Heavy flavors

Dilepton mass spectrum at 7 TeV

P. Sphicas LHC 2010: summary and prospects

And LHCb...

LHCb: onia

Warsaw Seminar 21 January 2011

Onia – why they're interesting

- It all started with CDF in Run I: very large prompt J/ψ component
 - Advent of SVX meant one could separate the J/ψ from b decays and "prompt" production
 - And it was not due to χ_c cascades: same "problem" in ψ(2S):

CHARMONIA MASS SPECTRUM

NRQCD, color octet, etc

Color octet: bleed only color, so no need for singlet to form hadron

- Implies a much larger cross section (any gluon-gluon initial state \rightarrow gluon in final state, gluon fragmentation $\rightarrow \psi$)
- "bonus": non-perturbative, so normalization floats ©
- "sign": charmonium should be polarized.

P. Sphicas LHC 2010: summary and prospects

Upsilon Production

arXiv:submit/

P. Sphicas LHC 2010: summary and prospects

Charm(onium) production: LHCb

P. Sphicas LHC 2010: summary and prospects

P. Sphicas LHC 2010: summary and prospects

bb-cross section

Warsaw Seminar 21 January 2011

bb cross section

From $B^0 \rightarrow D^0 X^+ \mu^- \nu$; $D^o \rightarrow K^- \pi^+$

In perfect agreement with $B \rightarrow J/\psi X$

$$\sigma(pp \to b\overline{b}X) = 284 \pm 20 \pm 49\,\mu\text{b}\,.$$

$$\sigma(pp \to b\overline{b}X) = 295 \pm 4 \pm 48\,\mu\text{b}$$

Inclusive b cross section from muons

LHC 2010: summary and prospects

b cross section

CMS PAS BPH-10-009 Jul 2010

b-Jet Production

P. Sphicas LHC 2010: summary and prospects

LHCb: particle Identification on B→hh

No particle ID: any 2 hadrons

P. Sphicas LHC 2010: summary and prospects Warsaw Seminar 21 January 2011

(raw) evidence for direct CP violation

Warsaw Seminar 21 January 2011

EWK aspects of B physics

Foremost: mixing (test flavor-tagging; time-resolution)

- What's "left" in the post-factory era:
 - CP violation
 - B_s oscillation phase φ_s
 - CKM angle γ
 - CP asymmetries in charm sector
 - Rare Decays
 - FB asymmetry in $B \rightarrow K^* \mu \mu$ and $B_s \rightarrow \phi \gamma$, ϕee
 - Effective FCNC: $B_s \rightarrow \mu\mu$, $D \rightarrow \mu\mu$

What is coming next

• $B_s \rightarrow \mu\mu$: probe of new physics

β_{s} (from $B_{s} \rightarrow J/\psi \phi$)

Measurement reserved for hadron collider expts

Measuring β_s

- Sensitivity to βs:
 - # of Bs→J/ψφ candidates seen in data: 50kevts/fb⁻¹
 - τ resolution in data: currently worse than σ_τ = 0.040 ps (assumed below); nevertheless, adequate for Δm_s ~ 17.7 ps⁻¹.

- The issue with J/ψφ: not a CP eigenstate
 - So need angular analysis (as a function of ct) to get S,P,D decomposition
 - A better mode: J/ψf⁰ with f⁰→π⁺π⁻ (CP even eigenstate)

$$R_{f_0/\phi} \equiv \frac{\Gamma(B_s^0 \to J/\psi f_0, \ f_0 \to \pi^+\pi^-)}{\Gamma(B_s^0 \to J/\psi \phi, \ \phi \to K^+K^-)} \approx 20\%.$$

 LHCb: 635±26 J/ψφ; σ_m~7MeV

Electroweak probes

Reminder of things past

First time a hadron collider produced W & Z's at CERN:

a EVENTS WITHOUT JETS b EVENTS WITH JETS

First Z event

Perhaps what the W' and Z' will look like at the LHC? (after scaling E/p by factor 20?)

Things have since evolved significantly...

P. Sphicas LHC 2010: summary and prospects

W/Z production at 7 TeV

P. Sphicas LHC 2010: summary and prospects

W & Z Cross section

arXiv:1010.2130

P. Sphicas LHC 2010: summary and prospects

80 **CERN** Academic Training

W, Z Cross Section vs \sqrt{s}

Baseline measured. Next: need high stats

arXiv:1012.2466

W Signal and P_T Spectrum

- At low P_T: test for soft QCD – as well as gluon resummation
- At high P_T: the interesting region where new physics (should) also lies (lie)
- Measurement relies on (very good) resolution for ME_T

P. Sphicas LHC 2010: summary and prospects

W + Jets P_T

Tails in P_T(W) enter in several searches – from SUSY to exotica arXiv:1012.5382

P. Sphicas LHC 2010: summary and prospects

W + Jets Ratio

arXiv:1012.5382

Early study comparing to NLO QCD event generators Clearly, x30 more data already available Expect new results (W and Z) for Winter Confs

Parenthesis: yesterday's update

W & Z production in the forward region

- σ: known to NNLO (1%). Largest uncertainty: pdf
 - From 1% at central rapidity to ~8-10% at y=5
- Ratios: syst-free; probe pdfs:
 - W+/W- probes d_v/u_v; Asymmetry, A_{W,} probes difference btw d_v & u_v; R_{wz}: ~no dependence on pdfs

P. Sphicas LHC 2010: summary and prospects

W & Z production in the forward region (II)

W & Z production in the forward region (III)

Summary of measurements

Will affect the pdfs

Summary (II)

- Numerous heavy-flavor production studies
 - Charmonia: fraction from B mesons consistent across experiments, energies and rapidity (!)
 - Large prompt production (not only cc but bb as well): at LHC as well. Crucial next step: measure polarization.
 - B-> J/ψ X cross sections in agreement with theory
 - Rapidity distributions [CMS]: some disagreement with theory; better at NLO
- W & Z physics:
 - Clear signals in electron and muon channels
 - Early studies of production mechanism (P_T(W)) and accompanying jet multiplicity, spectra etc. Good description by QCD (but statistical errors quite large)
 - Nice W/Z signal also in forward region (LHCb). Can probe pdfs