EDIT School - Calorimetry Lab1.B

"Detection of cosmic muons using CMS Lead Tungstate crystals"

Experimental protocol

1.	Cable	the	PMT	(both	HV	and	signal	cable)	

2. HV = - 2450 V	(Warning : Max HV = -2500 V	!!!)

3. Compute the gain of the PMT

- Look at the single photoelectron (pe) signal with the scope.
- Proper adjusting of the scope.
- With the scope, measure the collected charge corresponding to 1 single pe :
 - estimate the area of the signal from the shape of the signal
 - measurement of the signal area (from Measure menu, including the statistics)
 - acquisition of the histogram of the area of the signal

A(1pe) = .	 	 	
Q(1pe) =	 	 	-

- Compute the PMT gain.

- Cross-check the obtained value with PMT specs.
- In the histogram of the single pe signal charge there is an asymmetry towards lower values: What is this?

4. Measure energy deposited by cosmic muons

- Adjust the scope settings to observe cosmic muons and get rid off the noise. To do this, select an appropriate attenuation factor [dB = -20 Log(A1/A2)] using the external attenuators. The muon signal must be fully contained inside the scope window. [Note: max possible voltage scale on the scope: 1V/div]
- Start the acquisition, including the filling of the histogram of the integrated charge.
- Record the start time for the acquisition

start time of the	acquisition =	
-------------------	---------------	--

- Compute the expected rate of muons on the crystal and compare it with the measured one.

muon	rate	(expe	cted)	=	 	 	 	
muon	rate (meas	ured)	=	 	 	 	

- Using all the elements discussed before give an estimate of the expected result about the collected charge in the PMT due to the interaction of cosmic muons with the PbWO₄ crystal. Cross-check results and expectations.

from PDG 'The Review of Particle Physics'

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) http://pdg.lbl.gov/

Table 28.4: Properties of several inorganic crystal scintillators. Most of the notation is defined in Sec. 6 of this *Review*.

Parameter	r: <i>ρ</i>	MP	X_0^*	R_M^*	dE^*/dx	λ_I^*	$\tau_{ m decay}$	$\lambda_{ m max}$	$n^{ atural}$			d(LY)/dT
Units:	g/cm ³	$^{\circ}\mathrm{C}$	$^{ m cm}$	$^{ m cm}$	${\rm MeV/\!cm}$	\mathbf{cm}	$_{ m ns}$	nm		output [†]	scopic?	%/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	230	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	630^s	300^s	1.50	36^s	no	-1.3^{s}
							0.9^f	220^{f}		3.4^f		$\sim 0^f$
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1300	560	1.79	165	slight	0.3
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	35^s	420^s	1.95	3.6^s	slight	-1.3
							6^f	310^f		1.1^f		
$PbWO_4$	8.3	1123	0.89	2.00	10.1	20.7	30^s	425^s	2.20	0.083^{s}	no	-2.7
							10^f	420^{f}		0.29^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	83	no	-0.2
${ m LaBr_3(Ce)}$	5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

^{*} Numerical values calculated using formulae in this review.

Refractive index at the wavelength of the emission maximum.

 $^{^\}dagger$ Relative light output measured for samples of 1.5 $\rm X_0$ cube with a Tyvek paper wrapping and a full end face coupled to a photodetector. The quantum efficiencies of the photodetector is taken out.

[‡] Variation of light yield with temperature evaluated at the room temperature.

f = fast component, s = slow component