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Shower deconstruction
- a new method to search New Physics -

• Maximal information approach to discriminate 
signal from backgrounds 

  -> UE, ISR, FSR, hard proces

• We want one discriminating analytic function

• Have to respect limitations by experiment

Event deconstruction time consuming
for simplicity

choose boosted scenario, eg. HZ->bbll_
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• Have to respect limitations by experiment

Event deconstruction time consuming
for simplicity

choose boosted scenario, eg. HZ->bbll_

Butterworth, Davison, Rubin, Salam  PRL 100 (2008)
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Recombine fat jet’s constituents to microjets
(kT, R=0.15, pT > 1 GeV)

bb-

microjets are basic elements of event/fat jet
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Figure 5: A shower history for a background event in which a high pT “any” parton, treated as a
gluon, splits to a b + b̄ pair. The QCD shower splitting of a b-quark is to a b-quark plus a gluon.
The b and b̄ quarks radiate gluons and one of the gluons splits into two “any” partons, treated as
gluons.

that this is a g → g + g splitting. Let the label of the daughter that carries the 3 color of

the mother parton J be A. We draw this daughter parton on the left in our diagrams. Let

the label of the daughter parton that carries the 3 color of parton J be B. We draw this

daughter parton on the right in our diagrams. We track the angle variables of two color

connected partner partons to parton J . Parton k(J)L carries the 3 color that is connected

to the 3 color line of parton J . Parton k(J)R carries the 3 color that is connected to the

3 color line of parton J . The labels k(J)L and k(J)R specify lines in the shower history

diagram, not necessarily final microjets. Given the labels of the color connected partners

to the mother parton J , we assign the color connected partons of the daughter partons.

The two daughter partons are color connected partners of each other and each inherits one

of the color connected partners of the mother. That is

k(A)L = k(J)L, k(A)R = B , (3.1)

and

k(B)L = A, k(B)R = k(J)R . (3.2)

If parton J is a b-quark, then it has a color connected partner k(J)R that carries the

3 color connected to the quark’s 3 color. There is no k(J)L partner. The b-quark can split

into daughter b-quark A and a daughter gluon B, which we draw on the right because it

carries the 3 color of the mother b-quark. The color connected partners of the daughter

partons are then

k(A)R = B , (3.3)

and

k(B)L = A, k(B)R = k(J)R . (3.4)

Similarly, if parton J is a b̄-quark, then it has a color connected partner k(J)L that carries

the 3 color connected to the b̄-quark’s 3 color. There is no k(J)R partner. The b̄-quark can

– 12 –

Fat jet: R=1.2, anti-kT

microjets 
R=0.15, kT

Build all possible shower histories

signal vs background hypothesis 
based on:

‣ Emission probabilities
‣ Color connection
‣ Kinematic requirements
‣ b-tag information
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ISR/UE hard interaction
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we will have the best statistical significance for a measurement if we make σC(B) as small as
possible. Thus we seek to choose the cut so as to minimize σC(B) with σC(S) held constant.
The solution to this problem is to choose C({p, t}N) such the surface C({p, t}N) = 0 is
a surface of constant χMC({p, t}N). That is, we should use signal and background cross
sections in which the function that defines the cut is taken to be

C({p, t}N) = χMC({p, t}N)− χ0 (8)

for some χ0. If we make any small adjustment to this by removing an infinitesimal region
with χMC({p, t}N) > χ0 from the cut and adding a region having the same signal cross
section but with χMC({p, t}N) < χ0, we raise the total background cross section within the
cut while keeping the signal cross section the same. Thus using contours of χMC({p, t}N) to
define our cut is the best that we can do.

What value of χ0 should one choose? For a simple optimized cut based analysis with a
given amount of integrated luminosity, one would choose χ0 so as to maximize the ratio of the
expected number of signal events to the square root of the expected number of background
events. We discuss this further in Sec. XI.

Instead of using an optimized cut on χMC to separate signal from background, one could
imagine using a log likelihood ratio constructed from χMC. We do not discuss that method
in this paper.

Now we must face the fact that to construct χMC({p, t}N), we would need two things:
the differential cross section to find microjets {p, t}N in background events and then the
differential cross section to find microjets {p, t}N in signal events. In each case, we would
consider this differential cross section in a parton shower approximation to the full theory.
Unfortunately for us, a parton shower produces dσMC(S)/d{p, t}N and dσMC(B)/d{p, t}N by
producing Monte Carlo events at random according to these distributions. If we have 10
microjets described by 4 momentum variables each and we divide each of these 40 variables
into 12 bins, then we have approximately 1240/10! ≈ 1036 total bins (accounting for the
interchange symmetry among the 10 microjets). The parton shower Monte Carlo event
generator will fill these bins with events, but it will be a long time before we have of order
100 counts per bin in order to estimate dσMC(S)/d{p, t}N and dσMC(B)/d{p, t}N at each bin
center. Thus it is not practical to calculate χMC({p, t}N) numerically by generating Monte
Carlo events. It is also not practical to calculate χMC({p, t}N) analytically using the shower
algorithms in Pythia or Herwig. These programs are very complicated, so that we have
no hope of finding PMC({p, t}N |S) and PMC({p, t}N |B) for either of them.

D. Probabilities according to simplified shower

What we need is an observable χ({p, t}N) that is an approximation to χMC({p, t}N) such
that we can calculate χ({p, t}N) analytically for any given {p, t}N . For this purpose, we
define a simple, approximate shower algorithm, which we will call the simplified shower
algorithm. We let P ({p, t}N |S) and P ({p, t}N |B) be the probabilities to produce the mi-
crojet configuration {p, t}N in, respectively, signal and background events according to the
simplified shower algorithm. Define

χ({p, t}N) =
P ({p, t}N |S)
P ({p, t}N |B)

. (9)
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Propagator corresponds to Sudakov factor

Red symbols corresponds to splitting/decay function

∆U < 0.02 (64)

U = 0 (65)

BR(H → νvν̄4 → 4l)
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|Uiν4 | (69)
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Ωbh
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−10 (78)

WγJet (79)

das ist schšn wei§

σ(pp → jet νll
+
) � 496 fb (80)

σ(pp → b νll
+
) � 4.4 fb (81)

σ(pp → t → b νll
+
) � 13.2 fb (82)

=

�
histories HISRe

−SI1 · · ·HHe
−Ss1H

s

bg
e
−Ss2 · · ·

�
histories HISRe

−SI1 · · ·Hgbbe
−Sb1H

b

bg
e−Sb2 · · ·

(83)
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We then define �kT,I to be the transverse momentum of all microjets that are part of the fat

jet but are not in the decay products of the initial hard parton. That is, �kT,I is the transverse
momentum of all microjets associated with initial state and underlying event radiation. We

demand that

k
2
T,I < Q

2
/4 . (22)

For the probability density associated with the creation of the initial hard parton, we use

a factor

Ha = Npdf

�
p
2
T,min

k
2
0

�Npdf
1

k
2
0

Θ(k
2
T,I < Q

2
/4) . (23)

Here k0 is the transverse momentum of the initial hard parton. The factor 1/k
2
0 is an approx-

imation to the k
2
0 dependence of the square of the hard matrix element. The hard scattering

cross section is also proportional to a product of parton distribution functions. We approx-

imate the dependence on the parton distribution functions by including a factor 1/(k
2
0)

Npdf ,

where our default value for the exponent is Npdf = 2. (This value yields an approximation

to the one jet inclusive cross section at the Large Hadron Collider, as illustrated in Fig. 11

of ref. [43].) The parameter pT,min is the smallest allowed transverse momentum of Z-boson

against which the initial hard parton recoils, pT,min = 200 GeV, Eq. (2). The normalization

factor Npdf(p
2
T,min)

Npdf is chosen so that the integral of H from p
2
T,min to infinity is 1.

B. Signal

We also need a factor to represent the hard scattering process that creates the Higgs

boson. For this purpose, we use a factor

HH = Npdf

�
p
2
T,min +m

2
H

k
2
H
+m

2
H

�Npdf
1

k
2
H
+m

2
H

Θ(k
2
T,I < Q

2
/4) , (24)

as in Eq. (23). Here kH is the transverse momentum of the Higgs boson, mH is the Higgs

boson mass, kT,I is the total transverse momentum of all partons emitted in the initial state,

and Q
2
is defined in Eq. (21). The remaining factors provide an approximation to the

dependence on the parton distribution functions, as in Eq. (23). The default values of the

parameters are Npdf = 2 and pT,min = 200 GeV.

V. INITIAL STATE AND UNDERLYING EVENT RADIATION

We have seen how to model the hard interaction that creates either a high pT QCD parton

or a Higgs boson. Now we need to model initial state and underlying event radiation, defining

an emission probability HIS as illustrated in Fig. 7. Consider the probability for the emission

of a gluon with positive rapidity from an initial state parton that participates in the hard

interaction. Since the gluon has positive rapidity, this emission is predominantly from the

active parton a from hadron A. We use b as the label for the other active incoming quark,

from hadron B. We take pa to be in the + direction and pb to be in the − direction.
5
We

5 We use momentum components p± = (p0 ± p3)/
√
2
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where x is the momentum fraction of the parton after emitting the gluon, zx/(1 − z) is
the momentum fraction of the emitted gluon, x/(1 − z) is the momentum fraction of the
parton before emitting the gluon and the functions f are parton distribution functions.
(See Eq. (8.26) of Ref. [39]). When k

2
J � Q

2 we have z � 1 and R ≈ 1. However, the
approximation R ≈ 1 breaks down for values of k2

J/Q
2 at which initial state radiation is still

significant. We do not want our simplified shower model to depend on parton distribution
functions, so we make a rather crude approximation,

R =
1

(1 + cR kJ/Q)nR
, (31)

where our default values for the parameters are cR = 2 and nR = 4. The power nR = 4 gives
us an asymptotic power k

−6
J , as in Eq. (23). We chose cR = 2 in order to match roughly

with results from running Pythia.
With this factor R included, we should have a fairly good approximation for the emission

probability as long as k
2
J is large enough for the emission to be purely perturbative. To

give ourselves some flexibility at small k2
J , we replace k

2
J by k

2
J + κ2

p in the argument of αs

and the factor 1/k2
J . Our default value for the parameter here is κ2

p = 1 GeV2. Then the
perturbative H is frozen when kJ gets to be much smaller than κp. We then add back a
simple non-perturbative function that gives us a chance to adjust the amount of radiation
for smaller values of kJ .

This gives the complete initial state emission probability

HIS =
CA

2

αs(k2
J + κ2

p)

k
2
J + κ2

p

1

(1 + cR kJ/Q)nR
+

cnp(κ2
np)

nnp−1

[k2
J + κ2

np]
nnp

. (32)

Our default values for the non-perturbative parameters are cnp = 0.5, κ2
np = 0.5 GeV2, and

nnp = 2. It is intended that, with adjustment of parameters, we can include perturbative
radiation from the active initial state partons together with radiation at central rapidities
and small transverse momenta that is associated with the underlying event and with event
pileup. Our choice for the parameters is based on comparisons with results from Pythia,
including the representation in Pythia of the effects of the underlying event.

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g → g + g

The splitting vertex for a QCD splitting that we model as g → g + g is represented
by a function Haaa or Hgaa as illustrated in Fig. 8. We call these the conditional splitting
probabilities. Here the condition is that the mother parton has not split already at a higher
virtuality. The plain parton lines represent partons with flavor “any.” We treat these partons
as being almost always gluons, so that Haaa and Hgaa are the same and approximate the
probability for a g → g + g splitting.

Let us examine what we should choose for H for a g → g + g splitting, that is for Haaa

or Hgaa. We take the mother parton to carry the label J and we suppose that the daughter

16

FIG. 9: The angular enhancement factor g(ys,φs) of Eq. (42). The coordinates are (ys−yh,φs−φh).
The color connected parton k is at coordinates (0.1, 0). This figure is adapted from Ref. [40].

We can enforce this condition in an approximate way by requiring

2
µ
2
J

kJ
<

µ
2
K

kK
,

2
µ
2
J �

kJ �
<

µ
2
K

kK
.

(44)

For this reason, we include in H a factor Θ(2µ
2
J/kJ < µ

2
K/kK). We know µ

2
K from the

shower history. If there is no mother parton because parton J was produced in the hard

interaction or by initial state bremsstrahlung, we take µ
2
K/kK = 2kJ , so that the virtuality

ordering condition becomes simply µ
2
J < k

2
J .

This same condition, iterated, restricts the daughter virtualities:

2
µ
2
h

kh
<

µ
2
J

kJ
,

2
µ
2
s

ks
<

µ
2
J

kJ
.

(45)

This gives a splitting probability H:

Haaa = Hgaa =
CAαs(µ

2
J)

2

1

µ
2
J

k
2
J

kskh

θ2hk
θ2sh + θ2sk

Θ

�
2
µ
2
J

kJ
<

µ
2
K

kK

�
. (46)

Here we evaluate αs at the virtuality scale of the splitting. When there is no color connected

parton visible, we are forced to simplify this to

Hno-k =
CAαs(µ

2
J)

2

1

µ
2
J

k
2
J

kskh
Θ

�
2
µ
2
J

kJ
<

µ
2
K

kK

�
. (47)
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is because if the problem is simple, one can solve it with simple cuts and the method that

we propose is not necessary.

The method that we propose is quite general, but in order to explain it with reason-

able clarity, we need to consider a specific process. As outlined above, we should pick a

complicated process. However, if we did that, it would be difficult to explain the method.

For that reason, we choose a simple process.

The simple process that we use as an example is the search for the Higgs boson using

the process p+ p → H + Z +X where the Z-boson decays to µ
+
+ µ

−
(or e

+
+ e

−
) while

the Higgs boson H decays to b+ b̄. Competing backgrounds are p+ p → jets +Z +X and

also p+ p → Z+Z+X where the second Z-boson decays hadronically. The ratio of signal

cross section to background cross section that we start with after event selection cuts is

very small, smaller than 1/1000. That is, of course, a disadvantage for having the method

work well, but it does not hurt in explaining the method.

2.1 Event selection

In order to make the Higgs boson easier to find, we demand that the Z-boson against
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Lots of room for improvement:

Matrix
element

FSR
simulation

ISR
simulation

UE
simulation

Simulation of 
experimental 
issues, e.g. b-

tagging

Modular build -> improvements are additive
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tt !H0, H0!bb!

3

final states grouped by W boson decays: 
for all final states: " x BR ~ 0.4-0.2 pb

• all-hadronic: highest branching fraction with 43%, but 
difficult to trigger on

• fully-leptonic: simpler signature to trigger but branching 
fraction of 5% very low and two neutrinos prevent top 
quark mass reconstruction 

• semi-leptonic: good compromise with branching fraction 
of 28% (excluding tau leptons)

- complex final state: one isolated lepton (!trigger), high 
jet multiplicity (in total 6 jets) with 4 b-tags, missing 
energy from neutrino   

backgrounds:

• reducible: tt !+jets 

• irreducible: tt!bb! from QCD or EW (total 
cross section ~ 9 pb)

• other backgrounds:  W+jets, tW and 
QCD multijet production not considered 
(negligible if 4 b-tags requirement applied)

QCD EW

Targeted scenarios:

‣ Busy final states -- e.g. tth, susy cascades

h

hh

h

Q̃, g̃

Q̃, g̃

Higgs in a cascade

• Squarks/gluinos carry color, so they have a large production 
cross section despite being heavy

• Sparticles cascade decay, decay products can include Higgses

• Sparticles are heavy --> light decay products (h!) tend to be 
boosted

• All events have MET --> powerful discriminant vs. SM

a new source of 
boosted Higgses=

(Butterworth, Ellis, Raklev ’07)
Thursday, June 24, 2010

‣ Difficult processes with low stat. significance
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‣ SD realization of ‘maximal information approach’

‣ In simple HZ final state not as good as BDRS

‣ Theoretical Systematic uncertainty similar to BDRS

‣ Profits more from information than BDRS, e.g. b-tagging

‣ Might be useful for busy final states

‣ Modular set-up -> parts can be improved independently

Conclusions
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