Higgsino-less Bino Dark Matter

Arjun Menon Illinois Institute of Technology

Based on:

Marcela Carena, R. J. Hernandez-Pinto and A. M., arXix:1105.xxxx

May, 10th, 2011

Dark Matter and MSSM

WMAP/SDSS has measurement the relic abundance to be

$$\Omega_{CDM}h^2 = 0.113 \pm 0.0035$$

- The most studied symmetry principle that can lead to such a stable dark matter particle is supersymmetry.
- Gravity-mediated MSSM models ⇒ typically Bino LSP.
- ullet To generate the thermal relic abundance and not requiring light sfermions \Rightarrow large Higgsino component in the LSP.
- Large Higgsino component ⇒ large direct detection cross-sections.

How is this dark matter phenomenology modified in BMSSM?

Effective Operators

D = 6 gauge Higgs mixing operators

$$\mathcal{L} \supset \frac{d_{1}}{4M^{2}} H_{u} H_{d} W^{(1)\alpha} W_{\alpha}^{(1)} \Big|_{\theta\theta} + \frac{d_{2}}{4M^{2}} H_{u} H_{d} W^{(2)\alpha} W_{\alpha}^{(2)} \Big|_{\theta\theta} + \frac{d_{12}}{2M^{2}} W^{(1)\alpha} H_{u} W_{\alpha}^{(2)} H_{d} \Big|_{\theta\theta} + \text{h.c.}$$

 Assuming F-term SUSY breaking, effective D-term spurion terms

$$\frac{1}{4}\int d^2\theta \left(\frac{d_1}{M}\mathcal{W}^\alpha W_\alpha^{(1)}H_uH_d + \frac{d_{12}}{M}\mathcal{W}^\alpha H_uW_\alpha^{(2)}H_d\right) + \mathrm{h.c.}$$

can be removed by the shift of the U(1) vector super-field.

Komargodski et. al. '09

Modified Gauge Sector couplings and Masses

- d_1 , d_2 and d_{12} at the only additional parameters.
- Leads to modified gauge boson mass

$$m_W^2 = \frac{1}{4}g_2^2 v^2$$

$$m_Z^2 = \frac{1}{4}(g_1^2 + g_2^2) v^2 \left(1 - \frac{v^2 s_{2\beta}}{2M^2} t_{\theta_W} \Re(d_{12})\right)$$

where

$$\frac{\Delta v}{v} = \frac{v^2 s_{2\beta}}{4M^2} t_{\theta_W} \Re(d_{12}).$$

 Hence Peskin-Takeuchi electroweak parameters get the tree-level corrections

$$\alpha \Delta T^{\text{Tree}} = \frac{v^2}{2M^2} s_{2\beta} t_{\theta_W} \Re(d_{12})$$

$$\alpha \Delta S^{\text{Tree}} = -\frac{v^2 s_{2\beta}}{M^2} \Re(d_{12}) t_{\theta_W}^{-1} \left(1 - 2s_{\theta_W}^2 - 2s_{\theta_W}^4\right)$$

contd...

• Corrections are independent of d_1 and d_2 .

• Electroweak precision constraints are small for large $\tan \beta$ and imaginary d_{12} .

ullet Corrections to S and T are correlated $\Rightarrow \left| \frac{\Delta S^{tree}}{\Delta T^{tree}} \right| \approx 2.9$

Modifications to the Neutralino Mass Matrix

Kinetic mixing terms and mass terms lead to

$$\mathbf{M}_{\tilde{\chi}^0} = \mathbf{M}_{\tilde{\chi}^0}^0 + \frac{v^2}{M^2} \Delta_{\tilde{\chi}^0}$$

where in the limit $\tan \beta \to \infty$

$$\begin{split} \Delta_{\tilde{\chi}^0}^{11} &\to \tfrac{1}{2} \mu^* \textit{d}_1, \ \Delta_{\tilde{\chi}^0}^{12} \to \tfrac{1}{4} \mu^* \textit{d}_{12}, \ \Delta_{\tilde{\chi}^0}^{22} \to \tfrac{1}{2} \mu^* \textit{d}_2, \\ \Delta_{\tilde{\chi}^0}^{13} &\to \tfrac{1}{4} \textit{m}_Z \textit{s}_{\theta_W} \left[\textit{d}_1 - \tfrac{\textit{d}_{12}}{2} \textit{t}_{\theta_W}^{-1} \right], \ \Delta_{\tilde{\chi}^0}^{23} \to -\tfrac{1}{4} \textit{m}_Z \textit{c}_{\theta_W} \left[\textit{d}_2 - \tfrac{\textit{d}_{12}}{2} \textit{t}_{\theta_W} \right] \end{split}$$

• These operators induce large Bino-Wino mixing in the limit of large μ and $\tan \beta$.

Modifications to the Chargino Mass Matrix

Similarly kinetic mixing and mass terms lead to

$$\mathbf{M}_{ ilde{\chi}^\pm} = \mathbf{M}_{ ilde{\chi}^\pm}^0 + rac{v^2}{M^2} \Delta_{ ilde{\chi}^\pm}$$

where in the limit $\tan \beta \to \infty$

$$\Delta^{11}_{\tilde{\chi}^{\pm}} \to \frac{1}{2} \mu^* \textit{d}_2, \ \Delta^{21}_{\tilde{\chi}^{\pm}} \to -\frac{1}{8} \sqrt{2} \textit{m}_{\textit{W}} \textit{d}_{12} \textit{t}_{\theta_{\textit{W}}}$$

 Corrections to the Wino element of the neutralino and chargino get the same correction.

Neutralino and Chargino Couplings

• Explicit changes to the $g_{\chi_0\chi_0 Z}$ $g_{\chi_\pm\chi_\pm Z}$ $g_{\chi_0\chi_0\gamma}$, $g_{\chi_0\chi_\pm W_\mp}$ are $\propto \sin 2\beta$.

• However modification of composition can lead to large effect especially for $g_{\chi_0\chi_+W_\pm}$.

• Additional contribution to $g_{h\chi_0\chi_0}$ and $g_{H\chi_0\chi_0}$ due to

but not for $g_{A\chi_0\chi_0}$

Relic Density

- Assuming no coannihilation, mostly Bino LSPs with small Higgsino components typically over close the universe.
- The d_{12} -term can induce a larger Wino component while still having small a small Higgsino component.
- ullet For $m_{\chi_1^0} \geq m_W$ the annihilation cross-section into W^+W^- is

$$\langle \sigma v_{\chi_0}^2 \rangle_0 \propto rac{v^4 d_{12}^2}{M^4 (M_2-M_1)^2}$$

contd...

 Large values of d₁₂ allow for larger splittings and smaller coannihilation effects.

The Higgsino-less Bino Parametric Scenario

- Similar to the "Well-Tempered" Wimp we choose $|N^{11}|^2 \geq 0.5, \, |N^{12}|^2 \geq 0.1, \, |N^{13}|^2 \text{ and } |N^{14}|^2 \leq 0.01$
- Imposed these constraints on the parameter scan

$$M_2 \subset [100, 150] \; \mathrm{GeV}; \; M_1 \subset [80, M2 - 5] \; \mathrm{GeV};$$
 $\mu = 800 \; \mathrm{GeV} \; d_1 = 0; \; d_2 = 0; \; d_{12} = [-1, 1], \; M = 1 \; \mathrm{TeV}$

• Large $\tan \beta$ leads to greater Wino component in the LSP due to S-parameter constraint.

Neutralino-Chargino W Couplings

• As expect large modification of $g_{\chi_0\chi_\pm W^\mp}$ due to enhanced Wino component in the LSP.

Direct Detection

- Direct detection limits mostly due to H^0 exchange $\propto \tan^2 \beta/m_{\Delta}^2$.
- Scanned over $m_A \in [100, 500]$ GeV.

Indirect Detection: Experiments

Abbasi et. al. '09

ullet A boost factor of $\sim 10^{-3}$ needed to explain PAMELA \Rightarrow limits from FERMI/LAT are relatively weak.

 \bullet As $m_{\chi_0}\lesssim$ 150 limits, present limits from ICECUBE are relatively weak.

• Limits from Super-Kamiokande $\gtrsim 10^{-6}$ pb so are weaker than direct detection constraints.

Collider Searches

- Inverted mass hierarchy between χ^1_\pm and χ^2_0 with a few GeV splitting.
- $m_{\chi_{\pm}^1} m_{\chi_0^1} \sim$ 10 GeV.
- \bullet Small splittings \to soft leptons and jets.
- Discovery of the scenario at the LHC is quite challenging.
- Large d_{12} allows for larger splittings \Rightarrow improved reach at LHC.

Conclusions

- We consider additional D = 6 gauge Higgs mixing operators.
- These operators give corrections to electroweak precision observables.
- These operators do not modify Higgs physics significantly once electroweak precision constraints are imposed.
- These operators can induce significant modifications to neutralino and chargino sectors and lead to significant modifications of MSSM phenomenology.
- Larger D=6 operator contributions allows for less degenerate mass spectrum and better LHC discovery prospects.