Neutron Stars as Dark Matter Refrigerators

Hai-Bo Yu

University of Michigan, Ann Arbor

Pheno 2010, 05/10/2011

Sam McDermott, HBY and Kathryn Zurek, arXiv:1103.5472 [hep-ph]

Outline

- Introduction and motivation
 - Thermal WIMP VS. Asymmetric Dark Matter
- A journey of scalar asymmetric dark matter (ADM) particles in neutron stars.

 Constraints on DM-neutron scattering cross section from the observed old neutron stars.

WIMP (WIMPless) VS ADM

$$\Omega_X \simeq 0.23 \left(\frac{3.0 \times 10^{-26} \text{cm}^3/\text{s}}{\langle \sigma_{\text{ann}} v_{\text{rel}} \rangle} \right)$$

WHY NEUTRON STARS?

Density: 1408 kg/m³

Ve: 0.002c

• T: 1.57×10⁷ K

Mass: ~1.44 Msun

• Density: 1×10¹⁸ kg/m³

• Ve: 0.6-0.7c

• T: 10⁵-10⁶ K

Capture rate:
$$C_B \simeq \sqrt{\frac{6}{\pi}} \frac{\rho_X}{m_X} \frac{v_{esc}^2}{\bar{v}^2} (\bar{v} \sigma_{XB}) \xi N_B$$

What will happen if neutron stars capture enough ADM particles?

SPECULATIONS VS. REALITIES

Captured DM particles form a black hole at the center of neutron stars.

The black hole is hungry, eats everything and destroys the host neutron stars.

Realities:

We have observed many old neutron stars. What speculated does not happen!

CAPTURE AND THERMALIZATION

STEP 1

Capture

$$N_X \simeq 2.3 \times 10^{44} \left(\frac{100 \text{ GeV}}{m_X}\right) \left(\frac{\rho_X}{10^3 \text{ GeV/cm}^3}\right) \left(\frac{\sigma_{XB}}{2.1 \times 10^{-45} \text{ cm}^2}\right) \left(\frac{t}{10^{10} \text{ years}}\right)$$

Thermalize

$$t_{th} \simeq 0.054 \text{ years } \left(\frac{m_X}{100 \text{ GeV}}\right)^2 \left(\frac{2.1 \times 10^{-45} \text{ cm}^2}{\sigma_n}\right) \left(\frac{10^5 \text{ K}}{T}\right)$$

It is a cooling process. 1 GeV=1.2*10^{13} K

Drift to the center

BOSE-EINSTEIN CONDENSATION

$$R_n = 10.6 \text{ km}$$

DM in the thermal state

$$24 \text{ cm} \left(\frac{T}{10^5 \text{ K}} \cdot \frac{100 \text{ GeV}}{m_X} \right)^{1/2}$$

DM in the BEC ground state

$$1.5 \times 10^{-5} \text{ cm} \left(\frac{100 \text{ GeV}}{m_X}\right)^{1/2}$$

STEP 2

Self-gravitation

$$\frac{3N_X m_X}{4\pi r^3} > \rho_B$$

$$N_{self} \simeq 4.8 \times 10^{41} \left(\frac{100 \text{ GeV}}{m_X}\right)^{5/2} \left(\frac{T}{10^5 \text{ K}}\right)^{3/2}$$

Without a BEC

$$1.0 imes 10^{23} \left(rac{100 \; \mathrm{GeV}}{m_X}
ight)^{5/2}$$
 With a BEC

DM particles collapse. But we need to check another condition.

CHANDRASEKHAR LIMIT

Bosons: gravity VS. zero point energy

$$E \sim -\frac{GNm^2}{R} + \frac{1}{R}$$

Above this limit, the system collapses to a black hole.

$$N_{Cha}^{boson} \simeq \left(\frac{M_{pl}}{m}\right)^2 \simeq 1.5 \times 10^{34} \left(\frac{100 \text{ GeV}}{m}\right)^2$$

Fermions: gravity VS. Fermi pressure

$$E \sim -\frac{GNm^2}{R} + \frac{N^{1/3}}{R}$$

Fermi pressure

$$N_{Cha}^{fermion} \sim \left(\frac{1}{Gm^2}\right)^{3/2} = \left(\frac{M_{pl}}{m}\right)^3 \simeq 1.8 \times 10^{51} \left(\frac{100 \text{ GeV}}{m}\right)^3$$

Bosons are more ready to collapse.

GRAVITATIONAL COLLAPSE AND BLACK HOLE FORMAION

STEP 3

$$N_X > N_{self} > N_{Cha}^{boson}$$

BARYON ACCRETION AND HAWKING RADIATION

$$\frac{dM_{BH}}{dt} \simeq 4\pi\lambda_s \left(\frac{GM_{BH}}{v_s^2}\right)^2 \rho_B v_s - \frac{1}{15360\pi G^2 M_{BH}^2}$$

Baryon accretion

Hawking radiation

Hawking wins if the BH initial mass is less than

 $M_{BH}^{crit} \simeq 1.2 \times 10^{37} \text{ GeV}$

DESTRUCTION OF THE HOST STAR

 The formation of the mini black hole can destroy the host neutron star with the following time scale.

STEP 4

$$t \sim \frac{v_s^3}{\pi G^2 \rho_B M_i}$$

$$t \sim 17 \text{ years} (m_X/100 \text{ GeV})^{3/2} (10^5 \text{ K}/T)^{3/2}$$

Without a BEC

$$5.4 \times 10^6 \text{ years } (m_X/\text{GeV})$$

With a BEC

 Observations of old neutron stars put constraints on the DM-neutron scattering cross section.

CONSTRAINTS FROM PULSARS IN M4

The initial black hole mass is too small and it evaporates due to Hawking radiation. $M_{BH}^{crit} \simeq 1.2 \times 10^{37} \; \mathrm{GeV}$

Valid only if Hawking radiation does not heat DM and destroy the BEC.

Hawking radiation is not important.

Excluded by observations of the neutron star.

CONSTRAINTS FROM NEARBY PULSARS

CONCLUSIONS

 Neutron stars are very good refrigerators for dark matter particles.

 The observed old neutron stars put tight constraints on the DM-neutron scattering cross section in a wide DM mass range.