Phase 2: Transport of electrons

- As a result of the charged particle passing through the gas, we have most probably ~ 40 electrons $/ \mathrm{cm}$.

With these, we've to reconstruct the charged particle.

Transport of electrons

-As long as they stand still, they are invisible, and they may eventually recombine with an ion.

- By applying an electric field we move them to a readout structure.
- There we multiply them: moving charges induce currents, and these currents can be measured.

How do electrons move in a gas ?

- We would like to know:

D How fast are the electrons?

- Will they move in a straight line?
- Are they absorbed or do they produce showers ?
- To answer these questions, we first look at:
- Distance between gas molecules;
- Mean free path of electrons;
- Interactions between electrons and gas.

Distances in gases

- Number of Ar atoms in a cm ${ }^{3}$:
- Avogadro's number:

Atomic weight of Ar:
6.02210^{23} atoms $/ \mathrm{mole}$ $40 \mathrm{~g} / \mathrm{mole} \times$
Density of Ar:
$1.66210^{-3} \mathrm{~g} / \mathrm{cm}^{3}=$
D Loschmidt's number: 2.510^{19} atoms $/ \mathrm{cm}^{3}$

- Distance between neighbouring Ar atoms:
- How about e.g. xenon?

Cross section of argon

- Cross section in a hard-sphere model:
- Radius: ~70 pm (http: / /www.webelements.com)

Surface:

- Simplified cross sections used by Magboltz:

Mean free path in argon

- We know already that:

Cross section of 1 atom: $\square \approx 1.510^{-16} \mathrm{~cm}^{2}$

- Atoms per volume: $\quad \mathcal{L} \approx 2.510^{19} \mathrm{atoms} / \mathrm{cm}^{3}$

Mean free path for an electron?

- An electron hits all atoms of which the centre is less than a cross section radius from its path
\triangleright Over a distance L, the electron hits $\mathcal{L O L}$ atoms
\Rightarrow Hence, the mean free path is $\square_{\mathrm{e}}=1 /(\mathcal{L} \mathbb{L}) \approx 2.7 \square \mathrm{~m}$
Much larger than the distance between atoms, $0.004 \mathrm{\square m}$!

Drift velocity in electric fields

- Imagine that an electron loses all its energy every time it collides with a gas molecule, how fast will it move in a field with strength E ?
To cover a distance, it will need a time t :

For example:

Drift velocity in argon

- Magboltz calculation for pur

Drift velocity in argon argon:
${ }^{-} E$ dependence OK ; BUT

- Much slower than we estimated: not all energy is lost in each collision.

$\mathrm{E}[\mathrm{kV} / \mathrm{cm}]$

$\mathrm{Ar}+\mathrm{CO}_{2}$

$-\mathrm{CO}_{2}$ makes the gas faster, dramatically.
-Why?

- Calculated by Magboltz for $\mathrm{Ar} / \mathrm{CO}_{2}$ at 3 bar.

$\mathrm{Ar}+\mathrm{CO}_{2}$

- Transverse diffusion is much reduced by CO_{2}.

$\mathrm{E}[\mathrm{V} / \mathrm{cm}]$

Diffusion

- Electrons scatter during transport, in particular in mainly elastic gases.
- A typical value is $200 \mu \mathrm{~m}$ lateral spread after 1 cm . How much would this be after 1 m ?

Scale >> mean free path (> 1 mm)

-For practical purposes, electrons from a given starting point reach the same electrode - but with a spread in time and gain.

Electrons transport is treated by:
integrating the equation of motion, using the Runge-Kutta-Fehlberg method, to obtain the path;
integrating the diffusion and Townsend coefficients to obtain spread and gain.

- This approach is adequate for TPCs, drift tubes etc.

TPC read-out structure

Scale $>$ mean free path ($100 \square \mathrm{~m}-1 \mathrm{~mm}$)

Electrons from a single starting point may end up on any of several electrodes.
-Calculations use Monte Carlo techniques, based on the mean drift velocity and the diffusion tensor computed by microscopic integration of the equation of motion in a constant field. Gain depends on the path.

- This approach is adequate as long as the drift field is locally constant - a reasonably valid assumption in a Micromegas but less so in a GEM.

Micropattern detector

- Analytic integration
- Runge-Kutta-Fehlberg technique; automatically adjusted step size;
optional integration of diffusion,
 multiplication and losses.
- Monte Carlo integration non-Gaussian in accelerating, divergent and convergent fields;
- step size to be set by user.

Scale \sim mean free path $\quad(1 \square \mathrm{~m}-1 \mathrm{~mm})$

- At this scale, where the mean free path approaches the characteristic dimensions of detector elements, free flight between collisions, is no longer be parabolic.
- The only viable approach here seems to be a complete microscopic simulation of the transport processes, taking local field variations into account.

The method shown here is based on the Magboltz program.

Molecular tracking

- Example:

CSC-like structure,
$-\mathrm{Ar} 80 \% \mathrm{CO}_{2} 20 \%$, - 10 GeV [.

- The electron is shown every 100 collisions, but has been tracked rigourously.

Phase 3: Gain

- After transport, we still have most probably 40 electrons per cm of gas. We need to detect them. If we collect them on an electrode over $1 \mu \mathrm{sec}$, the current will be:
- Maybe manageable nowadays, but certainly not comfortable. Amplification is required.
-Amplification calls for fields where the energy after a mean free path > ionisation energy.

Energy after a mean free path

Townsend coefficient in argon

- Energy after a distance :
- Ionisation energy of argon:
- About 15.7 eV
- Ionisation would occur at:
- $E>75 \mathrm{kV} / \mathrm{cm}$
- Multiplication indeed occurs at such fields, avalanches start much earlier, though.
- [: Townsend coefficient, new e- per unit length.

Micromegas avalanches

Part of a study to verify the diffusion spread during avalanches in a Micromegas mesh.

Level diagram argon and admixtures

Importance of Penning transfer - Ar" $^{*} 4 \mathrm{p}, 3 \mathrm{~d} \ldots \mathrm{ICH}_{4}^{+}+\mathrm{e}^{-}$
 $-\mathrm{Ar}^{*} 3 \mathrm{~d} . . . \square \mathrm{CO}_{2}^{+}+\mathrm{e}^{-}$

$\mathrm{Ar}-\mathrm{CH}_{4}$: processes and timing

Avalanche growth

- The avalanche size $n(x)$, increased in principle in a very simple manner:

Avalanche statistics

- Exponentials like each other, and in the simplest models also the size is exponentially distributed.
- This neglects the effects of
- minimum path length before a new ionisation;
- energy loss in inelastic collisions;
-excitations;
Penning effect;
- attachment.
-DOI: 10.1016/j.nima.2010.09.072

Avalanche size distributions

- Data for dimethoxymethane at increasing E field:

Relative variance

relative variance
[, no spread
exponential attachment

Minimising f

Quenchers: more inelastic \& less ionisation \square larger f;
Penning transforms excitation into ionisation \square smaller f.

Ion movement

- Along with the avalanche electrons, we get an equal number of avalanche ions.
- They move in the opposite direction ... and therefore travel much further.
- They are slow: Ar^{+}in Ar moves at $5 \mathrm{~km} / \mathrm{h}$ only.

Mobility of Argon and CO_{2} ions in Argon

Phase 4: Signals

- Remains reading the signals induced by the electrons and ions moving around in the chamber.

Current induction

Current induction

Current induction

Current induction

Current induction

No charge creation: $\Delta q_{o}+\Delta q_{c}+\Delta q_{p}=0$

Signal properties

Properties of the current induced in an electrode:
proportional to the charge Q;
proportional to the velocity of the charge ;
dependent on the electrode and the geometry.

- This leads to the following ansatz:

The geometry is contained in , necessarily a vectorial quantity, the weighting field. Each electrode has its own weighting field.
The sign is mere convention.

Weighting field - examples

- The weighting field is often easy to guess:

Electrode

Weighting fields

- Claim (without proof): can be computed by setting the potential as follows:
\square read-out electrode set to 1 ,
- all other electrodes set to 0;

Dote ... 0 and 1 , not 0 V and 1 V !
This is plausible considering the examples, and
can be proven using Green's reciprocity. See e.g.
George Erskine's paper.

Weighting field GEM

$>$ Orange:
weighting field
-Blue:
electric field
-Yellow:
plastic
Green:
conductors

- The strength of the weighting field is not represented!

Weighting field Micromegas

- Orange:
weighting field
-Blue:
electric field
Brown:
mesh (cut)
- The strength of the weighting field is not represented!

Summary

- Mechanism:
-charged particles deposit most probably $\sim 40 \mathrm{e}^{-} / \mathrm{cm}$;
\square the electrons move with a speed of $1-5 \mathrm{~cm} / \mu \mathrm{sec}$;
- they diffuse during transport, typically $200 \mu \mathrm{~m}$ over 1 cm ;
\square they multiply near an electrode;
measurement relies on recording ion $+\mathrm{e}^{-}$movement.
-Simple arguments, give a feeling for electron and ion transport, but such estimates are not particularly precise.
- Gas-based detectors need to be well-understood, if they are to perform well.

