
1

Overview of the Application
Hosting Environment

Stefan Zasada
University College London

2

The Application Hosting
Environment

• Based on the idea of applications as web services
• Lightweight hosting environment for running

unmodified applications on grid resources (NGS,
TeraGrid, DEISA) and on local resources
(departmental clusters)

• Community model: expert user installs and
configures an application and uses the AHE to
share it with others

• Simple clients with very limited dependencies
• No intrusion onto target grid resources

3

Concepts
• Applications not jobs

• Application could consist of a coupled model, parameter
sweep, steerable application, or a single executable

• Out of the box AHE supports single job applications
• We use “application” to denote a higher level concept

than a job
• In AHE terminology, an application may require running
multiple jobs

• Architecturally, the AHE is a portal, where the
interface is a rich client, not a web browser
• Of course, AHE services can be used behind a Web portal,
if you like

4

Virtualizing Applications
• Application Instance/Simulation is central entity;

represented by a stateful WS-Resource. State
properties include:

• simulation owner
• target grid resource
• job ID
• simulation input files and urls
• simulation output files and urls
• job status

• Application exposed as web service

5

AHE Functionality
• Launch simulations on multiple grid resources
• Single interface to monitor and manipulate all

simulations launched on the various grid resource
• Run simulations without manually having to stage

files and GSISSH in
• Retrieve files to local machine when simulation is

done
• Can use a combination of different clients – PDA,

desktop GUI, command line

6

Accessing Resources

DEISA

UK NGS

Leeds

Manchester

Oxford

RAL

HPCx

NGS

Local UCL resources

GridSAM/
SGE

GridSAM/
Globus

GridSAM/
UNICORE

7

AHE Design Constraints
• Client does not have Globus installed locally

• Client is NAT'd and firewalled

• Client does not have to be a single machine

• Client needs to be able to upload and download files but

doesn’t have local installation of GridFTP

• Client doesn’t maintain information on how to run the

application

• Client doesn’t care about changes to the backend resources

8

Meeting the Constraints
• AHE Client behind firewall => polls server to update job state

etc.

• Uses intermediate filestaging area => GridFTP not installed

• All application specific information for running simulations on

the grid resource is maintained on a central service => user

can switch clients etc.

• Location of binary on grid resource configured on server =>

user doesn’t need to know

• GridSAM provides interface to job queue

9

Layered Architecture of the AHE

10

Service Architecture of the AHE

11

AHE Workflow
1. Optionally user generates proxy credential and

uploads it to MyProxy server

2. Client sends “prepare” message to job factory =>
creates WS-Resource to manage job state

3. Client uploads input files to WebDav server

4. Client sends “start” message to WS-Resource

5. AHE sends job’s JSDL file to GridSAM

6. GridSAM moves input files from WebDav server to
grid resource

12

AHE Workflow
7. GridSAM submits job to job queue
8. Client polls state of job by sending “monitor”

message to WS-Resource
9. AHE polls GridSAM for job state and returns result

to client

10. When job complete, GridSAM stages output files
back to WebDav server

11. Client can stage output files from WebDav server
back to local machine

13

AHE GUI CLIENT Functionality
• Discover Appropriate Resources

• Launch Application

• Monitor Running Jobs

• Query Registry of Running Jobs

• Stage Files to and from Resource

• Terminate Jobs

14

Client Assumptions
• Client is NAT'd and firewalled

• Client doesn't use GridFTP

• Client doesn't require Globus to be installed

• Client doesn't know anything about how to run the particular

job

• Client doesn't maintain any information about job state

15

GUI Client Implementation
• Implemented in Java using Apache Axis WS API

• Demonstrates interoperability between WSRF::Lite

and Java

• Implement job launching as a wizard, with each

frame of the wizard covering a separate step in the

launching process

16

Job Building Wizard
Wizard guides user through stages of submitting a job:

• Specifying constraints for job, e.g. number of

processors to use

• Sends prepare message to cause the WS-Resource

to be created

• Allows user to choose appropriate resource to run job

17

Job Building Wizard
• If plugin is available for particular type of job (e.g.

NAMD) then client will attempt to process job
configuration file to discover input and output files to
be staged, otherwise the user will have to specify
manually

• Client stages file to AHE file staging area (WWFS,
Web-Dav etc.)

• User checks job details then submits it to AHE

18

AHE Job Building Wizard

19

Client Extensibility
• Plugins can be added to process application input

files to automatically discover the input and output
files that need to be staged

• If no plugin is available then a default case will allow
users to specify input and output files manually

• Plugins implement AHEConfParser interface and
follow specific naming convention

• Plugin .class files dropped into plug-in directory and
picked up by GUI/command line clients

20

AHE Job Interaction
Once job has been prepared and submitted:
• Client will display job information, and poll resource at regular

intervals to update status

• Client can terminate and destroy current jobs

• Once job is complete, client will stage input files back from
WWFS if required

• Client allows user to query resource for list of current jobs – no
state need be maintained in client

21

Java Client Development
• As AHE develops functionality, client will be extended

(e.g. to support RealityGrid steering and resource co-
allocation).

• Java codebase can be used to easily create other
clients to interact with AHE (e.g. Java command line
clients).

• GUI Client development will be greatly influenced by
user feedback from early adopters

22

AHE Client Deployment

• Deploying client is trivial for the end user:
• User’s machine must have Java installed
• User downloads and untars client package
• Imports X.509 certificate into Java keystore using provided
script

• Configures client with endpoints of AHE services supplied
by expert user

• Ready to go!

23

Summary
• The AHE provides a lightweight, easily deployable

environment for running unmodified scientific
applications on the grid and local resources

• The AHE server is designed to be deployed by an
expert user who uses it to share applications installed
on grid resources

• The client is easily installed by any end user,
requiring no intervention by system/network
administrators

• By calling the command line clients from scripts,
complex scientific workflows can be implemented

24

Practical 1
Running applications with the AHE:

• Install the AHE client on your system
• Set up a keystore containing your grid certificate
• Configure the client with settings for UCL’s AHE server
• Launch the sort application with the AHE GUI client
• Launch the sort application with the AHE command line
client

• Manually specify input and output files for an application
• Retrieve application output from NGS machine

http://www.realitygrid.org/AHE/training/nesc/ex1/

