

Estimate the Cross talk of a MAPMT

Task: Measure the cross talk of a MAPMT. Illuminate one channel and measure the induced signal on the neighboring channels. Use low light levels (few photoelectrons).

- Set-up:
- MAPMT
- blue LED
- pulse generator
- fibre lightguide
- oscilloscope (with histogramming capability)

Sources of cross-talk in a MAPMT

Test bench in a black box

Christian Joram, EDIT 2011

PHOTOMULTIPLIER TUBE R7600-00-M64

2 x 2 mm Multianode, High Speed Response, Low Cross-talk

25.7 mm Square, Bialkali Photocathode, 12-Stage, Head-on Type

GENERAL

	Parameter	Description	unit
Spectral Response		300 to 650	nm
Wavelength of Maxim	um Response	420	nm
Photocathode	Material	Bialkali	-
	Minimum Effective Area	18.1 x 18.1	mm
Window Material		Borosilicate glass	-
Durate	Structure	Metal channel dynode	-
Dynode	Number of stages	12	-
Operating Ambient Ter	mperature	-30 to +50	°C
Storage Temperature		-80 to +50	°C

MAXIMUM RATING (Absolute Maximum vales)

	Parameter	Value	Unit		
Supply voltage	Between Anode and Cathode	1000	V		
Average Anode Co	urrent in total	0.1	mA		

CHARACTERISTICS (at 25°C) with Standard Voltage Divider

	Parameter	Min.	Тур.	Max.	Unit	
	Luminous(2856K)	60	80	-	uA/lm	
Cathode Sensitivity	Blue Sensitivity Index (Cs-5-58)	6.5	8.5	-	-	
Anode Sensitivity	Luminous (2856K)	8	24	-	A/lm	
Gain		-	0.3 x 10 ⁶	-	-	
Anode Dark Current in Te	otal after 30min. storage in darkness)	-	- 12.8 12		nA	
	Anode Pulse Rise time	-	1.0	-	ns	
Time Response	Electron Transit Time	-	10.9	-	ns	
	Transit Time Spread (T.T.S.)	-	0.3	-	ns	
Pulse Linearity per chann	-	0.6	-	mA		
Uniformity Between Each	-	1:2.5	1:4	-		

NOTE: Anode characteristics are measured with a voltage distribution ratio shown below :

Standard Voltage Divider and Supply Voltage

Electrodes	K	D)y1	Dy2	D) y3	Dy4	Dy	5 I) y6	Dy7	D) y8	Dy) D	y10	Dy1	1 D) y12]	Р
Ratio		3		2	2	1	1		1	1		1	Ch	i rist	ia <mark>l</mark> n .	lor	am.	EĐ	IТ 2	่อ1	1
Supply Voltag	e: 8	00 V,		K	: (Catho	ode,		Dy	: I	Dynod	e,		P:	Ano	de,	,				

Channel and pin layout of the Hamamatsu R7600 MAPMT

Christian Joram, EDIT 2011

R21:1 MQ(±5 %, 0.063 W)

Example of a result from a quantitative measurement

A (scintillating) fiber (0.5 mm square) is positioned at the centre of a pixel in mechanical contact with the MAPMT window. No optical grease of gel is used. Low intensity light pulses from a LED are coupled into the fibre. The light intensity is chosen such that the average intensity corresponded to 0.2 photoelectrons per pulse, i.e. the probability for pulses with 2 photoelectrons is negligible. The MAPMT is operated at $U_c = -950V$. The figures below show the results of the measurement of the signals on the scope (area under pulse) on the illuminated pixel and the adjacent eight pulses. The cross-talk on the direct neighbours is of the order of 2% while diagonal neighbours show a signal of about 0.5%. The relative strength of the cross-talk varies with the applied bias.

S2