Tropical Feynman integration in Minkowski space

Amplitudes 2023 - CERN

arXiv:2008.12310 MB
arXiv:2204.06414 MB-Sattelberger-Sturmfels-Telen
arXiv:2302.08955 MB-Munch-Tellander

Michael Borinsky - ETH Zürich, Institute for Theoretical Studies

Feynman Integrals

Momentum flowing through edge e

Motivating questions

1. What is an effective way to compute Feynman integrals?
2. What is the computational complexity of Feynman integration?

We look for efficient algorithms to compute I_{G}

What's the problem?

$$
\text { NIntegrate }\left[\int \frac{d^{D} k_{1} \cdots d^{D} k_{L}}{\prod_{e} D_{e}}\right] ?
$$

$$
I_{G}=\int \frac{d^{D} k_{1} \cdots d^{D} k_{L}}{\prod_{e} D_{e}}
$$

Problem 0: Can be infinite \rightarrow renormalization, subtraction, etc (different topic)

Here we assume I_{G} to be finite!

$$
I_{G}=\int \frac{d^{D} k_{1} \cdots d^{D} k_{L}}{\prod_{e} D_{e}}
$$

Problem 1: non-bounded (and also non-standard if $D \notin \mathbb{N}$) integration domain

$$
I_{G}=\int_{\mathbb{P}_{>0}^{E}} \frac{1}{U^{D / 2}}\left(\frac{U}{F+i \varepsilon}\right)^{\omega} \Omega
$$

- $\mathbb{P}_{>0}^{E}$: projective simplex (positive part of $(|E|-1)$-dim. projective space)
- Ω : canonical volume form on $\mathbb{P}_{>0}^{E}$
- ω : superficial degree of divergence of G.
- U, F : Symanzik polynomials that depend on G and kinematics.

$$
I_{G}=\int_{\mathbb{P}_{>0}^{E}} \frac{1}{U^{D / 2}}\left(\frac{U}{F+i \varepsilon}\right)^{\omega} \Omega
$$

\Rightarrow Bounded integration domain and dimension is parameter in the integrand

$$
I_{G}=\int_{\mathbb{P}_{>0}} \frac{1}{U^{D / 2}}\left(\frac{U}{F+i \varepsilon}\right)^{\omega} \Omega
$$

Problem 2: Integrand has poles in the integration domain

$$
I_{G}=\int_{\mathbb{P}_{>0}^{E}} \frac{1}{U^{D / 2}}\left(\frac{U}{F+i \varepsilon}\right)^{\omega} \Omega
$$

Problem 2: Integrand has poles in the integration domain

$$
\text { E.g. } F=-Q^{2} x_{1} x_{2}+m^{2}\left(x_{1}+x_{2}\right)^{2}=0 \text { if } \frac{x_{1} x_{2}}{\left(x_{1}+x_{2}\right)^{2}}=\frac{m^{2}}{Q^{2}}
$$

$$
I_{G}=\int_{P_{>0}^{E}} \frac{1}{U D / 2}\left(\frac{U}{F+i \varepsilon}\right)^{\omega} \Omega
$$

Problem 2: Integrand has poles in the integration domain
E.g. $F=-Q^{2} x_{1} x_{2}+m^{2}\left(x_{1}+x_{2}\right)^{2}=0$ if $\frac{x_{1} x_{2}}{\left(x_{1}+x_{2}\right)^{2}}=\frac{m^{2}}{Q^{2}}$

These poles are 'regulated' by the causal ic prescription.
(Strictly speaking the integrand is just a distribution and no function)

$$
\text { Nintegrate }\left[\int_{\mathbb{P}_{0}^{E}} \frac{1}{U^{D / 2}}\left(\frac{U}{F+i \varepsilon}\right)^{\omega} \Omega\right] \text { ? }
$$

NIntegrate

```
NIntegrate [f, {x, \mp@subsup{x}{min}{m},\mp@subsup{x}{max}{*}}]
    gives a numerical approximation to the integral }\mp@subsup{\int}{\mp@subsup{x}{\mathrm{ min }}{}}{\mp@subsup{x}{max}{}}fdx\mathrm{ .
NIntegrate [f,{x, \mp@subsup{x}{\operatorname{min}}{},\mp@subsup{x}{\operatorname{max}}{}},{y,\mp@subsup{y}{\mathrm{ min }}{m},\mp@subsup{y}{\operatorname{max}}{}},\ldots]
    gives a numerical approximation to the multiple integral }\mp@subsup{\int}{\mp@subsup{x}{\mathrm{ min }}{}}{\mp@subsup{x}{\mathrm{ max }}{}}dx\mp@subsup{\int}{\mp@subsup{y}{\mathrm{ min }}{}}{\mp@subsup{y}{\mathrm{ max }}{}}dy\ldotsf
NIntegrate [f,{x,y,\ldots}\inreg]
    integrates over the geometric region reg.
```


\checkmark Details and Options

- Multiple integrals use a variant of the standard iterator notation. The first variable given corresponds to the outermost integral and is done last.
- NIntegrate by default tests for singularities at the boundaries of the integration region and at the boundaries of regions specified by settings for the Exclusions option.
- NIntegrate $\left[f,\left\{x, x_{0}, x_{1}, \ldots, x_{k}\right\}\right]$ tests for singularities in a one-dimensional integral at each of the intermediate points x_{i}. If there are no singularities, the result is equivalent to an integral from x_{0} to x_{k}. You can use complex numbers x_{i} to specify an integration contour in the complex plane.
- The following options can be given:

AccuracyGoal \approx	Infinity	digits of absolute accuracy sought
EvaluationMonitor \approx	None	expression to evaluate whenever expr is evaluated
Exclusions \approx	None	parts of the integration region to exclude

No option for ic

Explicit, $i \varepsilon$-free representation is needed

$$
I_{G}=\int_{\mathbb{P}_{>0}^{E}} \frac{1}{U^{D / 2}}\left(\frac{U}{F+i \varepsilon}\right)^{\omega} \Omega
$$

Plan:

Deform integration domain, such that $i \varepsilon$ is respected automatically.

Idea and setup go back to Soper 2000; Binoth-Guillet-Heinrich-Pillon-Schulbert 2005

$$
I_{G}=\int_{\mathbb{P}_{>0}^{E}} \frac{1}{U^{D / 2}}\left(\frac{U}{F+i \varepsilon}\right)^{\omega} \Omega
$$

Important requirement: Retain projective invariance

$$
I_{G}=\int_{\mathbb{P}_{>0} E} \frac{1}{U^{D / 2}}\left(\frac{U}{F+i \varepsilon}\right)^{\omega} \Omega
$$

Important requirement: Retain projective invariance

where $V=\frac{F}{U}$ and $\lambda>0$

ic-free projective parametric representation

MB-Munch-Tellander 2023

$$
I_{G}=\int_{\mathbb{P}_{>0}^{E}} \frac{J_{\lambda}}{\tilde{U}^{D / 2} \tilde{V}^{\omega}} \Omega
$$

- Where J_{λ} is an efficiently computable rational function in $x_{1}, \ldots, x_{|E|}$
- \tilde{U}, \tilde{V} are the deformed versions of U and $V=\frac{F}{U}$

Computer still says no...

$$
I_{G}=\int_{\mathbb{P}_{>0}} \frac{J_{\lambda}}{\tilde{U}^{D / 2} \tilde{V} \omega} \Omega
$$

Problem 3: Integrand has poles on the boundary of the integration domain

$$
\text { E.g. } \frac{1}{\tilde{U}} \sim \frac{1}{U}=\frac{1}{x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}} \rightarrow \infty \text { if } x_{1}, x_{2} \rightarrow 0
$$

Traditional solution:

Just look at all possible poles and perform a blowup (i.e. a local change of coordinates that removes the singularity):

Sector Decomposition

Binoth-Heinrich 2004
(Also gives an alternative solution to the $i \varepsilon$ problem)

Traditional solution:

Just look at all possible poles and perform a blowup (i.e. a local change of coordinates that removes the singularity):

Sector Decomposition

Binoth-Heinrich 2004
(Also gives an alternative solution to the ic problem)
Caveat:
Computationally challenging / brute force

Alternative: Tropical sampling

Tropical approximation

$$
p(\boldsymbol{x})=\sum_{\ell \in J} a_{\ell} \prod_{k=1}^{n} x_{k}^{\ell_{k}} \rightarrow p^{t r}(\boldsymbol{x})=\max _{\ell \in J} \prod_{k=1}^{n} x_{k}^{\ell_{k}}
$$

Tropical approximation

$$
p(\boldsymbol{x})=\sum_{\ell \in J} a_{\ell} \prod_{k=1}^{n} x_{k}^{\ell_{k}} \rightarrow p^{t r}(\boldsymbol{x})=\max _{\ell \in J} \prod_{k=1}^{n} x_{k}^{\ell_{k}}
$$

Theorem: MB 2020

$$
\text { Both } p(\boldsymbol{x}) / p^{t r}(\boldsymbol{x}) \text { and } p^{t r}(\boldsymbol{x}) / p(\boldsymbol{x}) \text { stay bounded on } \mathbb{P}_{>0}^{n}
$$

(If $p(\boldsymbol{x})$ is completely non-vanishing on $\mathbb{P}_{>0}^{n}$.)

Tropical approximation

$$
p(\boldsymbol{x})=\sum_{\ell \in J} a_{\ell} \prod_{k=1}^{n} x_{k}^{\ell_{k}} \rightarrow p^{t r}(\boldsymbol{x})=\max _{\ell \in J} \prod_{k=1}^{n} x_{k}^{\ell_{k}}
$$

Theorem: MB 2020

$$
\text { Both } p(\boldsymbol{x}) / p^{\operatorname{tr}}(\boldsymbol{x}) \text { and } p^{\operatorname{tr}}(\boldsymbol{x}) / p(\boldsymbol{x}) \text { stay bounded on } \mathbb{P}_{>0}^{n}
$$

(If $p(\boldsymbol{x})$ is completely non-vanishing on $\mathbb{P}_{>0}^{n}$.)
e.g. to statistics:

$$
I_{G}=\int_{\mathbb{P}_{>0}^{E}} \frac{J_{\lambda}(x)}{\tilde{U}(x)^{D / 2} \tilde{V}(x)^{\omega}} \Omega
$$

$$
\begin{aligned}
I_{G} & =\int_{\mathbb{P}_{J_{0}^{E}}} \frac{J_{\lambda}(x)}{\tilde{U}(x)^{D / 2} \tilde{V}(x)^{\omega}} \Omega \\
& =\int_{\mathbb{P}_{>0}^{E}} \frac{\Omega}{U^{t r}(x)^{D / 2} V^{t r}(x)^{\omega}} \cdot J_{\lambda}(x) \frac{U^{t r}(x)^{D / 2} V^{t r}(x)^{\omega}}{\tilde{U}(x)^{D / 2} \tilde{V}(x)^{\omega}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{G}=\int_{\mathbb{P}_{0}^{E}} \\
& \frac{J_{\lambda}(x)}{\tilde{U}(x)^{D / 2} \tilde{V}(x)^{\omega}} \Omega \\
&=\int_{\mathbb{P}_{>0}^{E} E_{0}} \underbrace{\frac{\Omega}{U^{t r}(x)^{D / 2} V^{t r}(x)^{\omega}}} \cdot \underbrace{J_{\lambda}(x) \frac{U^{t r}(x)^{D / 2} V^{t r}(x)^{\omega}}{\tilde{U}(x)^{D / 2} \tilde{V}(x)^{\omega}}}
\end{aligned}
$$

tropical version BOUNDED of I_{G} KERNEL

$$
\begin{aligned}
I_{G} & =\int_{\mathbb{P}_{P_{E}}} \frac{J_{\lambda}(x)}{\tilde{U}(x)^{D / 2} \tilde{V}(x)^{\omega}} \Omega \\
& =\int_{\mathbb{P}_{50}^{E}} \frac{\Omega}{U^{t r}(x)^{D / 2} V^{t r}(x)^{\omega}} \cdot J_{\lambda}(x) \frac{U^{t r}(x)^{D / 2} V^{t r}(x)^{\omega}}{\tilde{U}(x)^{D / 2} \tilde{V}(x)^{\omega}} \\
& =Z \int_{\mathbb{P}_{>0}^{E}} \mu^{\operatorname{tr} \cdot} \cdot J_{\lambda}(x) \frac{U^{t r}(x)^{D / 2} V^{t r}(x)^{\omega}}{\tilde{U}(x)^{D / 2} \tilde{V}(x)^{\omega}}
\end{aligned}
$$

$$
\mu^{t r}=\frac{1}{Z} \frac{\Omega}{U^{t r}(x)^{D / 2} V^{t r}(x)^{\omega}} \quad \text { s.t. } \quad 1=\int_{\mathbb{P}_{>0}^{E}} \mu^{\operatorname{tr}}
$$

Theorem MB 2020:

For 'tame' kinematics, there is a fast algorithm to sample from the probability distribution $\mu^{t r}$.

$$
I_{G}=Z \int_{\mathbb{P}_{>0}^{E}} \mu^{t r} \cdot J_{\lambda}(x) \frac{U^{t r}(x)^{D / 2} V^{t r}(x)^{\omega}}{\tilde{U}(x)^{D / 2} \tilde{V}(x)^{\omega}}
$$

We get an algorithm that evaluates I_{G} up to δ accuracy in runtime

$$
O\left(n 2^{n}+n^{3} \delta^{-2}\right)
$$

where $n=|E|$.
"Exponential wall" starts at around $n=30$ edges
\Rightarrow Exponential term is negligible for loop order ≤ 10

Under the hood

- Algorithm makes heavy use of algebraic and convex geometry of U, F
- Works thanks to well-understood analytic structure in the UV Speer, Brown, ...
- Key structure: generalised permutahedra (related to Lorentzian polynomials)
- Problems due to failure of this structure with IR divergences.
- Findings of Arkani-Hamed, Hillman, Mizera 2022 helpful to resolve this partially.
- Implementation: https://github.com/michibo/feyntrop

Conclusion

- Tropical sampling + new ic free projective parametric representation
\Rightarrow Fast method to integrate Feynman integrals: Code, feyntrop on github
- Exceptional kinematics are problematic (IR singularities)
\Rightarrow More information on pole structure of integrands needed
- Extensions necessary: Numerators of Feynman integrals and divergences
- Question: Is there are polynomial time algorithm for Feynman integration?
- Question: Is there an algorithm for amplitudes faster than the naive one?

Outlook: Amplitudes on moduli spaces

$$
A_{L}=\sum_{G} \frac{I_{G}}{|\operatorname{Aut}(G)|}
$$

Sum over graphs with L loops of shape determined by the QFT

Feynman Integral for each graph weighted by symmetry factor

Outlook: Amplitudes on moduli spaces

Integral over moduli space of graphs $\mathscr{M} \mathscr{G}_{g}$

QFT is very useful to study this moduli space

arXiv:1907.03543 MB-Vogtmann
arXiv:2202.08739 MB-Vogtmann
arXiv:2301.01121 MB-Vogtmann

Theorem MB-Vogtmann 2023

$$
\chi\left(\mathscr{M} \mathscr{G}_{g}\right) \sim-e^{-1 / 4}\left(\frac{g}{e}\right)^{g} /(g \log g)^{2} \quad g \rightarrow \infty
$$

- Related to result by Harer-Zagier 1986 on the moduli space of curves \mathscr{M}_{g}.
- The moduli space of graphs $\mathscr{M}_{G_{g}}$ is a tropicalization of \mathscr{M}_{g}.
- Feynman type integrals on $\overline{\mathscr{M}}_{g}$ certify classes in \mathscr{M}_{g} Brown 2021
- Long story...

\Rightarrow Use integrals over the moduli space to study/evaluate amplitudes

Bloch-Kreimer, Berghoff

Conclusion

- Tropical sampling + new ic free projective parametric representation
\Rightarrow Fast method to integrate Feynman integrals: Code, feyntrop on github
- Exceptional kinematics are problematic (IR singularities)
\Rightarrow More information on pole structure of integrands needed
- Extensions necessary: Numerators of Feynman integrals and divergences
- Question: Is there are polynomial time algorithm for Feynman integration?
- Question: Is there an algorithm for amplitudes faster than the naive one?

