Event reconstruction with shower deconstruction

Michael Spannowsky
University of Oregon

In collaboration with Davison Soper (UO)

Pheno 2011 Madison

LHC yields complex environment!

Tedious for theorists and experimentalists

Pheno 2011

Madison

LHC yields complex environment!

Tedious for theorists and experimentalists

Pheno 2011

Madison

Shower deconstruction

- a new method to search New Physics -
- Maximal information approach to discriminate signal from backgrounds
 - -> UE, ISR, FSR, hard proces
- We want one discriminating analytic function
- Have to respect limitations by experiment

Event deconstruction time consuming for simplicity choose boosted scenario, eq. HZ->bbll

Shower deconstruction

- a new method to search New Physics -
- Maximal information approach to discriminate signal from backgrounds
 - -> UE, ISR, FSR, hard proces
- We want one discriminating analytic function
- Have to respect limitations by experiment

Event deconstruction time consuming for simplicity choose boosted scenario, eg. HZ->bbll

Butterworth, Davison, Rubin, Salam PRL 100 (2008)

HV - Higgs discovery channel

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]

Pheno 2011

5

Shower deconstruction

- a new method to search New Physics -

Pheno 2011

Madison

6

Michael Spannowsky

05/09/2011

Recombine fat jet's constituents to microjets (kT, R=0.15, pT > 1 GeV)

microjets are basic elements of event/fat jet

Michael Spannowsky

Fat jet: R=1.2, anti-kT

microjets R=0.15, kT

Build all possible shower histories signal vs background hypothesis based on:

- ▶ Emission probabilities
- ▶ Color connection
- ▶ Kinematic requirements
- ▶ b-tag information

Fat jet: R=1.2, anti-kT

microjets R=0.15, kT

Build all possible shower histories signal vs background hypothesis based on:

- ▶ Emission probabilities
- ▶ Color connection
- ▶ Kinematic requirements
- ▶ b-tag information

Fat jet: R=1.2, anti-kT

microjets R=0.15, kT

Build all possible shower histories signal vs background hypothesis based on:

- ▶ Emission probabilities
- ▶ Color connection
- ▶ Kinematic requirements
- ▶ b-tag information

Propagator corresponds to Sudakov factor

Red symbols corresponds to splitting/decay function

$$\chi(\{p,t\}_N) = \frac{P(\{p,t\}_N|S)}{P(\{p,t\}_N|B)} = \frac{\sum_{\text{histories}} H_{ISR} e^{-S_{I1}} \cdots H_H e^{-S_{s1}} H_{bg}^s e^{-S_{s2}} \cdots}{\sum_{\text{histories}} H_{ISR} e^{-S_{I1}} \cdots H_{gbb} e^{-S_{b1}} H_{bg}^b e^{-S_{b2}} \cdots}$$

For more details see: [Soper, Spannowsky 1102.3480]

Pheno 2011

Madison

Results of shower deconstruction (SD)

NLO CS:
$$\sigma_{MC}(S) = 1.48 \text{ fb}$$
 $\sigma_{MC}(B) = 2610 \text{ fb}$

- CD manfanna canan analala fan Hanssias e and Dedd
- ▶ SD performs comparable for Herwig++ and Pythia
- ▶ Profits more from information than BDRS, e.g. b-tagging

Lots of room for improvement:

Modular build -> improvements are additive

Targeted scenarios:

▶ Busy final states -- e.g. tth, susy cascades

Difficult processes with low stat. significance

Conclusions

- > SD realization of 'maximal information approach'
- ▶ In simple HZ final state not as good as BDRS
- ▶ Theoretical Systematic uncertainty similar to BDRS
- ▶ Profits more from information than BDRS, e.g. b-tagging
- Might be useful for busy final states
- ▶ Modular set-up -> parts can be improved independently