay	
	Two new $\pi \to e \nu$ experiments	Andries van der Schaaf (Zurich)
8.2	K decay	
	Testing LFV measuring $K o e \nu/K o \mu \nu$ in NA48: status and perspectives	Luca Fiorini (Camdridge)
8.3	tau decay	
	Test of lepton universality in tau decay	Olga Igonkina (Oregon)


5 LFV experiment

5.1 rare muon decays

5.1.1
$$\mu \rightarrow e \gamma$$

present limit 1.2×10^{-11} (90% C.L.) by MEGA MEG at PSI aims at an improvement by ≈100 ready to start apart from vacuum window problem limited by accidental coincidences


- time resolution 0.15 ns fwhm
- angular resolution by scattering in target 19 mrad fwhm
- E_{γ} resolution 4.8% fwhm

5.1.2
$$\mu \to 3e$$

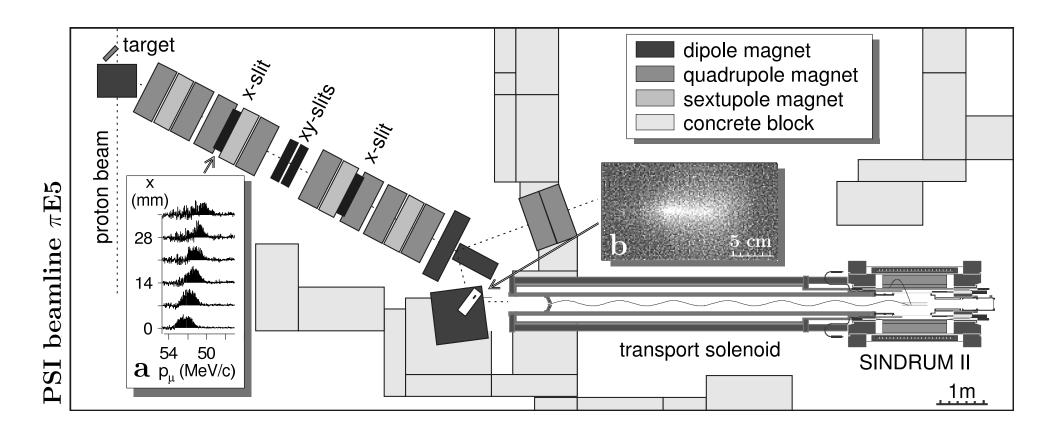
- usually less sensitive than $\mu \to e \gamma$
- old SINDRUM result: $B < 10^{-12}\,$
- background free
- 10^{-14} should be possible but no plans

[cm]

2

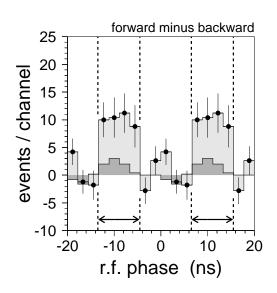
-15 -10 -5 0 5 10 [cm]

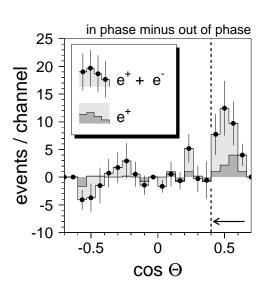
zvertex

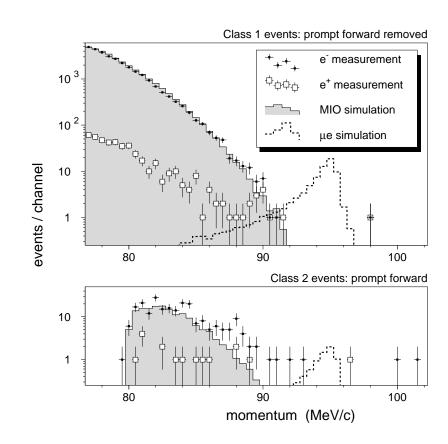

total momentum versus total energy

additional constraints from vertex

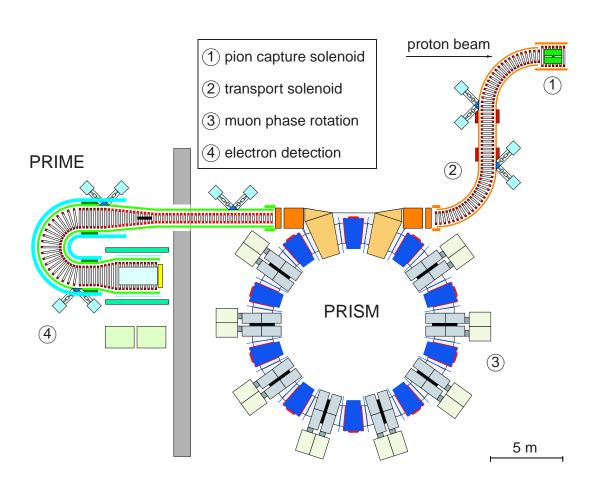
5.1.3 $\mu - e$ conversion


Final SINDRUM II result: $\Gamma(\mu^- \text{Au} \rightarrow e^- \text{Au}_{\text{g.s.}})/\Gamma_{\text{capture}}(\mu^- \text{Au}) < 7 \times 10^{-13} \ (90\% \text{C.L.})^{-1}$

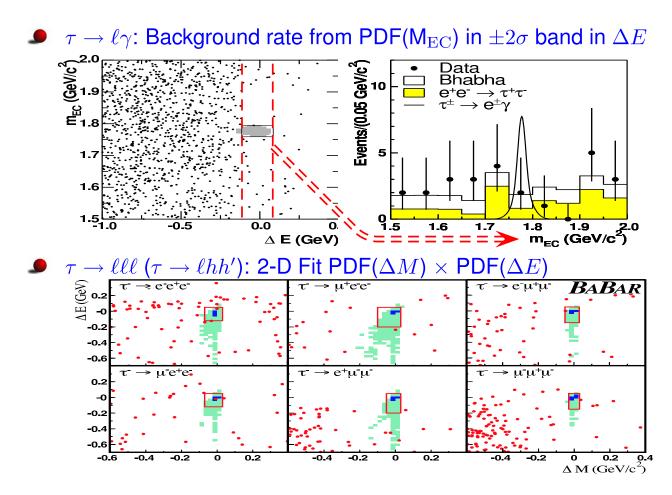



¹SINDRUM II Collaboration, Eur. Phys. J. C 47, 337-346 (2006)

pions stop 10 m before the spectrometer but still some background is seen: radiative π^- capture followed by e^- and e^+ scattering off the target



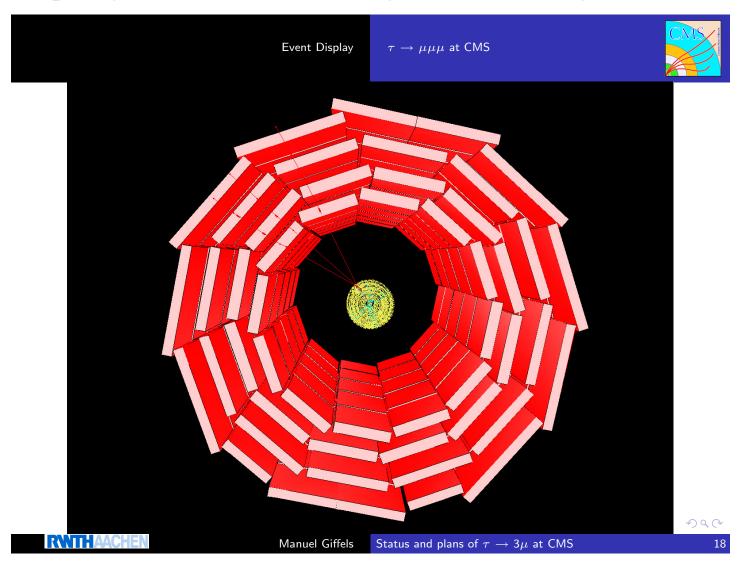
- MECO planned to reach 10^{-16} using pulsed beam and large acceptance transport solenoids
- project is presently considered at Fermilab


- PRIME at J-PARC aims at a sensitivity around 10^{-18}
- first tests with six FFAG magnets are planned for this year

5.2 τ decay ²

5.2.1 Babar/Belle

$$e^+e^- \rightarrow \tau^+\tau^-$$


background sets in at the level of 10^{-7}

²Wednesday 10:15 Mike Roney: *Experimental prospects for rare tau decays*

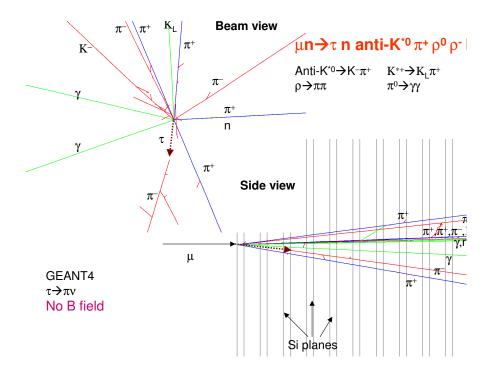
5.2.2 LHC

http://giffels.web.cern.ch/giffels/talks/giffels_LHCD_Flavour_Jun06.pdf

5.3
$$B \rightarrow \mu e$$

- has been studied by LHCb
- could be mediated by Pati-Salam leptoquarks which treats lepton number as a fourth color.
- kinematically similar to the well studied decay $B o \mu^+ \mu^-$

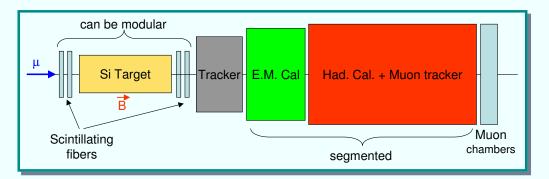
90% lower limits on M_{PS} in TeV


	<u> </u>				· -			
c.s.		$K_L \to \mu^{\pm} e^{\mp}$	$\frac{\pi^+ \to e^+ \nu}{\pi^+ \to \mu^+ \nu}$	$\frac{K^+ \rightarrow e^+ \nu}{K^+ \rightarrow \mu^+ \nu}$	$B_d^0 o e^\pm\mu^\mp$	$B_s^0 ightarrow e^\pm \mu^\mp$	$B^+ o e^+ u$	$B^+ o \mu^+ \nu$
1	$e\mu\tau$	2278	250	4.9				
2	$\mu e \tau$	2278	76	130				
3	$e\tau\mu$		250		50 50 130			28
4	$\mu \tau e$		76		50 130		19	
5	$\tau \mu e$			4.9	•	^{20.7} 10	5 19	
6	τ e μ			130		20.7		28
	LHCb limits							

5.4 in flight $\mu \to \tau$ conversions

- has been studied within MSSM: S. Kanemura, Y. Kuno, M. Kuze and T. Ota, Search for lepton flavor violating mu $\mu \to \tau X$ reactions with high energy muons Nucl. Phys. Proc. Suppl. 144 (2005) 268.

- experimentally it looks challenging:
- $10^{11}\mu$ s $^{-1}$ with low duty cycle on the detector



Studies on a $\mu \to \tau$ conversion experiment

A.Lusiani – INFN and SNS Pisa

Detector feasibility

- experiment interesting if it probes $\sigma_{\mu \to \tau} \approx 2$ ab for 200 GeV muons, i.e. $BR(\tau \to \mu \eta) < 0.3 \cdot 10^{-8}$
 - ▶ no significant contribute from heavy quark Higgs-mediated processes (using estimated cross-section in Y.Kuno Nov.2005 presentation, with updated LFV limits)



- \blacklozenge without full simulation, guestimate one needs 1000 produced $\mu N \to \tau X$ conversions
 - → 3·10²⁰ 200 GeV-muons/year on 10 cm-deep silicon target
- detector appears not to be feasible
 - ▶ too large muon flux on calorimeters, especially hadronic one (too large detected energy fluctuations due to muon flux)
 - could spread the muon flux on larger surface, but too expensive

8 Experimental tests of lepton universality

Generalize the $l\overline{
u}_lW$ coupling to $\mathcal{L}=\sum_{l=e,\mu, au}rac{g_l}{\sqrt{2}}W_\mu\overline{
u}_l\gamma^\mu(rac{1-\gamma_5}{2})l$ + h.c.

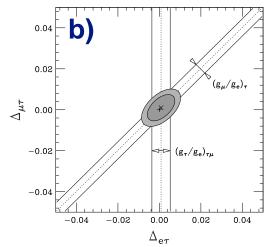
 $(g_{\tau}/g_{\mu})_{\pi\tau}$

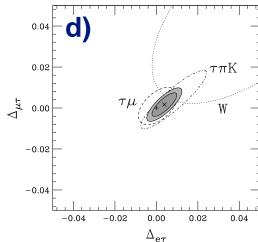
-0.02

 $(g_{\mu}/g_{e})_{\pi}$

 $\Delta_{{
m e} au}$

 $(g_{\tau}/g_{\mu})_{K\tau}$


0.04


0.02

-0.02

-0.04

0.00

Experimental limits on violations of lepton universality from

- a) W decay
- b) au decay
- c) π and K decay
- d) the combination of a) c)

$$g_l \equiv g(1 - \epsilon_l/2)$$
$$\Delta_{ll'} \equiv \epsilon_l - \epsilon_{l'}$$

Violations could either be at the level of the $l\overline{\nu}_lW$ and $l\overline{l}Z$ couplings, or only apparent through non-SM contributions:

- in W, Z and π decay resulting from R-parity violating extensions to the MSSM³
- in W decay resulting from charged Higgs bosons⁴
- in K and B decay resulting from LFV contributions in SUSY 5
- in ↑ decay resulting from a light Higgs boson⁶
- in π and K decay resulting from scalar interactions⁷

³O. Lebedev, W. Loinaz and T. Takeuchi, Phys. Rev. D 61 (2000) 115005. M. J. Ramsey-Musolf, Phys. Rev. D 62 (2000) 056009.

⁴J. h. Park, JHEP 0610 (2006) 077.

⁵A. Masiero, P. Paradisi and R. Petronzio, Phys. Rev. D 74, 011701 (2006).

⁶M.A. Sanchis-Lozano, Workshop on B-Factories and New Measurements, September 13-14, 2006, KEK, arXiv:hep-ph/0610046.

⁷B.A. Campbell and D.W. Maybury, Nucl. Phys .B709, 419 (2005).

8.1 pion decay

$$R_{e/\mu}^{\text{tree}} \equiv \frac{\Gamma_{\pi \to e\overline{\nu}}^{\text{tree}}}{\Gamma_{\pi \to \mu\overline{\nu}}^{\text{tree}}} = \left(\frac{g_e}{g_{\mu}} \times \frac{m_e}{m_{\mu}} \times \frac{1 - m_e^2/m_{\pi}^2}{1 - m_{\mu}^2/m_{\pi}^2}\right)^2$$

Radiative corrections lower this value by 3.74(1)% 8:

$$R_{e/\mu}^{\rm SM} = 1.2350(5) \times 10^{-4}$$

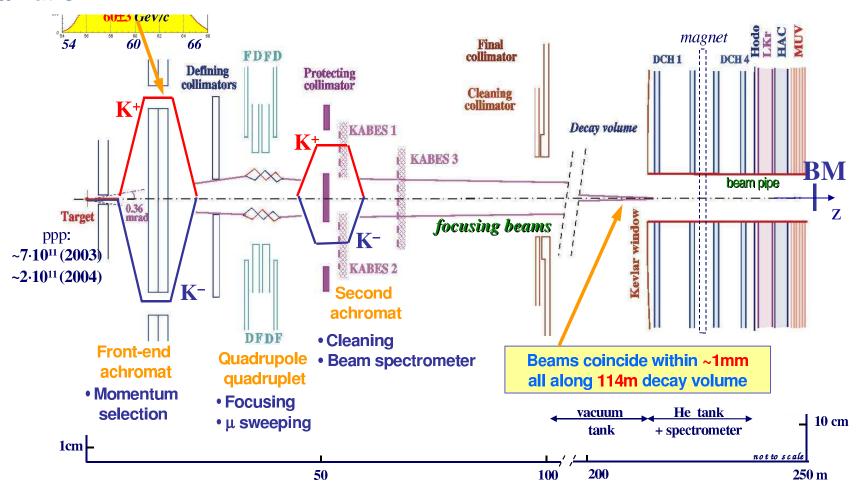
Two experiments ⁹ contribute to the present world average for the measured value:

$$R_{e/\mu}^{\text{exp}} = 1.230(4) \times 10^{-4}$$

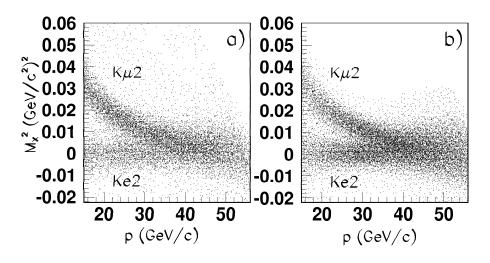
 $g_{\mu}/g_e = 1.0021(16)$

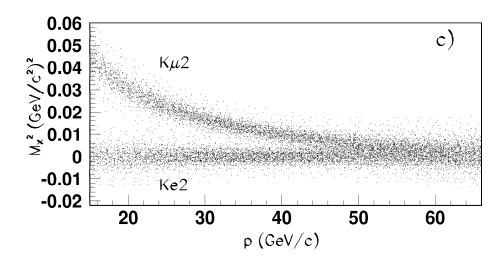
Two new experiments at PSI and TRIUM) aiming at a tenfold improvement wil start data taking this year.

Pure Csl Crystall ball of the PEN experiment at PSI


⁸R. Decker and M. Finkemeier, Nucl. Phys. B 438, 17 (1995). ⁹G. Czapek *et al.*, Phys. Rev. Lett. 70, 17 (1993).

D.I. Britton et al., Phys. Rev. Lett. 68 (1992) 3000.


8.2 K decay


NA48/2 at CERN

Distributions of M_X^2 versus p for K_{e2} and $K_{\mu 2}$ decays. In the M_X calculation the electron mass is assumed.

measurement 2004

simulation 2004

simulation 2007

8.3 tau decay

will be discussed by Mike Roney

Conclusions

- improvements by typically two orders of magnitude are expected in many tests of LFV
- improvements by typically one order of magnitude are expected in many tests of lepton universality
- for most of these sections first versions are available
- text can be improved and linked better to the theory part
- please interfere!