
The NGS Grid Portal

David Meredith
NGS + Grid Technology Group, e-Science Centre,

Daresbury Laboratory, UK

d.j.meredith@dl.ac.uk

The NGS portal can be used to access and interact with
the HPC and Data resources available on the Grid via
SSO (Certificates + myproxy):

• Browse for different applications available on a Grid
this includes your own personal applications and pre-
configured applications available on a particular Grid
(e.g. the NGS is currently publishing applications within the NGS
portal to be made easily available for its users).

• Submit/monitor compute jobs/applications.

• Access and move data around the Compute and Data
Grid (Gridftp, srb).

NGS Portal

Portal and Portlets

• The NGS Grid portal extends a JSR-168 compliant portal
container which hosts a selection of ‘portlets.’

• Portlets are online-accessible applications that are hosted and
managed within the portal container.

• The list of portlets that are deployed to the portal make up the
portal’s overall functionality (users may be interested only in a
selection of portlets)

• Main Benefit: Portlets facilitate the sharing and re-use of
applications (168-compliant 3rd party portlets can be used within a
portal as required).

• NGS and CCLRC e-Science Centre are developing a collection of
portlets designed for the Computational and Data Grid.

• The NGS portal is a current implementation of these Grid portlets.

A Famous Portal + Portlets

Select Portlets of Interest (customisation)

NGS portal

After Login – Grid portlets

JSDL Repository / Job Submit Portlet

1. A browsable JSDL database of personal and shared JSDL job profile
documents (Job Submission Description Language, i.e. ‘job
recipes/templates’).

• JSDL can be browsed for, selected and loaded in order to run
applications on the Grid (loaded either ‘out-of-the-box’ or, more
usually loaded and modified/tweaked as required).

• JSDL can be searched for by category of interest in the portal
(e.g bioinformatics, chemistry, tutorials/examples).

• JSDL documents can be pre-configured and published by the
portlet administrator(s) to be made available to all other users.

2. A JSDL GUI editor for constructing, validating, sharing, uploading
jobs described in JSDL.

3. A Grid job submission and monitoring application (currently, only
Globus but more Grid middleware providers are being added, e.g.
GridSam/WSRF).

JSDL – Job Submission
Description Language 1. XML Schema language

for describing compute
jobs in a platform
independent language
(XML).

2. Is agnostic of
middleware - no
dependencies on
Globus, WSRF, gLite
(portal that is generic
and not tied to any
particular set of Grid
technologies).

3. GGF / OGF Standard.

4. JSDL documents can
be validated against the
JSDL and JSDL POSIX
XSD Schema to ensure
its correctness

<jsdl:Application>
<jsdl:ApplicationName>gnuplot</jsdl:ApplicationName>
<jsdl-posix:POSIXApplication>

<jsdl-posix:Executable>
/usr/local/bin/gnuplot

</jsdl-posix:Executable>
<jsdl-posix:Argument>control.txt</jsdl-posix:Argument>

<jsdl-posix:Argument>DavesControlFile.txt</jsdl-posix:Argument>
<jsdl-posix:Input>input.dat</jsdl-posix:Input>
<jsdl-posix:Output>output1.png</jsdl-posix:Output>

</jsdl-posix:POSIXApplication>
</jsdl:Application>
<jsdl:Resources>

<jsdl:IndividualPhysicalMemory>
<jsdl:LowerBoundedRange>2097152.0</jsdl:LowerBoundedRange>

</jsdl:IndividualPhysicalMemory>
<jsdl:TotalCPUCount>

<jsdl:Exact>1.0</jsdl:Exact>
</jsdl:TotalCPUCount>

</jsdl:Resources>
….

<!--===-->
<xsd:complexType name="Environment_Type">

<xsd:simpleContent>
<xsd:extension base="xsd:string">

<xsd:attribute name="name" type="xsd:NCName" use="required"/>
<xsd:attribute name="filesystemName" type="xsd:NCName" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
<!--=======================================-->
<xsd:complexType name="Argument_Type">

<xsd:simpleContent>
<xsd:extension base="xsd:normalizedString">

<xsd:attribute name="filesystemName" type="xsd:NCName" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

JSDL – Job Submission Description
Language XSD Schema

JSDL Repository / Database

Select category of
interest – e.g. ‘RAL
Bioinformatics.’

Browsing the JSDL
database for public
and personal job
profiles.

List jobs, read job
descriptions and load
a job to initialise the
‘Active Job.’

Active Job’s JSDL

The Active Job
JSDL is
automatically
created, updated
and validated by
the portal by
changing
parameters in the
portal GUI.

The portlet acts as
a JSDL GUI editor

Upload / Share JSDL

JSDL documents
can be uploaded to
the portal in order
to initialise the
Active Job.

Validation errors
and messages are
displayed in the
interface when
uploading JSDL.

The portlet allows
the sharing of job
profiles and JSDL
between users and
user communities.

Input fields are filled out for
pre-configured
applications.

Changes to the
parameters in the GUI will
update the generated
JSDL automatically.

Input fields are taken from
the JSDL and JSDL-
POSIX extension
schemas.

Active Job Detail

Environment Variables / Arguments

Add required env vars, e.g.
‘NGSMODULES’ – used to
configure application
environment

Paste and parse command
line arguments (space and/or
line separated values)

Named file systems used
to declare mount points
that are required on the
consuming system.

File system names are
referenced throughout the
portlet (and JSDL doc) for
substituting mount points
where required.

Changes to a FS mount
point will be updated
automatically throughout
the portal/JSDL.

Used when specifying path
info e.g., locations to
files/dirs, stage data
locations etc.

Named File Systems

Compile a list of
required data (i.e. data
that should be copied
to the consuming
system from remote
locations across the
Grid prior to job
execution).

Data is staged relative
to named file systems.

The source URI can be
either specified
manually or, more
normally, browsed for
in the 'Browse Host'
page.

Stage Data

Browse Hosts

Browse remote
Grid hosts for
stage data.

Select files and
directories that
should be copied
to the consuming
system via GsiFtp
(more protocols to
be supported inc
srb, ftp, webdav).

Candidate
Hosts

Candidate hosts are
consuming systems that
can be nominated to run
the Active Job.

The candidate host list
can be compiled from a
personal host list and
from a default host list
(available to all users).

GridFtp Upload / Download / File Transfer Tool
Transfer files to/from your desktop and a remote Grid ftp server via ‘drag-n-drop’ –
akin to Windows explorer for the Grid

1. Core of the application is designed to be generic and not tied to any
particular set of Grid technologies (facilitated using JSDL). Middleware
dependencies emerge at job-submit/monitor time when the specifics of the
middleware have to be accommodated (e.g. parsing the JSDL into RSL,
adding mw-specific parameters, e.g. RSL JobType).

2. Application can be deployed as a JSR-168 portlet or as a standalone Web
application. This helps deployment – e.g. openPortal that was designed to
show users what is available before having to ‘log-in’ (encourage users).

3. Currently, application only supports Globus, but GridSAM will be added
shortly (more on GridSAM next few days).

Summary

TODO / Future
1. Extend application to support more Data Grid + Web protocols for data

staging (SRB, WebDav). This will involve browsing / interacting with
different data protocols in the interface (e.g. browse SRB), but
deciding who actually performs the stating is currently being decided
(manage in application, or leave to job submission service). Crossing
protocols adds some complexity.

2. Growing list of improvements / suggestions to refine interface – HCI
(Human computer interaction).

3. Extend the interface for Data visualisation via the portal interface.

4. Release the portlets for use in other projects / Grids.

5. Longer term - Extend the portlet to support the registration of new
interfaces, i.e. register application specific interfaces designed for
specific applications. (Note, new interfaces will build JSDL in same
way – will use underlying portlet functionality in same way).

6. A portal is only as good as the underlying deployed infrastructure….
portal development often involves debugging the underlying
consuming systems and middleware

Software Stack

JSF (Java Server Faces) interface + MVC control layer (Http session and
request scope data)

Spring v2.0 managed business objects (singleton + prototype injected
object graphs, declarative transaction demarcation, data source
management).

C3p0 db connection pooling

ORM (object relational mapping) - JPA (Java persistence API) +
Hibernate 3.2 for domain model.

Java CogKit for Globus API

Apache XMLBeans for JSDL xml-object data binding framework

