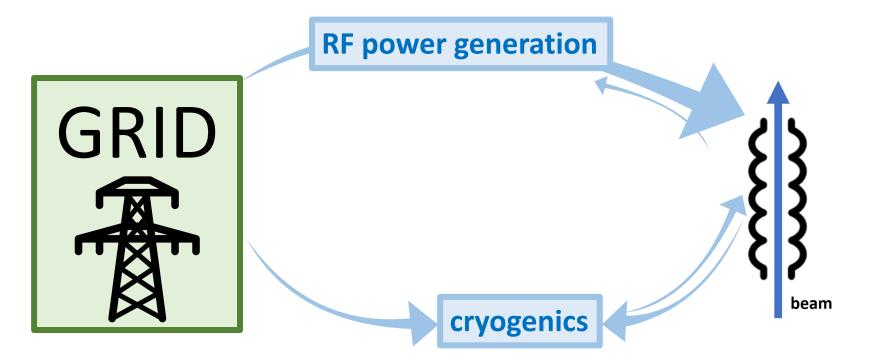
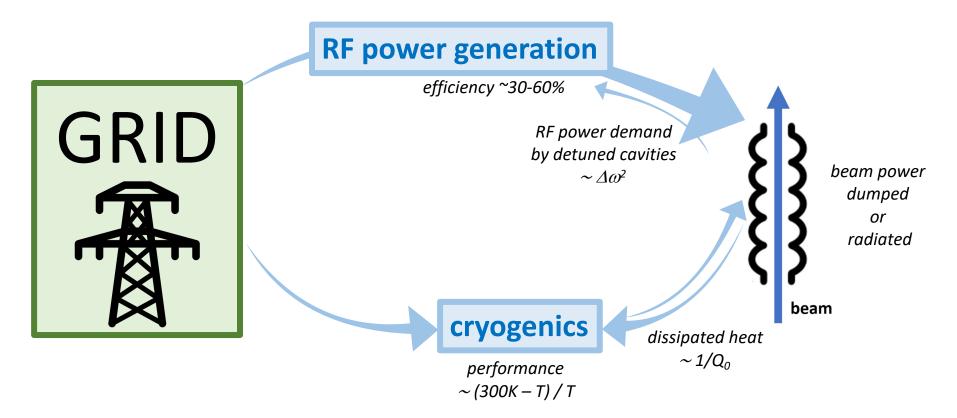
Power-efficient powerful beams

accelerator R&D for energy recovery for HEP

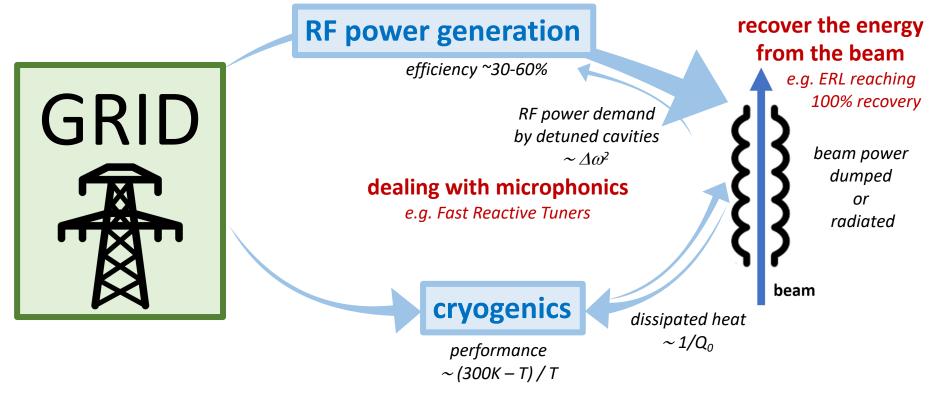
Jorgen D'Hondt Vrije Universiteit Brussel

Max Klein University of Liverpool

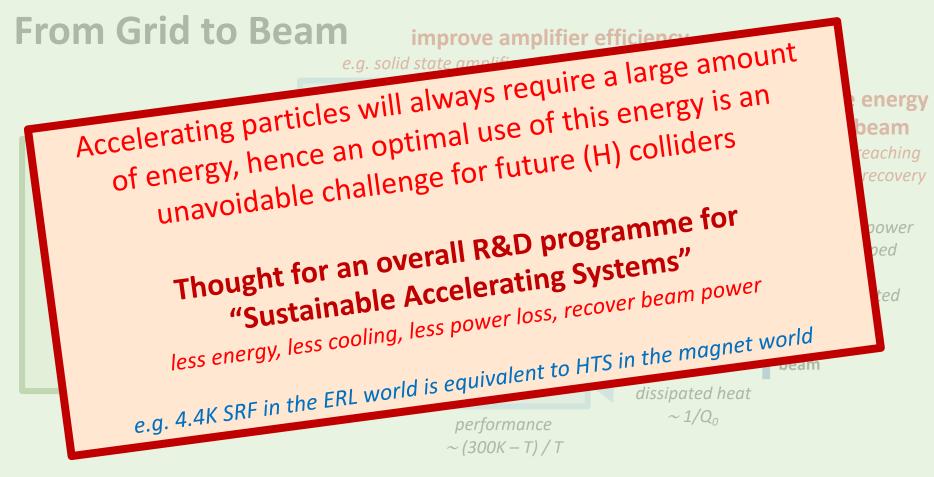




LDG meeting, 21 November 2022

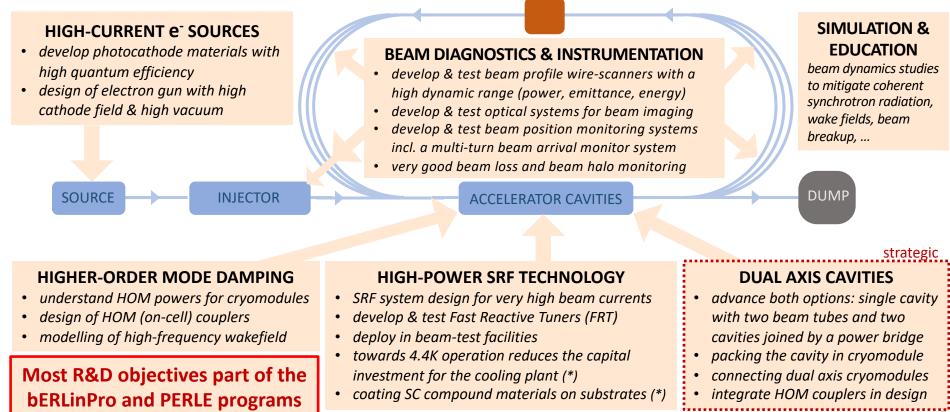


The energy efficiency of present and future accelerators [...] is and should remain an area requiring constant attention. A detailed plan for the [...] saving and re-use of energy should be part of the approval process for any major project. European Strategy for Particle Physics 2020



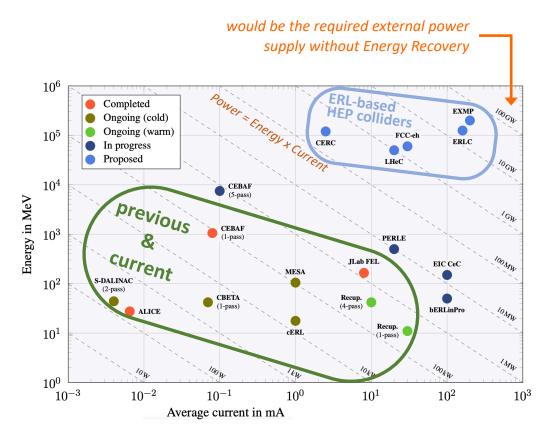
improve amplifier efficiency

e.g. solid state amplifiers for oscillating power demands


operate cavities at higher T & improve Q_0 of cavities e.g. Nb₃Sn from 2K to 4.4K \rightarrow 3x less cooling power needed

operate cavities at higher T & improve Q_0 of cavities e.g. Nb₃Sn from 2K to 4.4K \rightarrow 3x less cooling power needed

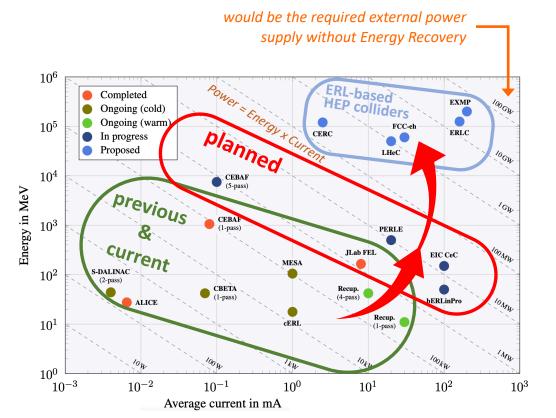
Translated into the main R&D objectives for Energy Recovery


geared towards high-energy and high-intensity accelerators incl. synergies with industry

^(*) part of the RF R&D program

Energy Recovery – 50 years of innovation

from previous to current and future facilities as stepping stones for R&D



Energy Recovery

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

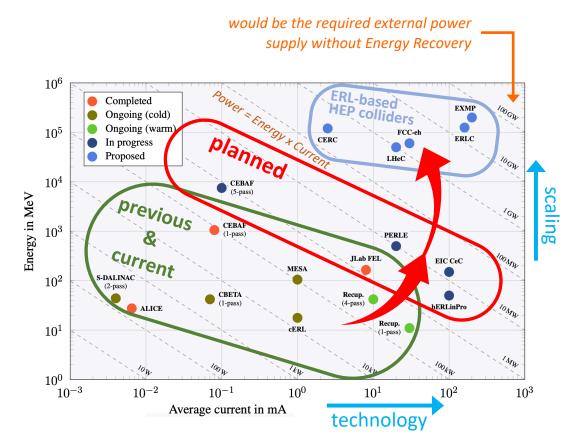
Energy Recovery – 50 years of innovation

from previous to current and future facilities as stepping stones for R&D

Energy Recovery

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

bERLinPro & PERLE


essential accelerator R&D labs with ambitions overlapping with those of the particle physics community

towards high energy & high power

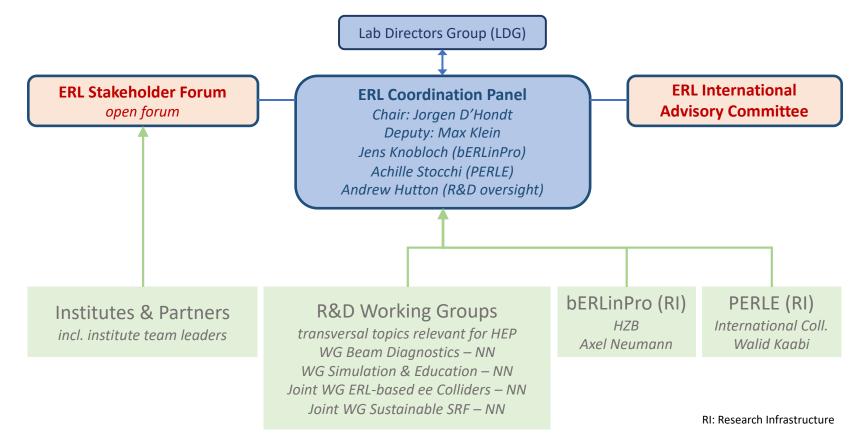
The Development of Energy-Recovery Linacs arXiv:2207.02095, 237 pages, 5 July 2022

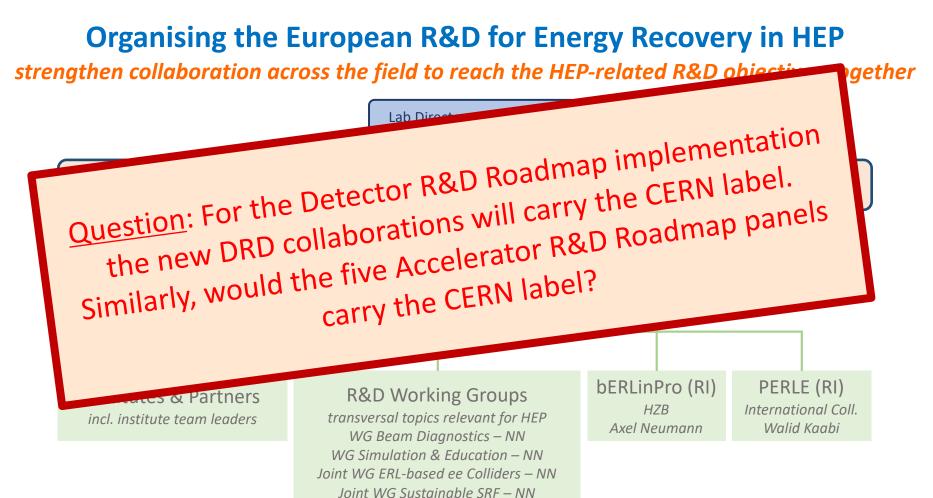
Energy Recovery – 50 years of innovation

from previous to current and future facilities as stepping stones for R&D

Energy Recovery

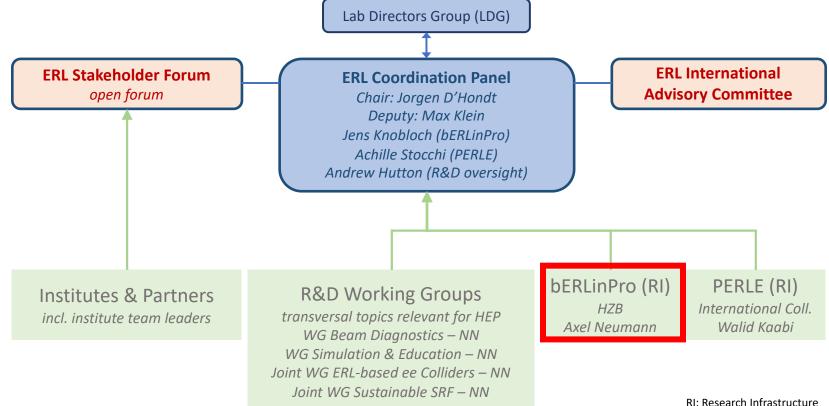
great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully


bERLinPro & PERLE


essential accelerator R&D labs with ambitions overlapping with those of the particle physics community

towards high energy & high power

The Development of Energy-Recovery Linacs arXiv:2207.02095, 237 pages, 5 July 2022

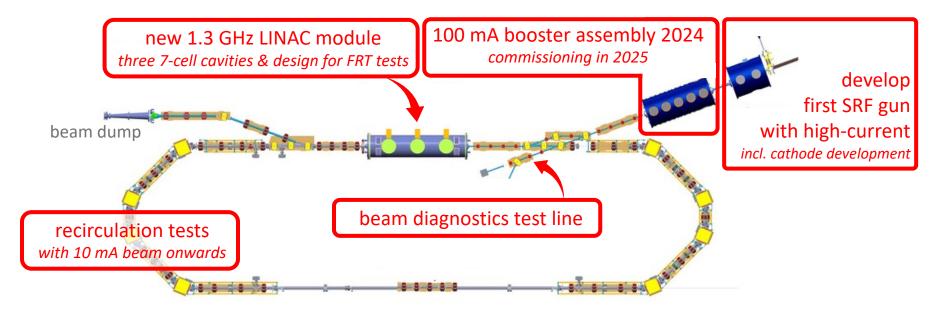

strengthen collaboration across the field to reach the HEP-related R&D objectives together

RI: Research Infrastructure

strengthen collaboration across the field to reach the HEP-related R&D objectives together

complementary in addressing the R&D objectives for Energy Recovery

bERLinPro @ Helmholtz Zentrum Berlin generic accelerator R&D with several aspects as stepping stones towards HEP applications


BERLinPro: Main Project Parameters

Total beam energy, MeV	50
Maximum average current, mA	100
Bunch charge, pC	77
Bunch repetition rate, GHz	1.3
Emittance (normalized), π mm mrad	≤ 1.0
Bunch length (rms), ps	2.0 or smaller
Maximum Losses (relative)	< 10 ⁻⁵

bERLinPro – Berlin Energy Recovery Linac Project

complementary in addressing the R&D objectives for Energy Recovery


bERLinPro @ Helmholtz Zentrum Berlin addressing HEP related challenges bERLinPro ready for operation at 10 mA <u>contingent on additional budgets</u> upgrades to 100 mA and ERL at 50 MeV can be planned to be operational by 2028

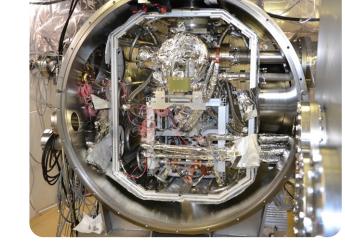
First beam of bERLinPro@SEALab to be expected around late Spring to Summer 2023

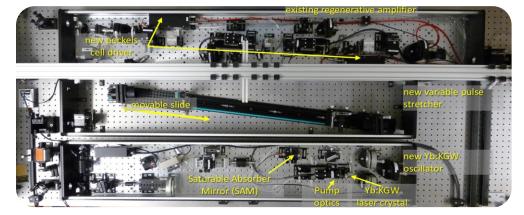
- focus on commissioning injector with SRF gun + diagnostic line (map out the reachable parameter space)
- installation of the Booster module
- recirculation, when LINAC funding is secured

Support Infrastructure: Cryogenics & High-Power RF Installed and commissioned



Beam transport / vacuum system / diagnostics


ISO-5 installed for SRF compatibility, ready for beam



SRF Injector (10 mA CW limited by couplers)

Funded and part of baseline activities

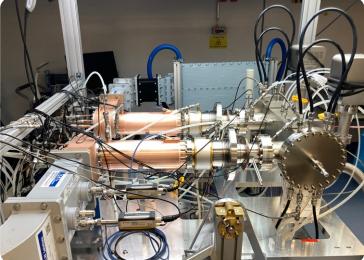
- o Beam operation with SRF gun (2 systems) in the past
- o Re-Installation in cryomodule under way, complete 2022
- Laser system and beam transport installed / ready for operation
- $\circ~$ Cathode production ready

SRF Booster

Funded and part of baseline activities

- All components in-house
- Critical couplers tested to 60 kW CW / 120 kW pulsed Ο
- Installation planned to begin 2023

SRF LINAC


Module design essentially finished Ο

Beam-pipe HOM absorbers

Baseline plans for bERLinPro@SEALab (ARD)

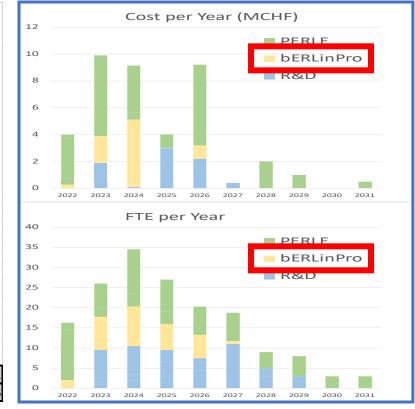
Presently planned resource-loaded activities

2023

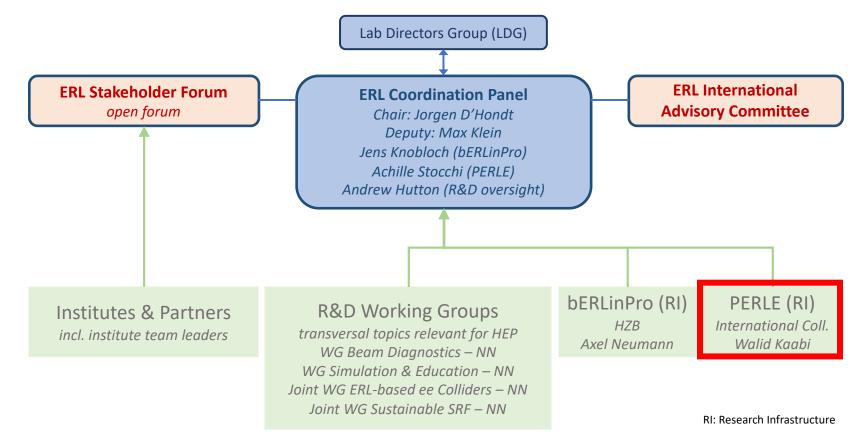
- Commission <10mA (CW) SRF gun & beam characterization
- Ultra-fast Electron Diffraction (UED) pilot experiment to demonstrate advantages of SRF injector for UED-type user applications
- Begin booster module assembly
- Design FRT system for HoBiCaT (Horizontal Bi-Cavity Testing)

2024

- Installation / commission booster module for <10mA CW operations
- Investigation of > 10mA SRF gun operation in macro-pulse mode.
- Continuation of UED-type experiments with flexibility afforded by booster.
- HoBiCaT and QPR (quadrupole resonator) testing of FRT system at 1.3 GHz (proof-of-concept)
- Part of the programme not resources-loaded (the ERL part):
 - Adapt design of LINAC module with 4K cavity option and FRT and simplify HOM damping, and built the LINAC module (5.9M CHF & 17 FTEy)
 - Towards 100mA operations (2.4 MCHF & 16 FTEy)


Accelerator Research Development topic in Matter and Technology program of Helmhotz

Required resources for the R&D program for Energy Recovery


demonstrate a ready-to-go-path for high-energy colliders by the next Strategy Update

from the endorsed Accelerator R&D Roadmap

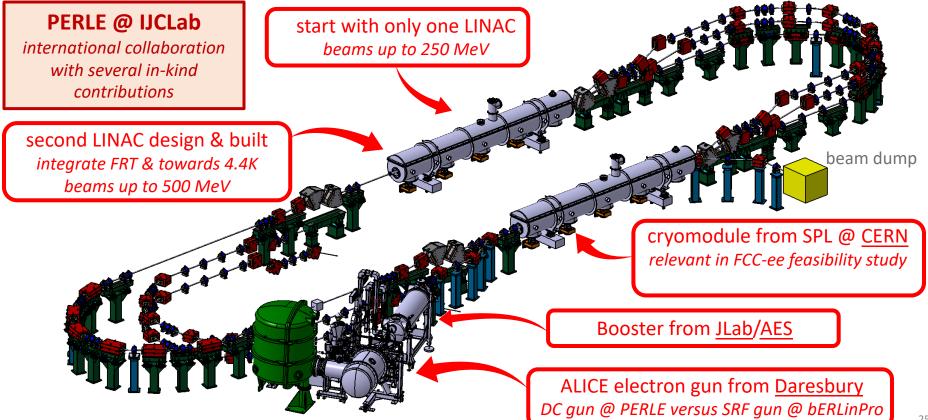
	R&D Working Groups							hERI	inPro	DEI	RLE		-
								DENL	mriu	PEI	NEL		1
	Beam Diagnostics	Simulations & Education	Sustainable SRF	(HOM Damping part)	ERL-based ee Colliders	Electron Source	ERL-based ep-collider	Phase-1 100mA beam	Phase-2 Recirculation	Phase-1 250 MeV	Phase-2 500 MeV		1
2022													
2023													4
2024													E
2025													
2026													Ξ
2027													2
2028													N
2029													1
2030													1
2031													
Cost (MCHF 2021)	1,4			2,7	3,5			2,4	5,9	14,6	9,6	40,1	
FTEy	19			24,5	12,5			16	17	64	23	176	

strengthen collaboration across the field to reach the HEP-related R&D objectives together

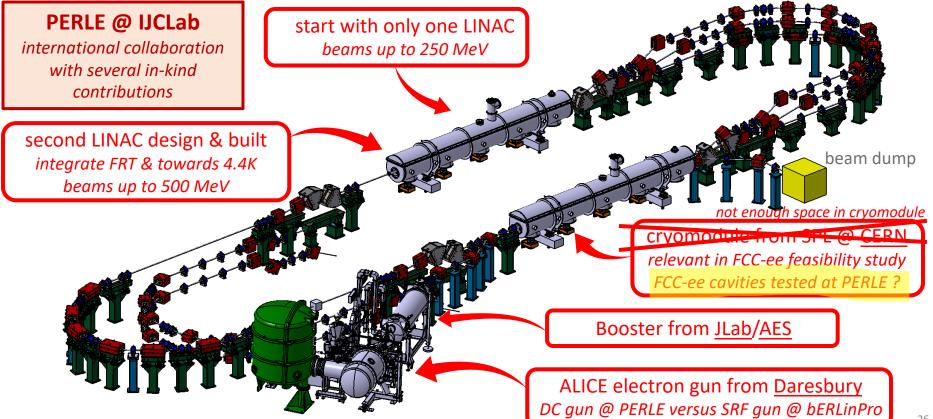
complementary in addressing the R&D objectives for Energy Recovery

3-turn ERL

PERLE @ IJCLab


international collaboration bringing all aspects together to demonstrate readiness of Energy Recovery for HEP collider applications

first multi-turn ERL, based on SRF technology, designed to operate at 10MW power regime


PERLE – Powerful Energy Recovery Linac for Experiments


Target Parameter	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalised Emittance	mm	6
γε _{x,γ}	mrad	0
Average beam current	mA	20
Bunch charge	рC	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor		CW

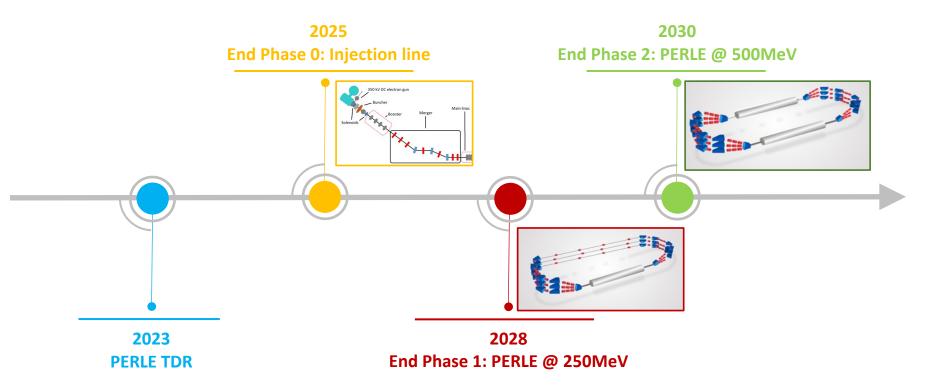
complementary in addressing the R&D objectives for Energy Recovery

complementary in addressing the R&D objectives for Energy Recovery

The "igloo": equipped experimental hall to host the DC gun

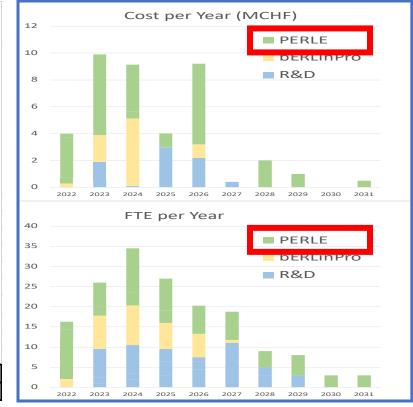
Connecting cathode tank (Nov 22)

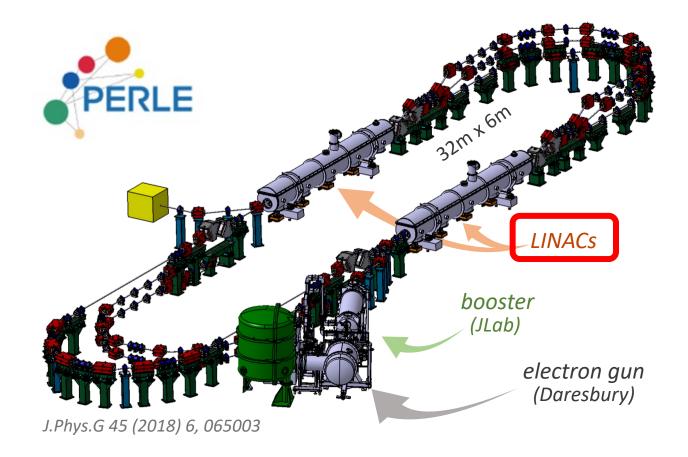
Checking HV vessel tightness (Sept 22)


HV vessel installation (June 22)

HV power supply assembly (July 22)

complementary in addressing the R&D objectives for Energy Recovery




Required resources for the R&D program for Energy Recovery

demonstrate a ready-to-go-path for high-energy colliders by the next Strategy Update

from the endorsed Accelerator R&D Roadmap

	R&D Working Groups							bERL	inPro	PE	RLE		1
		ио			s		5	c	c				1
	stics	& Education	SRF	(HOM Damping part)	ERL-based ee Colliders	rce	ep-collider	beam	Recirculation	MeV	MeV		
	Beam Diagnostics		Sustainable SRF	ping	ee Cc	่า Source	ep-c(100mA	circu	250 MeV	500 MeV		
	m Di	Simulations	stain	l Dan	ased	Electron	ERL-based	-		Phase-1	Phase-2		
	Bea	nulat	Sue	MOH,	RL-ba	Ele	RL-b	Phase-	Phase-2	Pha	Pha		
		Sin)	Ξ		Ш	4	4				
2022													-
2023													4
2024													3
2025													
2026													3
2027													2
2028													2
2029													1
2030													1
2031													Ĺ
Cost (MCHF 2021)	1,4			2,7	3,5			2,4	5,9	14,6	9,6	40,1	
FTEy	19			24,5	12,5			16	17	64	23	176	

Required resources for the R&D progr

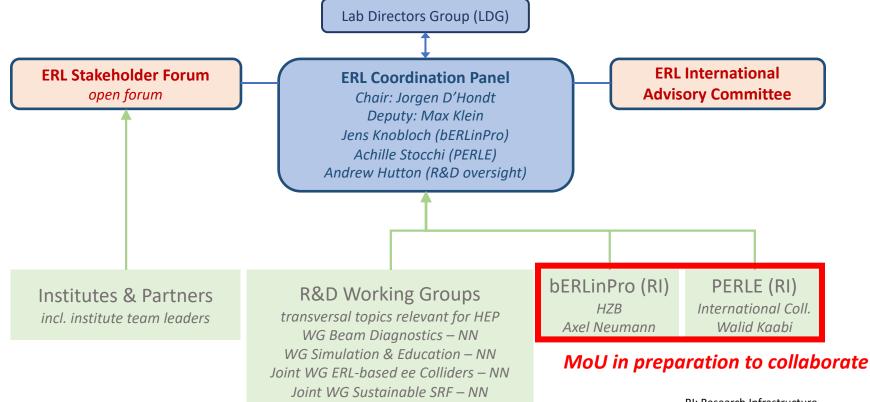
2022 2023

2024 2025

2026 2027

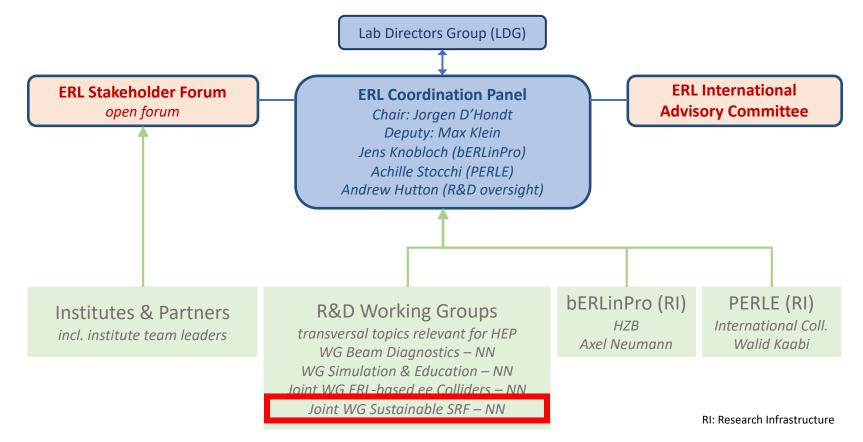
2028 2029

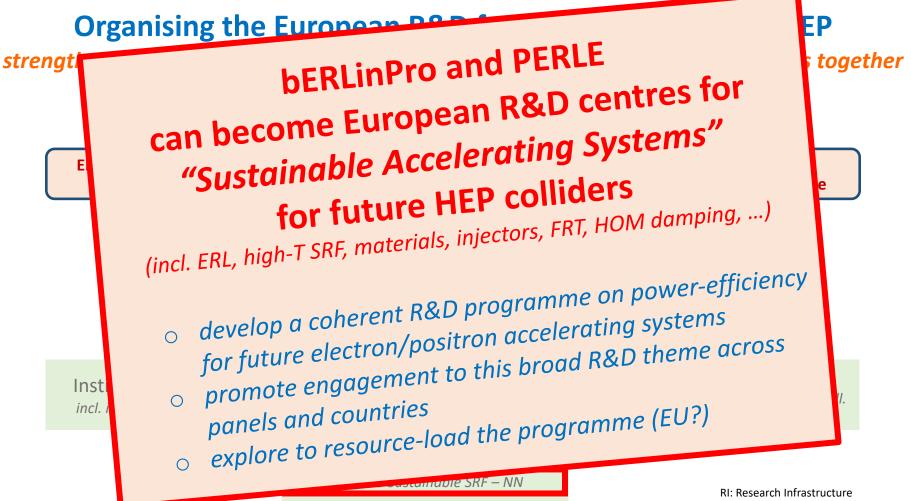
2030 2031 Cost (MC

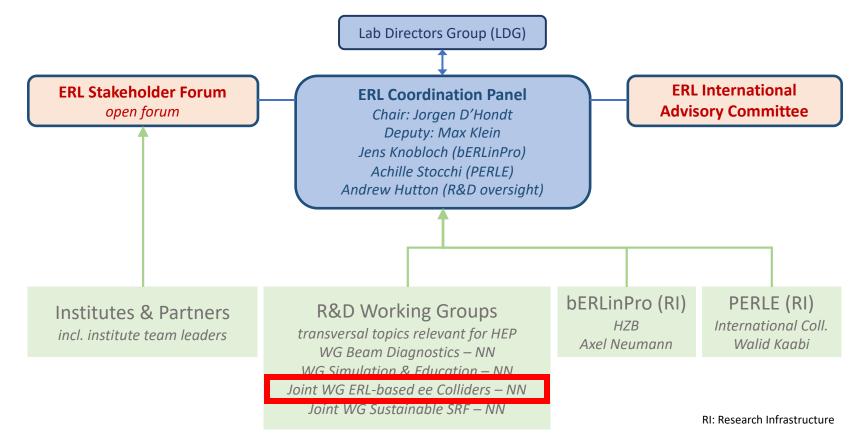

19

PERLE is mostly not resources loaded

- International collaboration: Gun from Daresbury & Booster from JLab Main challenge: two LINAC blocks (cryomodule & cavities), 2 x 4MCHF 0
- SPL cryomodule from CERN is not possible (not enough space in cryomodule) 0
- Obtaining commitments for these LINACs would bring PERLE beyond the point-ofno-return for successful implementation, and on track to attract remaining funds
- Demonstrating high-power multi-turn ERL this decade is on the critical path due
- to the lack of resources for the LINACs • <u>The timeline of PERLE</u> is perfect for testing FCC-ee LINACs (to be discussed)
 - The PERLE collaboration seeks partnerships to join the ERL part of the
- programme and/or to join a broader R&D programme for "sustainable 0 accelerating systems"


Ζ,4	5,9	14,6	9,6	40,1	5	
16	17	64	23	176	0 -	20


strengthen collaboration across the field to reach the HEP-related R&D objectives together

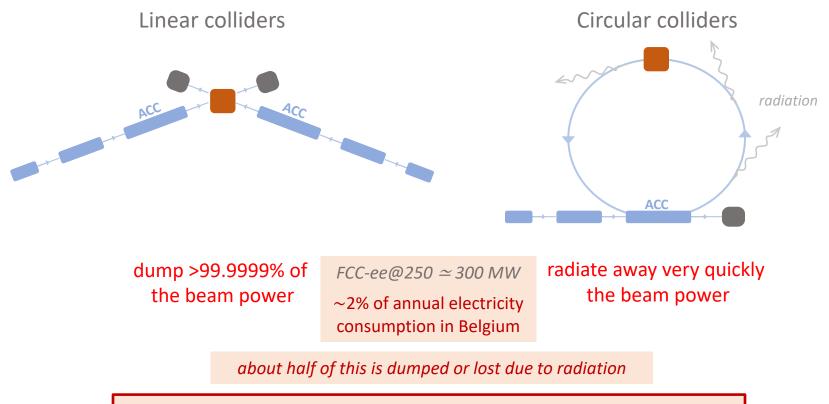

RI: Research Infrastructure

strengthen collaboration across the field to reach the HEP-related R&D objectives together

strengthen collaboration across the field to reach the HEP-related R&D objectives together

Addressing with ERL the European Strategy for Particle Physics 2020

An electron-positron Higgs factory is the highest-priority next collider.


The energy efficiency of present and future accelerators [...] is and should remain an area requiring constant attention.

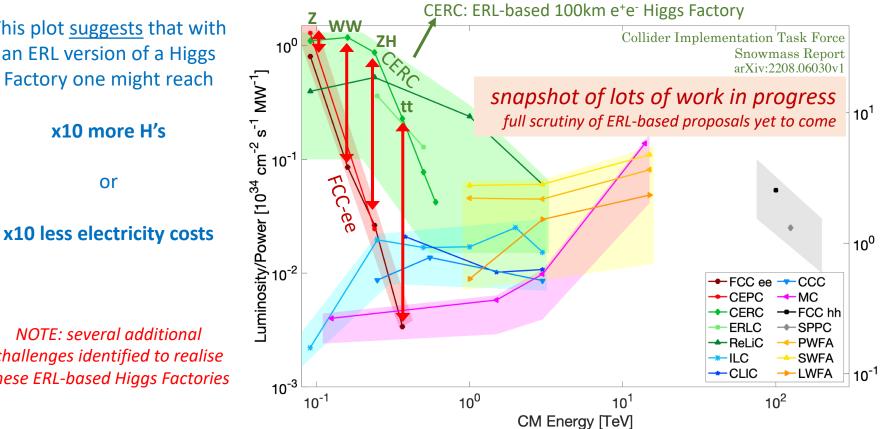
A detailed plan for the [...] saving and re-use of energy should be part of the approval process for any major project.

European Strategy for Particle Physics 2020

ERL

Current designs of Higgs Factories

OBJECTIVE: develop an accelerator technology that recovers the beam energy with an impact of saving \sim 1% of Belgium's electricity


Energy Recovery applications for HEP e⁺e⁻ colliders

This plot suggests that with an ERL version of a Higgs Factory one might reach

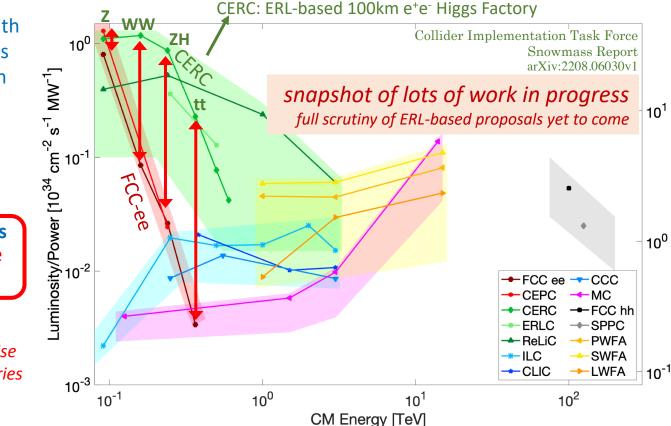
x10 more H's

or

Refs for CERC: PLB 804 (2020) 135394 and arXiv:2203.07358

Integrate Luminosity per Energy [ab⁻¹ TWh⁻¹]

Energy Recovery applications for HEP e⁺e⁻ colliders

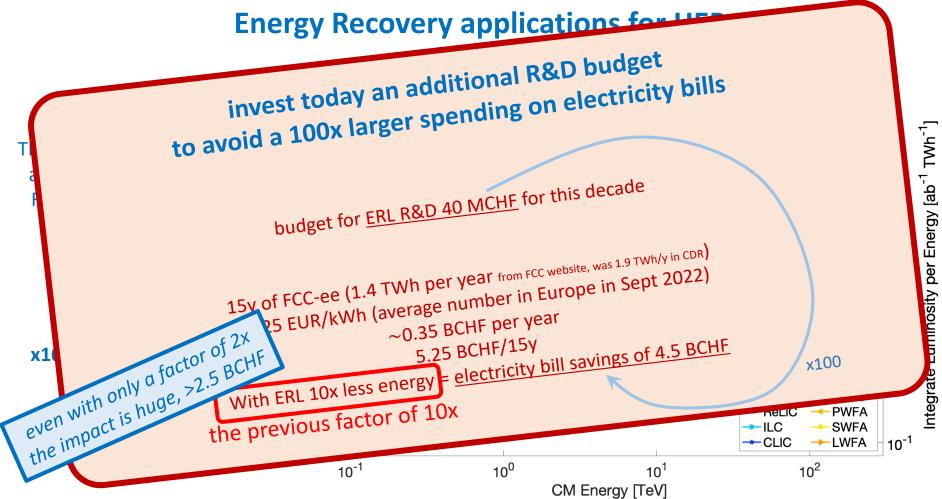

This plot <u>suggests</u> that with an ERL version of a Higgs Factory one might reach

x10 more H's

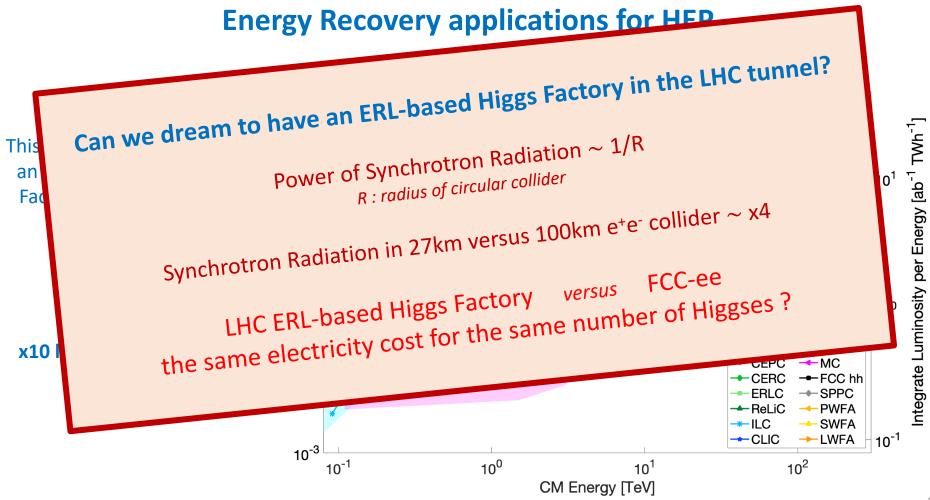
or

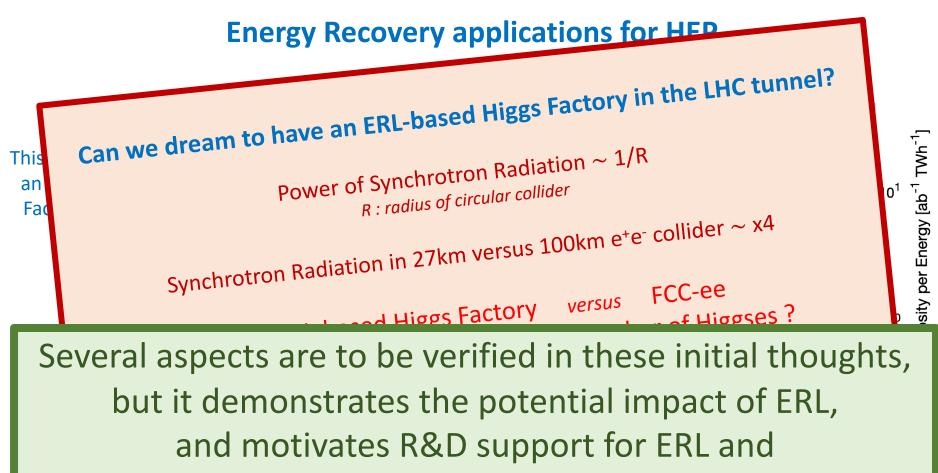

x10 less electricity costs next slide: what would be the concrete impact

NOTE: several additional challenges identified to realise these ERL-based Higgs Factories



Refs for CERC: PLB 804 (2020) 135394 and arXiv:2203.07358

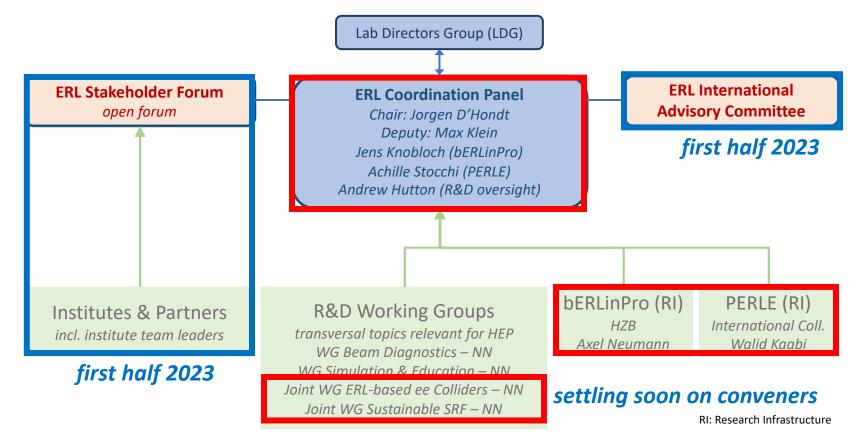

Integrate Luminosity per Energy [ab⁻¹ TWh⁻¹]


Refs for CERC: PLB 804 (2020) 135394 and arXiv:2203.07358

Refs for CERC: PLB 804 (2020) 135394 and arXiv:2203.07358

Refs for CERC: PLB 804 (2020) 135394 and arXiv:2203.07358

sustainable accelerating systems to further explore


Workshops for "ERL-based Higgs Factories"

- New conceptual ideas are welcome, focus on ERL-based H- or HH-Factories
- New workshop series "ERL-based Higgs Factories" to get experts together
- With a very broad programme committee led by our Coordination Panels (together with the RF Coordination Panel, because e.g. 4.4K SRF is key for these colliders)
- Initial objectives:
 - discuss the portfolio of options (all sizes and geometries)
 - verify the feasibility and identify challenges
 - peer-reviewed comparison of performances (e.g. via ICFA panel on sustainability)
- Frequent collective reports to the HEP community (e.g. ECFA, LDG, ...)
- Prepare a written report as input to the next ESPP update

Activity	Acronym	2022	2023	2024	2026	2027	2028	2030	2031	2032	2033	2034	2035	2036	2038	2039	2040	2041	2042	2043	2045	2046	2047	2048	2049	2050	2051	2052	2053	2055	2056	2057	2058	2059	2060
ERL Beam Diagnostics	ERL.DIA											R &	D	Rc	bac	Im	a	p	(EF	RL)										oadma					
bERLinPro @ 100 mA injector bERLinPro @ 100 mA recirculated	ERL.PRO.1 ERL.PRO.2																									Pub	lish	d in S ed pr possil	opos		ap I				
PERLE @ 250 MeV PERLE @ 500 MeV	ERL.PER.1 ERL.PER.2																																		
50 GeV electrons on HL-LHC	LHeC																																		
50 GeV electrons on HE-LHC	LHeC+			е	lec	tro	on-	.pr	ot	0	n	col	lic	lei	'S																				
60 GeV electrons on FCC-h	FCC-eh		_	-			_	-			-		-	-				_	_		-	100													
	i cc-cii									-					_			-	-	-							_					_			
4.4K SRF Development	SRF.4.4														1	R8	۶C) F	Roa	ad	m			R	. 8	<u></u>	SF	RF							
															1	R8	& C) F	Roa	ad	ma			R	. 8	<u></u>	SF	RF)							
4.4K SRF Development	SRF.4.4															R8	<u>&</u> C) F	Roa	ad	ma			R	. 8	& :	SF	RE)							
4.4K SRF Development 4.4K Cryomodule Development	SRF.4.4 ERL.WCM.1															R8	2 C) F	Roa	ad	ma			R	. 8	3	SF	RF)							
4.4K SRF Development 4.4K Cryomodule Development Beam Test of 4.4K module in PERLE	SRF.4.4 ERL.WCM.1 ERL.WCM.2															R8	<u></u>) F	Roa	ad	ma			R		3	SF	RF							
4.4K SRF Development 4.4K Cryomodule Development Beam Test of 4.4K module in PERLE High Temperature HOM Damping	SRF.4.4 ERL.WCM.1 ERL.WCM.2 ERL.HOM ERL.TWN															R8	<u> </u>) F	202	ad	ma			R		&						Fa	cte	Dri	es
4.4K SRF Development 4.4K Cryomodule Development Beam Test of 4.4K module in PERLE High Temperature HOM Damping Twin Cavities	SRF.4.4 ERL.WCM.1 ERL.WCM.2 ERL.HOM ERL.TWN																& C		Roa	ad				R		3		F	8	HI			cte	ori	es

Organising the European R&D for Energy Recovery in HEP

strengthen collaboration across the field to reach the HEP-related R&D objectives together

Challenges for implementing the ERL R&D roadmap

- Reaching out for additional budgets is not trivial at this stage, i.e. today we are in an overconstrained system ... we need to strategically promote our objectives
- It is relevant to soon promote a very clear statement that our community is committed to strong R&D contributions to realize "Sustainable Accelerating Systems" (incl. ERL) for the future HEP colliders it is studying
- The realization of bERLinPro and PERLE during this decade is crucial to potentially integrate innovative Sustainable Accelerating Systems into the design of future HEP colliders next decade
- In the absence of clear initial funding commitments from HEP funding bodies, the timelines for the implemention of bERLinPro and PERLE are jeopardised, i.e. first-stage commitments above the "we-gear-up-for-success" threshold are essential as a stepping stone and in order to have a catalyser for additional resources
- In particular, the PERLE international collaboration should be promoted as a priority R&D facility for our field and large laboratories should explore to join the efforts
- As the principle community driver, through promoting and with first-stage resources, a strong initial commitment from CERN could trigger a wider engagement and timely launch the R&D programme (e.g. win-win by potentially testing FCC-ee cryomodule LINACs with PERLE)

Additional slides

Expression of Interest to join this R&D program for Energy Recovery

with a view to demonstrate its applicability in high-energy particle physics colliders

	Wo	R8 orking	&D g Gro	ups				
Institute	Beam Diagnostics	Simulations & Education	Sustainable SRF	ERL-based ee Colliders	Electron Source	ERL-based ep-collider	bERLinPro	PERLE
Univ. NN (names individuals)	Х					Х	Х	Х

ERL R&D is at the crossroad between different disciplines.

The successful and timely realisation of the ERL R&D plan for particle physics depends on the interest and involvement of leading experts and their institutions.

In addition, and as a prerequisite, it requires the particle physics funding bodies to timely resource load the plan in order to cover the material costs and activate the concrete implementation plan.

Contact: Jorgen D'Hondt (chair, Jorgen.DHondt@vub.be) and Max Klein (deputy, mklein@hep.ph.liv.ac.uk)49

Organising the European R&D for Energy Recovery in HEP

connecting the ERL R&D community with the HEP steering and funding bodies
synergies with ongoing ERL R&D towards implementations in HEP applications
strengthen collaboration across the field to reach the HEP-related R&D objectives

Coordination Panel

Jorgen D'Hondt (chair), Max Klein (deputy) Jens Knobloch (bERLinPro), Achille Stocchi (PERLE), Andrew Hutton (R&D oversight)

Working Groups

- 1. Beam Diagnostics & Instrumentation
- 2. Simulations (incl. education)
- 3. Designs of e⁺e⁻ colliders with Energy Recovery (incl. Dual Axis R&D) joint with RF Coordination Panel
- 4. Sustainable SRF (incl. HOM damping, FRT, >4K operation) joint with RF Coordination Panel Joint WG as a stepping stone for generic R&D towards potential integration in the PERLE and bERLinPro programmes

Additional

- Electron Source
- Design of ep collider

work integrated in the bERLinPro & PERLE programmes ongoing in the realm of the LHeC and FCC-eh programmes

being explored