
http://www.ngs.ac.uk

http://www.eu-egee.org/http://www.pparc.ac.uk/

http://www.nesc.ac.uk/training

Concepts of Condor and
Condor-G

Guy Warner

Harvesting CPU
time

Teaching labs. +
Researchers

Often-idle processors!!

Analyses constrained by
CPU time!

Harvesting CPU time

• Teaching lab machines lie idle for most of the time
• Harvest spare compute cycles to create a low-cost “high

throughput computing” (HTC) platform
– Goal: run many tasks in a week, month, …
– Typically: many similar tasks invoked from workflow or a script

• Monte-Carlo
• Simulation – parameter sweeps

• Pool processors as a batch processing resource
• Submit jobs that run when a machine is free
• Condor most common approach

– http://www.cs.wisc.edu/condor/

Example: viewshed
analyses

• Derive viewsheds for all
points in “digital elevation
model” (DEM)

• Build a database to allow
– Derivation of indices to

characterise viewsheds
– Applications to access pre-

calculated viewsheds

Viewsheds: what can be seen
from point at “+”

Mineter, Dowers, Caldwell

Example: viewshed
analyses

Condor

Viewshed
creation

Coordinator
Starts,monitors
Condor jobs.
Builds database

intermediate files

Condor

DEM

database

Worker
processors
running
Windows

Coordinating processor

Typical run:
39 PCs (Windows)
330 CPU days in
9.94 days elapsed

Mineter, Dowers, Caldwell

Condor
• Converts collections of distributed workstations and

dedicated clusters into a high-throughput computing
(HTC) facility
– Condor Pool

• Manages both resources (machines) and resource
requests (jobs)

• Cycle scavenging
– Using a non-dedicated resource when it would otherwise be

idle.

Terminology

• Cluster – a dedicated set of computers not for interactive use
(definition by Alain Roy)

• Pool – a collection of computers used by Condor
– May or may not be dedicated
– Single administrative domain

• Central Manager – one per pool
– Matches resource requests to resources (Matchmaking)
– Pool Management

• (Flocking – running jobs submitted from pool A on pool B
– Sharing resources with administrative domains possibly with user

prioritization)

Architecture

• All nodes run condor_master
– Responsible for control of a node.

• The Central Manager additionally runs condor_collector and
condor_negotiator
– Responsible for matchmaking

• An Execute Node additionally runs condor_startd
– Responsible for starting a job

• A Submit Node additionally runs condor_schedd
– Responsible for submitting jobs (and allowing user to monitor jobs)

• A Node must be at least one of Manager/Execute/Submit but may
be more

Example
Configurations

• Personal Condor – all services on one node
– Gain benefits of Condors job management
– E.g. only run jobs on your desktop PC when you are not using it.

• Dedicated Cluster – Manager/Submit on head-node all other
nodes are Execute.
– Users ssh to head-node.

• Shared workstations – one workstation dedicated as Manager, all
others as Submit/Execute
– Submission from any workstation (except Manager)
– Nodes join the pool as Execute Nodes when idle and leave the pool when

Keyboard/Mouse activity detected.

Our setup

tc11
MANAGER

tc03
SUBMIT

tc05
SUBMIT

tc07
SUBMIT

tc12
SUBMIT/EXECUTE

tc13
EXECUTE

tc19
EXECUTE

…

Classroom
PC’s

gsissh

Job Life-Cycle

schedd
(Submit machine)

Matchmaker
(Central Manager)

Negotiator
Collector

shadow

User

startd
(Execute machine)

starter

Job

User
submits

job
schedd

advertises
the request to

collector

Resource
advertising to

collector by startd

Matching of resource to
request by negotiator and

informs schedd

schedd interacts
with startd Spawns starter

Spawns shadow

shadow transfers
job details to

starter

Executes job

asynchronous

Results

Job types –
“Universes”

DAG (workflow)

submit submit…

vanilla standard Globus …scheduler

…
job

job runs within a particular Universe which provides
a particular kind of environment / functionality

MPI

Some Universes

• Vanilla
– Any job that does not require the features of the other universes

• Standard
– goal – to reproduce home Unix environment

• emulates standard system calls
– file I/O

» remote access to home files
– signal routing
– resource management

– + checkpointing
• save the entire state into checkpoint file
• can then restart from there – possibly on a different machine
• for

– migration
– backwards error recovery

• important for very long running jobs

Some More Universes

• Java
– to provide a standard Java environment

• MPI
– to allow use of message passing interface between component processes

• Scheduler
– For running a job that schedules other jobs
– Standard is DAGMAN

• Globus – “Condor-G” –
– access to Globus Job Manager

Condor-G
• Tool that provides globus universe – Condor-G

• The same Condor tools that access local resources are now able
to use the Globus protocols to access resources at multiple sites.
– One additional line in submit file

• Condor-G
– manages both a queue of jobs and the resources from one or more sites

where those jobs can execute.
– communicates with these resources and transfers files to and from these

resources using Globus mechanisms.
– more than just a replacement for globusrun

Condor & Globus
Condor uses the following

Globus protocols
• GSI – for

authentication and
authorization

• GRAM – protocol that
Condor-G uses to talk
to remote Globus
jobmanagers.

• GASS – to transfer the
executable, stdin,
stdout, and stderr
between the machine
where a job is
submitted and the
remote resource.

• RSL – to specify job
information.

DAGMAN

• Directed Acyclic Graph Manager
– specify dependencies as a DAG
– re-start a partially completed DAG

• records what has been done
A Each vertex (DAG node) is

a normal submit command
For any universe

(most appropriate for a
scheduler universe)B C

D

E

F G

Each arc is a sequencing constraint -
Parent must finish before child starts

Match Making
• Matchmaking is fundamental to Condor

• Matchmaking is two-way
– Job describes what it requires: I need Linux && 2 GB of RAM
– Machine describes what it provides: I am a Mac

• Matchmaking allows preferences
– I need Linux, and I prefer machines with more memory but will run on any

machine you provide me
• Condor conceptually divides people into three groups:

– Job submitters
– Machine owners
– Pool (cluster) administrator

• All three of these groups have preferences

} May or may not
be the same

people

ClassAds
• ClassAds state Facts

– Submit-side e.g. My job’s executable is analysis.exe

– Execute-side
• Dynamic e.g. My machine’s load average is 5.6
• Static e.g. My machine’s operating system is Linux

• ClassAds state preferences:

– Job submitter preferences e.g. I require a computer with Linux

– Machine owner preferences e.g. I prefer jobs from the physics group

– System Administrator preferences e.g. When can jobs pre-empt other jobs?

The Tutorial

• The tutorial covers:
– Basic Condor Usage

• Vanilla universe

– Standard Universe
– Condor-G
– DAGMan
– Matchmaking

http://homepages.nesc.ac.uk/~gcw/NGS/AppDev/Condor.html

