Improving the Slepton Reach through Cascade Decays at the LHC

Jonathan Eckel, Shufang Su (Arizona) Jessie Otradovec, Michael Ramsey-Musolf (Madison) Will Shepherd (UCI)

Kinematic Feature

 If Y is on-shell distinctive feature in dilepton inv. mass

$$M_{max} = \sqrt{\frac{(M_X^2 - M_Y^2)(M_Y^2 - M_Z^2)}{M_Y^2}}$$

Bachacou, Hinchliffe, and Paige Hep-ph/9907518

Kinematic Feature

 If slepton is on-shell distinctive feature in dilepton inv. mass

$$M_{max} = \sqrt{\frac{(M_{\chi_2}^2 - M_{\tilde{l}}^2)(M_{\tilde{l}}^2 - M_{\chi_1}^2)}{M_{\tilde{l}}^2}}$$

Bachacou, Hinchliffe, and Paige Hep-ph/9907518

Drell-Yan vs Cascade Decay

Approach

- Madevent → Pythia → PGS to generate MC
- Consider 3 lepton signal
 - Reduce background
 - Cut only on 3 leptons to improve statistics
- Exploit only kinematic shape of slepton decays

Fitting

- Signal
 - Cutoff, counts, smearing
- Background
 - Zpeak:
 - Amplitude
 - Position
 - Width
 - t tbar + fake:
 - Fake rate

Fitting

Difficult to detect cutoff near Z peak

 $M_1 = 50 M_2 = 225 M_{slep} = 200 GeV$

Easier to detect cutoff at high energies

 $M_1 = 50 M_2 = 250 M_{slep} = 112 GeV$

Required Cross Section

Simple Application

- We consider case
 - pure Bino χ_1
 - pure Wino χ_2
- Drell-Yan production of Winos

$$\chi^0_2$$
 χ^\pm

$$\chi_1^0$$

Luminosity Reach

Conclusions

- Kinematic triangle is a good indicator
- We express the detectability of this signal in a model independent way
- Use a simple model in the MSSM to illustrate the effectiveness of the method

Backup Slides

Total Drell Yan Slepton Production Cross Section

H. Baer, C. Chen, F. Paige, X. Tata hep-ph/9311248

SM Backgrounds

- Selecting trilepton avoids large SM backgrounds
 - $\overline{-}$ WW, \overline{Z} + jets, t tbar
- Remaining backgrounds
 - WZ, t tbar + V
- Ttbar + fakes , comparable to WZ
- Other processes contain a Z boson or small rates

SUSY Backgrounds

- Trilepton in SUSY decays
- Signals with a Z boson in final state
 - Similar to SM backgrounds
- Lepton flavor mixing small
 - Turn off completely
- At most two kinematic triangles in each channel

Pseudo-Experiment

- Madevent → Pythia → PGS to generate MC
- Straightforward for signal + Z peak background
- T tbar + fake MC gives poor statistics
 - Instead use 2-lepton t tbar sample and noise

Fit Function background

- Z peak
- Fit: Width, position, amplitude

- Ttbar
 - Fake rate

Fitting Signal

- Kinematic triangle exact at parton level for correct pair
- Distortions:
 - Same sign subtraction
 - Bremsstrahlung and detector effects
- Fit:
- cutoff, counts, smear

Fitting Signal

