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Introduction covrenron (Y

PARTICLE PHYSICS

Statistics plays a vital role in science, it is the way that we:
» quantify our knowledge and uncertainty
» communicate results of experiments
Big questions:
» make discoveries, test theories, measure or exclude parameters, etc.
» how do we get the most out of our data
» how do we incorporate uncertainties
» how do we make decisions

Statistics is a very big field, and it is not possible to cover everything in 4 hours.
In these talks | will try to:

- explain some fundamental ideas & prove a few things
> enrich what you already know
> eXxpose you to some new ideas

| will try to go slowly, because if you are not following the logic, then it is not very
interesting.

- Please feel free to ask questions and interrupt at any time
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Further Reading s

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;
~ W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.
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My favorite statistics book by a statistician:

Stuart, Ord, Arnold. “Kendall's Advanced Theory of Statistics” Vol. 2A Classical Inference &
the Linear Model.

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 3



http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/

Other lectures

Fred James'’s lectures
http://preprints.cern.ch/cgi-bin/setlink?base=AT &categ=Academic_Training&id=AT00000799

http://www.desy.de/~acatrain/
Glen Cowan’s lectures

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

Louis Lyons
http://indico.cern.ch/conferenceDisplay.py?confld=a063350

Bob Cousins gave a CMS lecture, may give it more publicly

Gary Feldman “Journeys of an Accidental Statistician”
http://www.hepl.harvard.edu/~feldman/Journeys.pdf

The PhyStat conference series at PhyStat.org:

PhYSTaT Phystat Physics Statistics Code Repository

An open, loosely moderated repository for code, tools, and documents relevant to statistics in physics applications. Search and download access is universal; package
submission is loosely moderated for suitability.

Using the Site

= Lists of packages

= Search for a package

= Submit a Package

= Comment on a package (not yet available)

About the Repository

= Repository Policies and Procdures

= The Phystat Repository Steering Committee

= Comment on the repository site or policies

PHYSTAT Conference Links

= PHYSTAT @307 (CERN) @05 (Oxford) €303 (SLAC) €»02 (Durham)
= Phystat Workshops: @08 (Caltech) @06 (BIRS/Banff) @00 (Fermilab) 00 (CERN)

= More Conferences and Workshops ...
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http://phystat.org
http://phystat.org
http://www.desy.de/~acatrain/
http://www.desy.de/~acatrain/
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://www.hepl.harvard.edu/~feldman/Journeys.pdf
http://www.hepl.harvard.edu/~feldman/Journeys.pdf

Comments on these lectures (‘Tf’

| also gave “Statistics for LHC” academic training lectures in 2009

http://indico.cern.ch/conferenceDisplay.py?confld=48425

Now that we have data, | will put emphasis on realistic problems

representative of current analyses 2011
2009 Modeling &
Scientific Narrative
Foundations
of Probability Hypothesis Tests
Hypothesis Tests

Confidence Intervals

Confidence Intervals
Bayesian Methods

Generalization for
complex problems Likelihood Methods
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Probability Density Functions e e ]
When dealing with continuous random variables, need to

introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |x,x + dx]) = f(z)dx
Note, f(x)is NOT a probability

X04

PDFs are always normalized °*
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Probability Density Functions Gommoraer Ao -

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |x,x + dx]) = f(z)dx
Note, f(x)is NOT a probability

—_~

\q_>-</0.4;| T T T

PDFs are always normalized °*:

0.3F
o~ 0.2 [ RheaVan aca -8, 1.1,
f(aj)d,f[f — 1 0.15 i T R B y2e1D; 5
0.1 [ Rootmumwian pafCTlinashape”, ‘Gauss NLAt);:
_CX) = :
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The Likelihood Function S @

A Poisson distribution describes a discrete event count » for a real-
valued mean u. o—H
Pois(n|p) = p" ——
n

The likelihood of u given n is the same

equation evaluated as a function of u e VR
» Now it's a continuous function S @

» But it is not a pdf! 5_ s _
L(u) = Pois(n|p) N E

Common to plot the -2 In L 2E E
» helps avoid thinking of it as a PDF 'E E

» connection to %2 distribution N R Ea

Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)
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Parametric PDFs ot
Many familiar PDFs are considered parametric

» eg. a Gaussian G(x|u, o) is parametrized by (u, o)

» defines a family of distributions

» allows one to make inference about parameters

| will represent PDFs graphically as below (directed acyclic graph)
» every node is a real-valued function of the nodes below
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Parametric PDFs ot

Many familiar PDFs are considered parametric

» eg. a Gaussian G(z|u, o) is parametrized by (u, o)

» defines a family of distributions

» allows one to make inference about parameters

| will represent PDFs graphically as below (directed acyclic graph)
» every node is a real-valued func__f, n of the nodes below

] 0 e
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Modeling:
The Scientific Narrative
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Building a model of the data e, @8

PARTICLE PHYSICS '

Before one can discuss statistical tests, one must have a “model” for
the data.

» by “model”, | mean the full structure of P(data | parameters)
- holding parameters fixed gives a PDF for data
- ability to evaluate generate pseudo-data (Toy Monte Carlo)
- holding data fixed gives a likelihood function for parameters

« note, likelihood function is not as general as the full model because it
doesn’t allow you to generate pseudo-data

Both Bayesian and Frequentist methods start with the model
» it's the objective part that everyone can agree on

» It's the place where our physics knowledge, understanding, and
Intuiting comes in

» building a better model is the best way to improve your statistical
procedure
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PARTICLE PHYSICS

RooFit: A data modeling toolkit CommoLaa ane (‘T’

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.

RooAddPdf
sum
RooGaussian RooRealVar RooGaussian RooRealVar RooArgusBG
gaussl glfrac gauss2 g2frac argus
RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar RooRealvVar
meanl sigma X mean2 argpar cutoff
Histogram ot x\sy__ X y xS y_xy
agn \ 7 Hent=0
. — Composition (‘plug & play’) w10
- Add|t|0n TSI B R x = 2388
T [ — . N N RMS y = 08657
g i Bt 1.002 .
‘%‘"' b Bl 0.002{
E £,F a
.93 z:_ w- 10015
ngn.— g" o%esj .00 - .:
- 5s T p———
Mj .54 s —
Zﬂ- ‘“-:*- om ?
o0 2 o] 25
FAA 21, | | | | ¥ [ 15 F a0
W T e 1 1 L 1 L 1 L n s 1 15 z 25 : ] W 3 I ] 20 2 1 3 B 1 1 ) 2 4
I L ] o ! P
* g(x;m,s)
4 4 .
a(x,y; /S)
Possible in any PDF
No explicit support in PDF code needed
— Multiplication .
P — Convolution
= = 1.0018
ogsn'- £ 10016 & ”
%L gn 1.0014 i 3
4 | e -
‘gp.:. ‘; 1.0008 ’;W :‘::"‘:t“‘“:‘\ '31.1 ‘g
&m *l. - W it 1 4
s b B SR L i 3 L
el e —
LU Lge 199 ey I
3 o 8 : o 0.02
- aonzE i I
T R 0 A o T % ] w2 o
x 0
n

Wouter Verkerke,
Wouter Verkerke, UCSB
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The Scientific Narrative T
The model can be seen as a quantitative summary of the analysis

» If you were asked to justify your modeling, you would tell a
story about why you know what you know

- based on previous results and studies performed along the way

» the quality of the result is largely tied to how convincing this
story is and how tightly it is connected to model

| will describe a few “narrative styles”
» The “Monte Carlo Simulation” narrative
» The “Data Driven” narrative
» The “Effective Modeling” narrative

» The "Parametrized Response” narrative

Real-life analyses often use a mixture of these

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 14




CENTER FOR

The Monte Carlo Simulation narrative ggzg;;g;e;ggcf‘{

Let’'s start with “the Monte Carlo simulation narrative”, which is
probably the most familiar
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Cross-sections and event rates (‘T’

From the many, many collision events, we impose some criteria to

select n candidate signal events. We hypothesize that it is

composed of some number of signal and background events.
Pois(n|s + b)

The number of events that we expect from a given interaction

process is given as a product of

» L : a time-integrated luminosity (units 1/cm?) that serves as a measure of
the amount of data that we have collected or the number of trials we have

had to produce signal events
» 0 : “cross-section” (units cm?) a quantity that can be calculated from theory

» ¢ : fraction of signal events selected by selection criteria
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The simulation narrative S s |

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — Lo

do — |M|*dQ)

P =
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The simulation narrative S s |

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — LO’

P =
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The simulation narrative gzimm?cf%’

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — LO’

P =

‘W, wer —Lp, g Lo g
4 4 4GWG

o J

kinetic energies and self—mteractlons of the gauge bosons

_ 1 1 _ 1
LA*(i0, — 597 W, — EQ/YBM)L + Ry"(i0, — §g'YBN)R

Vo
kinetic energies and electroweak interactions of fermions

1 1

1, . ,
5 |(i8), — 597 Wi = 59 YB,)o|" — V()

-~

7

W=*,Z ~,and Higgs masses and couplings

"= a - _
9" (v Tuq) G, + (G1LoR + G:Rp.L+ h.c.)
~ v o . D . .
interactions between quarks and gluons fermion masses and couplings to Higgs
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Cumulative Density Functions ggig«;«;e;mf‘{
Often useful to use a cumulative distribution:

» in 1-dimension: / f(z")dz' = F(x)

)

—~

x - = < L
=04 - E T 1r ]
0.35 & E Z i
- ] 0.8~ —
0.3 E i ]
0.25 2 E 0.6 ]
0.2 E - ]
0.15 = 0.4 N
01E E : :
- - 02 7
0.05 = _ ]
O3 3 %3 3
X X
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Cumulative Density Functions ggimem?cf‘{
Often useful to use a cumulative distribution:

» in 1-dimension: / f(z")dz' = F(x)

)

—~

X - — X |
=04 F E g 1 B -
0.35 & E Z i
- ] 0.8~ —
03 E - i
0.25 2 E 0.6 -
02 E - ]
0.15 = 0.4 N
01F = N i
0.05 = L _
0 3 03 3
X X

» alternatively, define density
as partial of cumulative:

fla) = 2212
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Cumulative Density Functions comercer e Y
Often useful to use a cumulative distribution:
» in 1-dimension: / F(2)dz' = F(a)
— 00
S04¢ B - |
08|
06
04l
02l
0
» alternatively, define density » same relationship as total an(X:I
as partial of cumulative: differential cross section:
- 0F(x) (E) = 1 Oo
fla) = ox - 0 0F
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Cumulative Density Functions comereey e 3
Often useful to use a cumulative distribution:
» in 1-dimension: B
| r@)ia’ = Fla)
— OO
oapr- 0 ~C 4 ¥k
0.8
0.6
0.4
02
0L
» alternatively, define density » same relationship as total and
as partial of cumulative: differential cross section:
OF (x) 1 9%
f(z) = f(E,n) =

Ox o OE0n
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Cumulative Density Functions g;imm?cj‘{
Often useful to use a cumulative distribution:

» in 1-dimension: / f(z")dz' = F(x)

—~

X

Zoaf ERE 2Rl :
0.35 F = 5 i
- . 0.8 — -
03 E - ]
0.25 ;_f'355—7'."{3:1-"7»““".57""k't ................... e g hr —: 06 :_ _:
0.2 %‘ RooRealVvar 'Tl( E : :
015F sl 0.4~ ~
0.1 RooGaussian pdf("lineSnape”,"Gauss * xaend o f B
0.05 - = T ]
03 S T Y I
X X
» alternatively, define density » same relationship as total and
as partial of cumulative: differential cross section:

OF 1 0%
fla) = 2212 FE) = o

0x
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The simulation narrative gzzmm.;?cs‘%*

splitting functions, Sudokov form factors, and hadronization models

2 ) a) Perturbation theory used to systematically approximate the theory.
b)
c) all sampled via accept/reject Monte Carlo P(particles | partons)

g_) e hard scattering

s

e partonic decays, e.g.
t — bW

-

B
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The simulation narrative S s |

2 a) Perturbation theory used to systematically approximate the theory.
b) splitting functions, Sudokov form factors, and hadronization models
c) all sampled via accept/reject Monte Carlo P(particles | partons)

e hard scattering

/ —~
é g
pas
. - e parton shower
X . - evolution
\ = ; serturb
\ / e colour singlets

e colourless clusters

e partonic decays, e.g.
t — bW

™. e cluster fission
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The simulation narrative cowenrer Y

PARTICLE PHYSICS

3 Next, the interaction of outgoing particles with the detector is simulated.

Detailed simulations of particle interactions with matter.

Accept/reject style Monte Carlo integration of very complicated function
P(detector readout | initial particles)

| I I I | 1 I 1

om iIm m im am sm 6m /im
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
= = = - Neutral Hadron (e.g. Neutron)
''''' Photon

47

@l‘ ,' L

Silicon
Tracker

Electrromagnetic
: , " Calorimeter
v

Hadron Superconducting
Calorimeter Solenoid

lron return yoke interspersed

Transverse slice with Muon chambers

through CMS
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Theoretical Predictions covenron WY

PARTICLE PHYSICS '

In addition to the rate of interactions, our theories predict the distributions of
angles, energies, masses, etc. of particles produced

- we form functions of these called discriminating variables m,
- and use Monte Carlo techniques to estimate f(m)

In addition to the hypothesized signal process, there are known background
processes.

» thus, the distribution of f(m) is a mixture model
» the full model is a marked Poisson process

- g

<

signal process background process

P(m|s) = Pois(n|s + b) H st(mji j: Zfb(mj)

J
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Example model comenren @Y

PARTICLE PHYSICS '

Here is an example prediction from search for H—-ZZ and H—->WW
» sometimes multivariate techniques are used

1_'_' : T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T T : : 104 E T T T T | T T T T | T T T T
o) - imi i ' : 4 & FCMS Preliminar ]
=, 7E ATLAS Preliminary (simulation) Emsga - 2 y —— Signal, m =170 GeV
2 - H—llvv (mH=300 GeV,\s =7 TeV) — Total BG 1 o ] W+lets, t .
o 6 —tt —] S0 [ di-boson —
> - — 1 97 - -
T - zz 1 > tt
= WZ . o I Drell-Yan
5 =
- — WW ]
- —Z - 107
4 W —
3 =Y
2F -
n . 1
1= —
P = ] — 7=:|—|_.—| 1 P ]
50 200 250 300 350 400 450 500 1074 05 0 0.5
TrL, — Transverse Mass [GeV] 771, = Neural Network Output

P(m|s) = Pois(n|s + b) H st(mji j: Zfb(mj)

J
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Parametric vs. Non-Parametric PDFs ggg;f;&gcf‘{

No parametric form, need to construct non-parametric PDFs
From Monte Carlo samples one has empirical PDF

femp__z(sw_xz

% 0.7

©c o 9O
~ o o

o
(&)

wllIII|IIII|IIII|IIII|IIII|IIII|IIII|

o
N

o
—

AU

-2 -1 0 1 2

o

1
lelIII|IIII|IIII|IIII|IIII|IIII|IIII|
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Parametric vs. Non-Parametric PDFs ‘(T‘

w,Ss _ w,S
hzst(x) — Nzhz
;

RO7TE T T =
0.62— _
0.52— _ _i
0.3 F B | =
02F / E

: A L \ _
A (N ITINNE
R (RN R RN
-3 -2 1 0 1 2 3
X
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Parametric vs. Non-Parametric PDFs “T’

Classic example of a non-parametric PDF is the histogram
but they depend on bin width and starting position

w.,S ]' w.S
hist(T) = N th |

RI]!
/ | \
' (T 70

-2 -1

% 0.7

o
»

o
o

o
~

A

o
w

o
N

o
—

, ©

T

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 25




Parametric vs. Non-Parametric PDFs (‘T”

Classic example of a non-parametric PDF is the histogram
“Average Shifted Histogram” minimizes effect of binning

fasu(@ ZKw T — x;)

% 0.7

o
»

o
o

o
~

!

o
w

I f
BN

o
N

o
—

, ©

xwulu.l|||H|||||||||||m|||m|”.||‘
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Kernel Estimation ‘.32?&”&‘;?5&115(‘{

Kernel estimation is the generalization of Average Shifted
Histograms

=3 e (e

AN\ 1/ 7 s 3|
h(x”:(§> o)

“the data is the model”

K.Cranmer, Comput.Phys.Commun. 136 (2001).
- [hep-ex/0011057]

Probability Density

[]
iy
| | | | | |

0.94 0.95 0.96 0.97 0.98 0.99 1
Neural Network Output

Adaptive Kernel estimation puts wider kernels in regions of low
probability

Used at LEP for describing pdfs from Monte Carlo (KEYS)
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Multivariate, non-parametric PDFs “T’

PARTICLE PHYSICS

Kernel Estimation has a nice generalizations to higher
dimensions

» practical limit is about 5-d due to curse of dimensionality

Max Baak has coded N- Correlations 00165 tibar sample. 3??iii'jjj'jj_ijj;"j....________

T e

dim KEYS pdf described Pyt -

in RooFit. pdf from previous S ol ’
slide. —
These pdfs have been = RooNDKeys pdf P 330 230 20 °
used as the basis for a automatically mlh @V
: : models (fine)
”? u '“.Va.r Iate. correlations
discrimination between
technique called “PDE” observables ...
Fo (T
— S
D(F) = — (%) _
fs(Z) + fo(Z)
Max Baak
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Incorporating Systematic Effects ST e |

Of course, the simulation has many adjustable parameters and
iImperfections that lead to systematic uncertainties.

» one can re-run simulation with different settings and produce
variational histograms about the nominal prediction

0.25

0.15

. 0.1

- -

|||||||||||||||||||||||||||||||||||||||
0====70 "180 190 200 210 220 230

m

0.05

t
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Explicit parametrization P vees |
Important to distinguish between the source of the systematic
uncertainty (eg. jet energy scale) and its effect.

» The same 5% jet energy scale uncertainty will have different effect
on different signal and background processes

- not necessarily with any obvious functional form
> Usually possible to decompose to independent “uncorrelated” sources

Imagine a table that explicitly quantifies the effect of each source of
systematic.

- Entries are either normalization factors or variational histograms

sSig bkg1 |bkg 2

syst 1

syst 2
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Histogram Interpolation e, @

PARTICLE PHYSICS '

Several interpolation algorithms exist: eg. Alex Read'’s “horizontal”
histogram interpolation algorithm (RoolntegralMorph in RooFit)

» take several PDFs, construct interpolated PDF with additional
nuisance parameter a

A.L. Read | Nuclear Instruments and Methods in Physics Research A 425 (1999) 357 360

I Simple “vertical”
§ 0 #, . DELPHI. interpolation bin-by-bin.
§ 0.05 " S ) l
= 004 | q
0.03 A
) A O i o == | Alternative “horizontal”
[ARooPlolol"x“ ] - Mistogram of hh_x_;};;‘,l < :'v-“- .::; InterpOIatlon algorlthm by
st = Max Baak called
v s T “RooMomentMorph” in
sost 3 RooFit (faster and
" £, numerically more stable)
o‘oz;~ -'-"3“."-:
RN

- e | e B T R T B T
x
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Incorporating systematics ::z:;;gG;H:-;fcs(‘T’
Let’s consider a simplified problem that has been studied quite a bit to
gain some insight into our more realistic and difficult problems

» number counting with background uncertainty

- in our main measurement we observe non with s+b expected
Pois(non|s + b)

» and the background has some uncertainty
- but what is “background uncertainty”? Where did it come from?
- maybe we would say background is known to 10% or that it has some pdf 7T(b)
« then we often do a smearing of the background:

P(n0n]5) = / db Pois(noy|s + b) (b)),

- Where does 7(b) come from?

- did you realize that this is a Bayesian procedure that depends on some prior
assumption about what b is?
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The Data-driven narrative

PARTICLE PHYSICS '

Regions in the data with negligible signal 5 10' CMS Preliminary .
~ C —e— Signal, m =160 Ge
expected are used as control samples 2 = Weets, W
. . @ 103 = d_i-boson
- simulated events are used to estimate 5 —1 .

extrapolation coefficients e*e” Channel

-
o
)

- extrapolation coefficients may have
theoretical and experimental uncertainties 1o
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Figure 10: Flow chart describing the four data samples used in the H — WW () — ¢v/v analysis. S.R
and C.R. stand for signal and control regions, respectively.
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The Data-driven narrative

PARTICLE PHYSICS '

Regions in the data with negligible signal 5 10' CMS Preliminary . -
~ C —e— Signal, m =160 GeV,

expected are used as control samples 2 = waets, W
. . o 103 _ d_i-boson .

- simulated events are used to estimate ° —1 . :
extrapolation coefficients il _e'e Channel ]|

- extrapolation coefficients may have : .

theoretical and experimental uncertainties 10
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and C.R. stand for signal and control regions, respectively.
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The “on/off” problem s:zr::‘f:;;::;?cf‘%
Now let’s say that the background was estimated from some control
region or sideband measurement.
» We can treat these two measurements simultaneously:
- main measurement: observe non with s+b expected
- sideband measurement: observe nox with 7b expected
P(non, Noft S, bz = ?ois(non\s +b) POiS(nOff‘TbZ

\ . A
VO TV

TV
joint model main measurement sideband

- In this approach “background uncertainty” is a statistical error
- justification and accounting of background uncertainty is much more clear

How does this relate to the smearing approach?
P(n0n]5) = / db Pois(noy|s + b) 7 (b)),
» while 7(b) is based on data, it still depends on a prior 7(b)

 Plnaglbn(®
fdbp(nofﬂb)n(b).

w(b) = P(b|nos)
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Going beyond on/off conren @Y

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...

: T | T 17T | T .I T |. T 17T | T 17T T
5 10° ECMS Preliminary E
~ —e— Signal, m, =160 GeV
}é’ ] W+lJets, tW

[ di-boson
@ 1n3
q>) 10 I

I Drell-Yan

e*e’ Channel

—r —
o (=}
N Y
T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| T IIIIH

10

-1
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m, [GeV/c?]
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Going beyond on/off conren @Y

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
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Going beyond on/off conren @Y

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...
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Going beyond on/off

Often the extrapolation parameter has uncertainty

» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...
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Classification of Systematic Uncertainties o= @

PARTICLE PHYSICS '

Taken from Pekka Sinervo’s PhyStat 2003
contribution
Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
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Classification of Systematic Uncertainties ::zr,z:f.:ﬁz':?cf‘{

Taken from Pekka Sinervo’s PhyStat 2003
contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the

measurement or from poorly understood features
In data or analysis technique

- don’t necessarily scale with luminosity
- eQ: “shape” systematics
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Classification of Systematic Uncertainties ::zr,z:f.:ﬁz':?cf‘{

Taken from Pekka Sinervo’s PhyStat 2003
contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the

measurement or from poorly understood features
In data or analysis technique

- don’t necessarily scale with luminosity
- eQ: “shape” systematics
Type lll - “The Ugly”

» arise from uncertainties in underlying theoretical
paradigm used to make inference using the data

- a somewhat philosophical issue
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Separating the prior from the objective model i3
Recommendation: where possible, one should express
uncertainty on a parameter as a statistical (random) process

» explicitly include terms that represent auxiliary measurements
In the likelihood

Recommendation: when using a Bayesian technique, one should
explicitly express and separate the prior from the objective part of

the probability density function

Example:
» By writing P (non, nog|s, b) = Pois(non|s 4 b) Pois(n.g|Tb).
- the objective statistical model is for the background uncertainty is clear

» One can then explicitly express a prior n(b) and obtain:

 Plnaglbn(®
fdbp(nofﬂb)n(b).

w(b) = P(b|nos)
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Constraints on Nuisance Parameters §g§rg;°;;“§~s?cs(‘Tg

Many uncertainties have no clear statistical description or it is impractical to provide
Traditionally, we use Gaussians, but for large uncertainties it is clearly a bad choice
- quickly falling tail, bad behavior near physical boundary, optimistic p-values, ...

For systematics constrained from control samples and dominated by statistical uncertainty,
a Gamma distribution is a more natural choice [PDF is Poisson for the control sample]

» longer tail, good behavior near boundary, natural choice if auxiliary is based on counting
For “factor of 2” notions of uncertainty log-normal is a good choice
» can have a very long tail for large uncertainties

None of them are as good as an actual model for the auxiliary measurement, if available

5 REBRAREERP R AR RN R AR RRRE RS

. . . S 0.1 -

To consistently switch between frequentist, 5 .
Bayesian, and hybrid procedures, need to _§0_08—_ _ 7
be clear about prior vs. likelihood function 8 = Truncated Gaussian .
£ 006 Gamma E

: : - Log-normal .

PDF Prior Posterior . ]
Gaussian  |uniform Gaussian R B
Poisson uniform Gamma 02— —
Log-normal |reference Log-Normal i
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Building the model: HistFactory (RooStats) ggzr;;;f;;;gfcf‘%
Several analyses have used the tool called hist2workspace to build the model (PDF)

» command line: hist2workspace myAnalysis.xml

- construct likelihood function below via XML + histograms interpolation convention

LU, 04) = H Pois(n,| V) H N(o;) @ = I1 Hasni. nj)
mebins i=€Syst

O-jm(a) = o-?m H I(al l—;m/o- ms zjm/o-]m)
ieSyst

V= UL (o) o1m(0) + Y. Lni(0) Oim(a),| s {1+“<'*-1> o0
jeBkg Samp l—a(~—1) ifa<0

§< Channel SYSTEM 'Config.dtd's
LChannel ="channel1" =" ./data/example.root’ ="" >
<l -——<Data Name—"data" InputFile="" HistoPath="" HistoName=""/>—-=
<Sample ="signal =1 ="signhal">
<Overal lSys =' = ="0.95" />
<NormFactor = = U =" 5" = = />
</ Samp le-
<Sample ="backgroundl' = ="True" ="backgroundl">
<Overal lSys ="syst2" ="@0.95" ="1.65"/>
</ Samp le=
<Saaple ="back ="" ="True' ="backgroundz" >
<Overal lSys ="syst3" ="0.95" 3"
zl—— HistoSys Name_ syst4 HlstoPathngh_ H13t0PathLow="histForSystdr";’}——::-
dS(mlw
</Channe |-

..................................................................................................................................................
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Constraint terms e S |
For each systematic effect, we associated a nuisance parameter a
- for instance electron efficiency, JES, luminosity, etc.

- the background rates, signal acceptance, etc. are parametrized in
terms of these nuisance parameters

These systematics are usually known (“constrained”) within £ 10.
- but here we must be careful about Bayesian vs. frequentist

- Why is it constrained”? Usually b/c we have an auxiliary
measurement m and a relationship like:

G(m|a, o)
- Saying that a has a Gaussian distribution is Bayesian.
- has form “Probability of parameter”
- The frequentist way is to say that that m fluctuates about «

While m is a measured quantity (or “observable™), there is only one
measurement of m per experiment. Call it a “Global observable”
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An example ModelConfig from HistFactory ggzg;;;;e;;;»cf‘{

The RooStats tools, use the RooFit PDF interface, but the tools need some additional
meta information. The ModelConfig class encapsulates this meta information

- The PDF itself, the observables, the “global observables”, the parameter of
interest, and the nuisance parameters. Also the prior for Bayesian methods.

root [7] modelConfig->Print()
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (obs_h2e2nu_200)

Parameters of Interest: RooArgSet:: = (SigXsecOverSM)

Nuisance Parameters: RooArgSet:: =
(Lumi,alpha_SysBtagEff,alpha_SysElecScale,alpha_SysElecSmear,alpha_SysJetScale,alpha_SysJetSmear,alpha_SysM
ETHadScale,alpha_SysMETHadSmear,alpha_SysMuonScale,alpha_SysMuonSmear,alpha_dieleceff,alpha_mjet2enorm,a
Ipha_signorm,alpha_topnorm,alpha_wnorm,alpha_wwnorm,alpha_wznorm,alpha_znorm,alpha_zznorm)

Global Observables: = Roo0ArgSet:: =
(nominalLumi,nom_alpha_dieleceff,nom_alpha_signorm,nom_SysMuonScale,nom_SysMETHadSmear,nom_SysElecSme
ar,nom_SysMuonSmear,nom_SysJetSmear,nom_SysBtagEff,nom_SysJetScale,nom_SysMETHadScale,nom_SysElecSc
ale,nom_alpha_topnorm,nom_alpha_wwnorm,nom_alpha_wznorm,nom_alpha_zznorm,nom_alpha_wnorm,nom_alpha_z
norm,nom_alpha_mjet2enorm)

PDF: RooProdPdf::model _h2e2nu_200[ lumiConstraint * alpha_dieleceffConstraint *
alpha_signormConstraint * alpha_SysMuonScaleConstraint * alpha_SysMETHadSmearConstraint *
alpha_SysElecSmearConstraint * alpha_SysMuonSmearConstraint * alpha_SysJetSmearConstraint *
alpha_SysBtagEffConstraint * alpha_SysJetScaleConstraint * alpha_SysMETHadScaleConstraint *
alpha_SysElecScaleConstraint * alpha_topnormConstraint * alpha_wwnormConstraint * alpha_wznormConstraint *
alpha_zznormConstraint * alpha_wnormConstraint * alpha_znormConstraint * alpha_mjet2enormConstraint *
h2e2nu_200 model ] =0
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CMS Higgs example '.i:ir,z‘;‘r;;::;?cf‘{
The CMS input:
» cleanly tabulated effect on each background due to each source of systematic
» systematics broken down into uncorrelated subsets
» used lognormal distributions for all systematics, Poissons for observations

Started with a txt input, defined a mathematical representation, and then prepared
the RooStats workspace

111111111111111111111

5555555555555

2EEE

3 observables and
37 nuisance parameters

I :@EUSM

VM\

lll i il

\\

” «
|m M “

I m‘l

,l,u

i l‘l
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ATLAS Higgs Example Coe e

The ATLAS input:
» Poisson terms 3 signal regions and 6 control regions

» Initially uncertainties in extrapolation coefficients treated with one Gaussians and
it wasn'’t possible to identify individual systematics effects

- thus, unable to identify any correlated systematic (eg. theory uncertainty)
» Now individual uncertainties are explicitly parameterized

nl(SR)|+ a/évwvaév Wn{}VW(CR) + aiivafinii(TB) + a{)vjetsvaév mn{vjets (LL) + LO'JDY(S R))

jé

(CR) + 1y, (CR) + ﬁifvﬁfinf;(TB) + By jers V!, B My iors(LL) + Lo}, (CR))

J
CRlns

(k2

d  XP(NJ i (TB) + Lo}, (TB))x P(N!

- ’

T 1,
W jets Loy jers(LL))
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Data driven estimates “T”
In the case of the CDF bump, the Z+jets control sample provides a data-
driven estimate, but limited statistics. Using the simulation narrative over
the data-driven is a choice. If you trust that narrative, it's a good choice.

(\T\ T T T T T T T [ T T T ] 7)) FT T T T T T T T T T T T T T T T T T T T TTT
(&) - — 2 B 4[]
S 700 = —— CDF dgta (4.3 b = s 016 —— Electron Data (4.3 fb ):
[0) C — Gaussian 2.5% | ] w B
O - B WWAWZ 4.8% | 0.1a
@ 600¢ I W+Jets 78.0% |- B ]
2 - Top 6.3% . 0.12F -
S 500¢ Bl Z+jets 2.8% - - ]
z : T QCD 5.1% ] 0.10;- .

400+ —_ N ]
C (c) 1 0.08— ]
300 3 : (b) -
x 0.061 -

200 = 0.041- N
100 = 0.02 -

o

100 200
M, [GeV/c?]
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The Effective Model (%9
It is common to describe a distribution with some parametric function

» “fit background to a polynomial”, exponential, ...
» While this is convenient and the fit may be good, the narrative is weak

> n
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e n
~20000 [
n | 0.06 — .
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The Effective Model narrative

CENTER FOR
COSMOLOGY AND =
PARTICLE PHYSICS

However, sometimes the effective model comes from a

convincing narrative

- convolution of resolution with known distribution
- for example, the “invariant mass” of some final state particles

— L L L | L | L L

ATLAS

VBF H(120)—tt—Ih -
Ns=14TeV, 301fb" ]
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X 30F
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The parametrized response narrative ggir;;";;;;:cs(?

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

\

L(x|Hy) =
/“\ N AN ~
__I.-"r '\ 'a,. [T T T T T T T .||||||\||!|||||||||‘
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P 3 5 E \ _[Ld::ﬂh"'m ts
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Fal T ™ 1 r ~ — :
iy Y N = o1 : —
: [1+] :
\ \_\‘ 0
" \, E
N . , N o §
1217 1745 2279 1811 1745 2279 1271 745 2278 -— : :
C 005 -
. 1T © '
.-'f\'-. -'J’H\‘-. .-"A‘\ = :
\'\_ _. D i iIIII‘IIIIiIIIIiI\III I
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The parametrized response narrative ggzg;;«;e;ggcf‘{

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

P(x|M;) = }\I /d@ (M(p;s M) 1| £ (piy i) fror (1) fror(e)

| |

Phase-space Transfer
Integral - Functions
Matrix
Element
, ./P\ NN ™
\ 'a,. L L R R .||||||\||!|||||||||‘
w " CDF Runll Preliminary | |
¢ | .. 5  Jeaern
18T T745  2Ere 13T 1745 2219 1ATT 1745 2278 a L dt=11b" (78 events]
~ N ~ = :
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Example likelihoods from CDF 2’
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COSMOLOGY AND _—
PARTICLE PHYSICS
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Fast Simulation (ﬁTﬁ

PARTICLE PHYSICS

Fast simulations based on parametrized detector response are very useful and
can often be tuned to perform quite well in a specific analysis context

-~ For example: tools like PGS, Delphis, ATLFAST, ...
But these tools still use accept/reject Monte Carlo.

- Would be much more useful if the parmaetrized detector response could be
used as a transfer function in Matrix-Element approach

Same sign di-lepton + jets + MET search

CMS Preliminary, L =35 pb”",Ns =7 TeV
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Narrative styles s:zr,z‘:r.:ﬁz';?cf‘%
The Monte Carlo Simulation narrative (MC narrative)

- each stage is an accept/reject Monte Carlo based on P(out|in) of some
microscopic process like parton shower, decay, scattering

- PDFs built from non-parametric estimator like histograms or kernel estimation
- need to supplement with interpolation procedures to incorporate systematics
- smearing approach fundamentally Bayesian

- pros: most detailed understanding of micro-physics

- cons: computationally demanding, loose analytic scaling properties, relies on
accuracy of simulation

- new ideas: improved interpolation, Radford Neal’s machine learning, “design of
experiments”

The Data-driven narrative

» independent data sample that either acts as a proxy for some process or can be
transformed to do so

» pros: nature includes “all orders”, uses real detector

» cons: extrapolation from control region to signal region requires assumptions,
introduces systematic effects. Appropriate transformation may depend on many
variables, which becomes impractical
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Narrative styles s:zr::‘;?;ﬁz';?cf‘f
Effective modeling narrative

» parametrized functional form: eg. Gaussian, falling exponential para polynomial fit
to distribution, etc.

» pros: fast, has analytic scaling, parametric form may be well justified (eg. phase
space, propagation of errors, convolution)

» cons: approximate, parametric form may be ad hoc (eg. polynomial from)
» new ideas: using non-parametric statistical methods

Parametrized detector response narrative (eg. kinematic fitting, Matrix-Element
method, ~fast simulation)

- pros: fast, maintains analytic scaling, response usually based on good
understanding of the detector, possible to incorporate some types of uncertainty in
the response analytically, can evaluate P(out|in) for arbitrary out,in.

- cons: approximate, best parametrized detector response is often not available in
convenient form

- new ideas: fast simulation is typically parametrized, but we use it in an accept/
reject framework (see Geantb)
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Example of Digital Publishing o, @

PARTICLE PHYSICS '

File View Options |_A RooPlot of "x" |
£y wspace.root LI | [2—9_ “b'_.-lgggglgégl <:|| |t/ | _gl gwo_—
All Folders Contents of Y"ROOT Files/wspace.root" g ao:—
(oot &
(_]PROOF Sessions j eol-
D /usarive ke ke/oofit/wo kdir : E
D ROOT Fiks MyWorkSpace ;1 2 o
) zo:—
RooFit's Workspace now provides the :
ability to save in a ROOT file the full X

A RooPlot of "m" i

-
.

likelihood model, any priors you might
want, and the minimal data necessary
to reproduce likelihood function.

Projection of profile likelihcod
w » -~ o

Need this for combinations, as p-value
is not sufficient information for a proper
combination. 01 ook 008 004 50 6003 o4 608 048 01

m

2 N w

‘ITT]' 1*1[*1 TI‘IIV‘]YTI I' 1TIIH T
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Visualization of the ATLAS+CMS Workspace S5 %

The full model has tob level model
12 observables and P ATLAS part
~50 parameters

parameter of interest
cBR

osmBRs
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As we saw, constraint terms for nuisance parameters can often be
related to auxiliary measurements

» we only considered very simple auxiliary measurements, like
number of events in a sideband, but even in that case there
are likely to be common systematics

» iIdea can be generalized to more sophisticated measurements

- for example, y-jet or Z-jet balance measurements to constrain the Jet
Energy Scale uncertainty

The point is that combining these models leads to a qualitiative
change in how we represent what we know: rich modeling

Now the distinction has been blurred between a Higgs
combination and a sophisticated modeling of systematics
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Examples of Published Likelihoods 2z, @
At previous PhyStats, we agreed to publish likelihood functions
You can find examples of published

6 My = 144 GeV . . .
{ likelihoods in 1D
g o = : ‘/
i — 0.02758£0.00035 /f : p :
1 ----0.02749+0.00012 / In 2'D yOU JUSt get the COntgurS

+++ incl. low Q° data - ' |

1 1 —LEP1 and SLD
_ 8054 LEP2 and Tevatron (prel.)

68% CL

l >
)
14 - 2 80.4 -
_ ' | =
0 EXC,|Ud?dl / | Preliminary =
30 100 300 _
m,, [GeV] 80.3 -
| - 00
Surely we can do better! . 5 200
m, [GeV]
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The situation 10 years ago... ((T"

Origins I: The First “Statistics in HEP” conference

WORKSHOP ON CONFIDENCE LIMITS

CERN, Geneva, Switzerland
17-18 January 2000 CERN 2000-005

Massimo Corradi
Does everybody agree on this statement, to publish likelihoods?
Louis Lyons

Any disagreement ? Carried unanimously. That’s actually quite an achievement for this Workshop.
...[Fred James wants to be able to calculate coverage, Don Groom wants to able to calculate goodness of fit]...

Cousins

I thought the point of unanimity was that publishing the likelihood function was a necessary con-
dition, not a sufficient condition.

But a practical problem remained: How to communicate multi-D likelihood?

http://indico.cern.ch/conferenceDisplay.py?confld=100458
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Current scenario ((Tﬁ

Taken from the GFitter paper

23This procedure only uses the My value under consideration, where
Higgs-mass hypothesis and measurement are compared. It thus ne-
glects that in the SM a given signal hypothesis entails background hy-
potheses for all My values other than the one considered. An analysis
accounting for this should provide a statistical comparison of a given
hypothesis with all available measurements. 'This however would re-
| quire to know the correlations among all the measurement points (or
| better: the full experimental likelihood as a function of the Higgs-mass
hypothesis), which are not provided by the experiments to date.|The
difference to the hypothesis-only test employed here is expected to
be small at present, but may become important once an experimental

Higgs signal appears, which however has insufficient significance yet
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Combining Results: An Example g;zme;&gcf‘{

A combination example 2 a0l
]
£
e Combining ‘ATLAS’ and ‘CMS’ result from persisted s
workspaces P .25
5 Combined
1
Read ATLAS {TFﬂe* f = new TFile("atlas.root") ; o 20
workspace RooWorkspace *atlas = f->Get("atlas") ; a
Read CMS TFile* f = new TFile("cms.root") ; 15_—
workspace RooWorkspace *cms = f->Get("cms") ; L
10— ‘Atlas’
Construct RooAddition n11Combi("n11Combi","n11 CMS&ATLAS", 'CMS’ &
combined LH RooArgSet(*cms->function(“n11”),*atlas->function(“n11”))) ; K
Construct 5
profile LH { RooProfileLL p11Combi("p11Combi","p11",n11Combi,*atlas->var("mHiggs")) ; i
in mHiggs r .
7IIII|IIII|IIII'|"|-.IJJ1{?. II‘IIIIlIIII
RooPlot* mframe = atlas->var("mHiggs")->frame(-3.5,-2.5) ; 3 534 -3.3 3.2 -3.1 -3 -29 28 -27 -26 -25
Plot Tas->function(“n11”)->ploton(mf ; i
Atlas.CMS atlas->function(“n )->plotOn(mframe)) ; mH|ggs
O cms->function(“n11”)->plotOn(mframe),LineStyle(kDashed)) ;
combined 11Combi . p1 £ . Tor(kRed)) :
rofile LH p11Combi.plotOn(mframe,LineColor(kRed)) ;
P mframe->Draw() ; // result on next slide
Wouter Verkerke, NIKHEF

By using the workspace, it is easy to share results, ideal for combinations.

Example above shows opening an ‘atlas’ and ‘cms’ workspace, and
performing a combined fit to a common parameter with profile likelihood.
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Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models
» Fitting Model Parameters
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Introduction SN |
Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models — parametrization

» Fitting Model Parameters — Interpretation
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Introduction SN |
Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models — parametrization
» Fitting Model Parameters — Interpretation

: Potential new tasks
® Input for the Strategy Group

® |PCC and experiments required to produce combined assessment of the
2010-11(-12) findings in Higgs and BSM searches :

® TH community, and other expl communities (e.g. LinCol, SuperB, ...), will
use this to assess the implications of LHC data for BSM and future exptl

projects
= We need to prepare the framework/tools to enable:
® combination of limits/evidence from ATLAS/CMS(/LHCDb)
® use of the results by the rest of the community (e.g. SUSY-models’ fitters)
® This will require coordination with
® ATLAS-CMS statistics forum
® Fitters’ groups

® a|l LHC “search “ efforts (Higgs, B decays, exotica of all sorts ....)
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Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models — parametrization
» Fitting Model Parameters — Interpretation

: Potential new tasks Goals for this meeting
: @ Input for the Strategy Group © o Review the progress made by the experiments
® LPCC and experiments required to produce combined assessment of the : e Status report on the SLACWG

2010-11(-12) findings in Higgs and BSM searches

. o Collect further input from all fields (TH + exps)
® TH community, and other expl communities (e.g. LinCol, SuperB, ...), will

use this to assess the implications of LHC data for BSM and future exptl ® In the context of simplified models, start outlining the roadmap and the
projects workflow to go from analysis, to publication, to combination of the results of
: : : different experiments, to conclude with the exploitation of the published
= We need to prepare the framework/tools to enable: results by a random theorist.
® combination of limits/evidence from ATLAS/CMS(/LHCb)
3 : | analysis
e use of the results by the rest of the community (e.g. SUSY-models’ fitters) :
: o format of the
: ® This will require coordination with published result

® ATLAS-CMS statistics forum [combination among}

® Fitters’ groups experiments

® all LHC “search “ efforts (Higgs, B decays, exotica of all sorts ....) use of the results by a theorist, in
: : the context of a new model
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SUSY Fitting tools
Usually simplify input from experiments to be a single Gaussian

Ohservable Experimental Uncertainty Exp. Relerence
Value stat syst

B(B — s7)/B(B — sv)su 1.117 0.076 0.096 [£7]
B(B. — pp) < 4.7x1078 [47]
B(By — ££) < 2.3x107% [47]
B(B — 7v)/B(B — 7v)su 1.15 0.40 [48]
B(B. — X 00)/B( B, — X.8l) sy 0.99 0.32 [47]
Amp, [Am! 1.11 0.01 0.32 [49]
Amg,/AmG 1.08 0.01 0.16 [47,49]
Aeg fAM 0.92 0.14 [49]
B(K — pr)/B(K — pr)su 1.008 0.014 [30]
B(K — mov)/B(K — 7re)su < 4.5 [51]
aS*F — g™ 30.2x1071° B.8x107% 2.0x107 [52,53]
sin? fer 0.2324 0.0012 46
Iz 24952 GeV 0.0023 GeV 0.001 GeV 46
Ry 20.767 0.025 46
R, 0.21629 0.00066 46
R. 0.1721 0.003 [46]
Ap(b) 0.0092 0.0016 46
Amle) 0.0707 0.0035 46
A 0.923 0.020 46
Ae 0.670 0.027 46
A, 0.1513 0.0021 [46]
A, 0.1465 0.0032 [46]
Aml(l) 0.01714 0.00005 [46]
Fhad 41.540 nb 0.037 nb [48]
wy, > 114.4 GeV 3.0 GeV [54,55,56]
oo h? 0.1089 0.0062 0.012 7]
1/@em 127.925 0.01d 38
Gr 1.16637Tx 10" GeV ™2 | 0.00001x107"GeV~? 58
a. 0.1176 0.0020 38
"y 91.1875 GeV 0.0021 GeV [46]
My 80,309 GeV 0.025 GeV 0.010 GeV [38]
My 4,20 GeV 017 GeV a8
My 172.4 GeV 1.2 GeV 539
. 1.77684 GeV 0.00017 GeV 58
. 1.27 GeV .11 GeV [-Ll.'i]

700

< 600

QO

O 500

= 400
300
200
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FITTINO
BUSY | 1D 68 % contour

2D 95% CL All measurements

1D 68% CL All measurements

~ 2D 95 % contour

I |
400 600

M, (GeV)

|
200

Optimum

o
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First interface with SuperBayes g:ir;:‘;f;;;':cs(?

Repeated same analysis as Bridges, KC, Trotta et al (1011.4306) with
ROOStatS IlkellhOOd A 2/ ndf 40.11/45

" B Prob 0.679
: 50— Endpoint 99.66 + 1.399
H - C Norm. -0.3882 = 0.02563
» see consistent results! S of
O] C 7
X 30F
3 -
BBdgesEH)ya $20 10 U‘EJ' 20;
300 e of
i 68%, 95% contours %
I Black: SuperBayeS pdf | o g
250 Blue: Neural Network thr. = 0.5 T A T I R N D T
[ Red: Neural Network thr. = 0.3 0 20 40 60 80 100 120 140 16°m(1”?([’Ge2\‘,)]°
Green: Neural Network thr. = 0.1 1 Bridges et al (2010)
] 800 -
~ I A 2 a1 K00 r—r—rrrrrr- —r—rrrrrr-
> 200 ‘ true value - [ 68%, 95% contours CMSSM, u>0
8 Green: CMSSM prior ATLAS SU3 point:
O 700 - Red: ATLAS likelihood -

3 ‘ true value

] S 600}

SU3 mieas 7
[GeV] ]
My 88+ 602
189+ 60F2

. I " mso b
gApriors - 400 y 614£91+11 ]
12246152 ]

CMSSM, u>0 8 [ rOnéservable SU3 Animeas

oLt R . 300¢ = (0062 19700] ]
280 300 320 : ot | essror |
m1/2 (GeV) 200 ......... | I | I

mXo (GeV)
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Benchmark based on counting

Max Baak’s demonstrated interpolation of signal yield and uncertainties
in a 3-d MSUGRA scan with a simple number counting analysis

Signficance

Ba20
G
=300
£280
260
240
220
200
180
160
140 -
120 .

||||||||||||
1007300 200 300 400 500 600 700 800 900 1000

m, [GeV]
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Ultimate Goal s W
Publish likelihoods along with papers

» first goal, the LEP Higgs

sis bearch 53 . rd moce o AF w als eanc] VM O - J
20 L) Do IO S - 1) CESTEED ' 0y L) e - 1 CEETID

INSPIRE wessmemsmenias o M INSPIRE : R e

Her :: Haor SPIRES HeorNames - Iust 0 Cowr . B - Jous
Home > Search for neutrad MSSM Moo tosons ot LEP
1re | | Rate (196) | | Ctamons (348) |
Search for neutral MSSM Higgs bosons at LEP.

Collaborations (5. Schael (Aschen, Tech. Hochach ) of al ) Show of 1212 suthors.
CERN-PH-EP-2006-001.

Her :: Hawr SPIRES HerNames -

Home > Search for the standard model Hggs boson at LEP

Inst :: Cowr . B 2 Jous

ot | | Ren (35)| [Ciavions (1097 |
Search for the standard model Higgs boson at LEP.

LEP Working Group for Higgs boson searches and ALEPH and DELPHI and L3 and OPAL
Collaborations (R. Barate of &) Show of 1314 suthors.
CERN-EP-2003.011.

Jan 2006
e i
s s oy 17 g i T

Abstract: The four LEP collaborations, ALEPM, DELP, L) and OPAL. have
for the neutral Higgs which ace predicied by the Minmad
Standard Model (MSSM). The data of te four collaborations ame
watascaly e for Pk Coraisiency wih e Sackground
hyscthess and with a possiie Hgps boson signal. The combined LEP data show
no sgniicant eacess of events which woulkd Indicate the production of Mggs
bosons, The search resulls ane used 10 set Lpper Sounds on the Cross-sectons of
varous Migga-ike evert opoioges. The res.ts are merpreted within the NSSM n
@ number of benchmark models, ncluding CP conserving and CPviolatng
scerarios. Thess mterpretations lead n ol Cases 1 large exchusons in he MSSM

Abstract: The four LEP colaborations, ALEPH, DELPHL, L3 and OPAL. have
collected & W of 2651 pb-1 of evo- COlson data ot Conte-of mans ererges
between 450 and 200 GeV. The deta are used 10 search for he Sundand Model
mmmmuduuw-omn

HQos boson mass. A lower bound of 114.4 GeVie2 is establshed, ot e 35%
confidence level, on e mass of e Standard Model Higgs boson. The LEP deta

e a0 used 1 set Lpper bounds on the HZZ couping b various sssurptions parameter space. Abachte Imits ane set on he parameter Sand and, In some
concerming he decary of e Hggs boson. SCAnarios. on e masses of neutral Miggs bosons.
Keyword(s): INGPRE: teview. sspermental tesus | slectron postron: solidog Keyword(s): INSPRE: pocion 2osiaon coliding beams | secton postron.
boarrs | steciron soaron: anniviation | Hgos Serticie: search K | Hoos sacicle: soohistion | Hegs peciche: search for | Miogs secicie: nevinal pacicle
ool orsicie | Higos sericie slecrosroduction | 20 associeted producion | meernymemetry | Higos serticle: steciroprducton | 22 ssaoceted production |
couping. {14098 paricie 220) | Hges paricie: secay modes | beckgrownd | Heos Hioos pactiche: par seoduction | nvacence: CP | CP. vicktion | Hioos paricle:
pactche. maas | ower it | sxpecmentsl reautts | CERN LEP Sxr | slecion decay. modes | 1oes pacscie: mass | ower ime | chennel cross secien: weoer
poslron —> Higgs paricle 20 | Higos senicle -> ooty | Hoos paicle -> tae it | ALPEM | DELPHI | OPAL | L3 | sxaerimental remts | CERN LEP Ster |
tau- | 109200 GeY-coms bidogrecty | §1:209 GeV-cms
Recond crested 2000-05-21, last modifed 20110117 Simitar records r Recond croated 2006-02.23, last modited 20110208 Simlar cords .
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y CERN Colloquium and

[.ibrarv Science Talk

N/

SPEAKER: [ awrence Lessig (Edmond J. Safra Center for
Ethics and Harvard Law School, Cambridge,
MA, US)

"The architecture of access to scientific
knowledge: just how badly we have messed
this up"”

TITLE:

DATE: Mon 18/04/2011 16:30

PLACE: Council Chamber

ABSTRACT

In this talk, Professor Lessig will review the evolution of access to

scientific scholarship, and evaluate the success of this system of

access against a background norm of universal access. While copyright

battles involving artists has gotten most of the public's attention, the real

battle should be over access to knowledge, not culture. That battle we are i
losing. ¢
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Lecture 2
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Modeling:
The Scientific Narrative
(continued)
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In Monte Carlo Simulation approach, use simulated events to build
histograms and construct the “Marked Poisson”™ model below

1:__' : T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T T
2 7E ATLAS Preliminary (simulation) @ Signal
£ - H—llvv (m =300 GeV,\'s = 7 TeV) — Total BG
Lc|'>j 6 — gz
- Wz
5S¢ —Ww
- —Z
4— W
3
2
1=
- I e |

events / bin

'P5O | 200 250 300 350 400 450

500 107"

Trl — Transverse Mass [GeV]

P(m|s) = Pois(n|s + b) H

J

102§

"CMS Preliminary

10

—— Signal, m =170 GeV,
[ W+lJets, t .
@ di-boson —=
B 3
Il Drell-Yan

1

-0.5 0 0.5
711 — Neural Network Output

sfs(mj) + bfo(m;)

S_

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011

68




CENTER FOR

Re View COSMOLOGY AND @

PARTICLE PHYSICS '

Tabulate effect of individual variations of sources of systematic uncertainty

» use some form of interpolation to parametrize i variation in terms of
nuisance parameter «;

2 7E- ATLAS Preliminary (simulation) EEsgnal —
£ - H—llvv (m =300 GeV,\'s = 7 TeV) — TotalBG 1
iz - 24 ] sig bkg 1 |bkg 2
5 Wz =
- WwW =
n —Z - syst 1
41— W —
ar E syst 2
2 =
1= S —
- = e e S

950 | 200 250 300 350 400 450 500
71l = Transverse Mass [GeV]

s(@)fs(mjla) + b(a) fo(m;| )
s(a) +b(a)

P(m|a) = Pois(n|s(a) + b(a)) H
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Tabulate effect of individual variations of sources of systematic uncertainty

» use some form of interpolation to parametrize i variation in terms of
nuisance parameter «;

1:__' : III|IIII|IIII|IIII|IIII|IIII|IIII:
= 7E ATLAS Preliminary (simulation) @ Signal =
% - H—>|Ivv(mH=SOOGeV,\@=7TeV) — Total BG e e
2 o — 5 E -
- wz . -
5S¢ — WW e .
- —7 - ~— [
4 w — EE
- 1 = C
- 1 4= [
3= — C
13 : ___F_J—
1:_ — 0:....I....I....I....I....I....I....I....
- 170 180 190 200
I ey |

950 | 200 250 300 350 400 450 500
71l = Transverse Mass [GeV]

s(a)fs(mjle) + b(ev) fo(m]e)
s(a) + b(a)

P(m|a) = Pois(n|s(a) + b(a)) H
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Tabulate effect of individual variations of sources of systematic uncertainty

» use some form of interpolation to parametrize i variation in terms of
nuisance parameter a;

1:__' : T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T T :
= 7E ATLAS Preliminary (simulation) @l signal
£ - H—llvv (m =300 GeV,\'s = 7 TeV) — TotalBG
2 5 —z
- W2Z .
5S¢ — WW e
- —<Z ]
41— W —
3 =
2 =
1 =

- I e |

950 | 200 250 300 350 400 450 500
71l = Transverse Mass [GeV]

s(@)fs(mjla) + b(a) fo(m;| )
s(a) +b(a)

P(m|a) = Pois(n|s(a) + b(a)) H
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Something must ‘constrain’ the o

» the data itself: sidebands; some control region
» constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’

2 GeV

~_20000

Events

17500

15000

12500

‘ L L ‘ |
120 135

m,, (GeV)

10000

—_
S
(W}

s(a)fs(mjla) + b(a) fo(m;| )
s(a) +b(a)

P(m|a) = Pois(n|s(a) + b(a)) H
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Something must ‘constrain’ the o

» the data itself: sidebands; some control region
» constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’

: T T | T T | T .I T |. T T | T 1T T
‘5 10° ECMS Preliminary =
~ —e— Signal, m =160 GeV
..2 [ W+Jets, tW
[ di-boson
D 1n3
> 10 I
o I Drell-Yan

ete’ Channel

-
o
N

10

-1
107 20 40 60 80 100 120 140 160 180 200
m, [GeV/c?]

s(a) fs(myla) + b(a) fp(m]a)
s(a) + b(av)

P(m|a) = Pois(n|s(a) + b(a)) H
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Something must ‘constrain’ the o

» the data itself: sidebands; some control region
» constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’

: |||||||||.|||-|||||||||||||||||||||||||||
‘5 10* ECMS Preliminary E
~ - —e— Signal, mH=1 60 GeV
42 B ] W+dJets, tW ]
[ di-boson
@103 _
>10°¢ . 5
o - I Drell-Yan .
i e*e” Channel i
10
1=
-1
107,

m, [GeV/c?]

s(a) fs(myla) + b(a) fp(m]a)
s(a) + b(av)

P(m|a) = Pois(n|s(a) + b(a)) H
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Something must ‘constrain’ the o

» the data itself: sidebands; some control region
» constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’

o
—

o
o
®

Projection of gprior

o
o
»

P(ml|a) = Pois(n|s(a) + b(c H s(a)fs(mj|a) + b(a) fo(mj|a)
xG(a|a, o) J
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The Data-Driven narrative f::ir,“;‘;‘f;;;";,’cs(%
In the data-driven approach, backgrounds are estimated by assuming (and
testing) some relationship between a control region and signal region

» flavor subtraction, same-sign samples, fake matrix, tag-probe, ....
Pros: Initial sample has “all orders” theory :-) and all the details of the detector

Cons: assumptions made in the transformation to the signal region can be
questioned

- - . __| x*/ndf 40.11/45
‘o ' e ' - o) C ! ! ! ! : " Prob 0.679
S— — SU3 OSSF 7 = B0 — E Endpoint 99.66 + 1.399
= —— BKG OSSF i g - : Norm.  -0.3882+ 0.02563
> 40— Ittt  --- SU3 OSDF ] % 40 r Smearing 2.273 + 1.339
8 ————— BKG OSDF . O] g g
N ] X 30F E
~ [72] L ]
172 i Q0 C ]
..q:j ] -'E' 20— -
T ATLAS L 0 - ATLAS .
—: (0] Cammns .
1 |. _|.‘_ f- 1 1T I| 1 |' |e| . |:iT{J_ ‘f _|:-l _10__ 1| I 1| 1 I 1| 1 I 1 1 | I 1 1 | I 1| 1 I 1| 1 I 1 1 | I 1| 1 I 1| I_r
100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
m(ll) [GeV] m(ll) [GeV]
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Other Examples of data-driven narrative

PARTICLE PHYSICS

All-hadronic searches with MHT

Search for high pT jets, high HT and high MHT (= vector sum of jets)
3 jets, E+>50 |n|<2.5 MET

HT > 350 and MHT > 150 P fqY
Event cleaning cuts. ki

Predict each bkgd separately
QCD: rebalance & smear
W & ttbar from u control
Z—vv from y+jets and Z-uu

i n

m v

_ y4 E W
Z—- |l + jets W - lv + jets y +jets
Strength: very clean Strength: larger statistics Strength: large statistics
Weakness: low statistics Weakness: background and clean at high Er
from SM and SUSY Weakness: background at
low Er, theoretical errors
CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis 19
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Data driven estimates “T”
In the case of the CDF bump, the Z+jets control sample provides a data-
driven estimate, but limited statistics. Using the simulation narrative over
the data-driven is a choice. If you trust that narrative, it's a good choice.

(\T\ T T T T T T T [ T T T ] 7)) FT T T T T T T T T T T T T T T T T T T T TTT
(&) - — 2 B 4[]
S 700 = —— CDF dgta (4.3 b = s 016 —— Electron Data (4.3 fb ):
[0) C — Gaussian 2.5% | ] w B
O - B WWAWZ 4.8% | 0.1a
@ 600¢ I W+Jets 78.0% |- B ]
2 - Top 6.3% . 0.12F -
S 500¢ Bl Z+jets 2.8% - - ]
z : T QCD 5.1% ] 0.10;- .

400+ —_ N ]
C (c) 1 0.08— ]
300 3 : (b) -
x 0.061 -

200 = 0.041- N
100 = 0.02 -

o

100 200
M, [GeV/c?]
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The Effective Model Narrative «T"
It is common to describe a distribution with some parametric function
» “fit background to a polynomial”, exponential, ...

» While this is convenient and the fit may be good, the narrative is weak
PHYSICAL REVIEW D 79, 112002 (2009)

10*

7, D L L L L L L L B N LA A B ]
= 10°E -, —e— CDF Run Il Data (1.13 fb™) g 10t _
L 102 f Ve, - ° Daa  ATLAS
S 10 %o, N Fit .
S o 109 —>— Q(500)  \5=7TeV
8 101 | oceves — e - o qee [Ldr=315nb" 7
= 102 500 GeVi/c .| a7 (1200) ]
% 103 10 E_ _E
i 10 . ’

10° (a) 10g E
106 . vy, TTOPEETE - .

T 08 E‘ 0.03 ; + 1 ;— R~ _;
Z‘ 3161 ;_ -o.og- L ; ! _|——|_§
i 4 -0.04 m "t —t——t—1— i —H———]
. 0.2 200 300 400 500 600 700 % 2:_ £
T -0 EAA%%— a O;.ﬁ“-r--r—-‘-_
Q .02f (b) B CoAb E
-04 T T U U PO e -2¢ AU RO A S RO S RO AU S SO R SRV T S B

200 400 600 800 1000 1200 1400 500 1000 1500 _
J m, [GeV/c’] Reconstructed m’ [GeV]
(0
JJ
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The Effective Model Narrative ((T//

/C\T 50__L | T T T T T T T T | T T T T | T T T T | T T T T | T T T T T T T T T T T J__
T Ho ZZ — 4l i
- _ N N ]
% a0 ATLAS
12 B ]
4 B 1
AT - J L=30fb ]
30— ]
B \ ]
20 ; -
: 1T N } z
10— 3 } } ]
; N
B % [T Pt . L
O | | | L | | J J 1 1 1 ]_ N I I | | | | 1 J b R H Pl L 1 [ > | 3
10 150 200 250 300 350 400 450 500
m,, [GeV]
B p0 pl
f(mZZ) _ p6—mZZ mzz—pS —|_ pz—mZZ p4—mZZ

(I+e 7 )(14+e P ) (14+e » )(1+e » )
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The Effective Model Narrative comrnren WY

PARTICLE PHYSICS

Sometimes the effective model comes from a convincing narrative

- convolution of detector resolution with known distribution
- Ex: MissingET resolution propagated through M. in collinear approximation

- Ex: lepton resolution convoluted with triangular M distribution

;1 4 __l T T T T T T T T | T T T | T T T T T T __ I: I: NO
ol4r ATLAS : V. T<X/
4ol VBF H(120)->tt—Ih - a/ \ 1
P \Ns=14TeV, 3015 -
=10 7]
g) B ] , I | I [ #/ndf 40.11/45
L 8 L _ »'E 50F E::::I:mint 99.66:(1):233
i . g - : Norm.  -0.3882: 0.02563
: : % 40 :_ + Smearing 2.273 = 1.3§9
6 - — O] - .
[ i > 30F E
- ] Q0 C ]
41 N 2 200 E
: N L 10;_ ATLAS
____________________ reu g o 0: H ]
0 L1 '|-"|:"[";"‘-I-“|"T L 11 | |.. L '| el 4 I- (L _10:_ _:
60 80 100 120 140 160 180 0 2020 60 80 100 120 140 160 80 200
M., (GeV) m(ll) [GeV]
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Tools for building effective models

PARTICLE PHYSICS

e RooFit's convolution PDFs can aid in building more effective
models with a more convincing narrative

// Construct landau (x) gauss (10000 samplings 274 order interpolation)
t.setBins (10000, ”cache”) ;
RooFFTConvPdf 1lxg("lxg","landau (X) gauss",t,landau,gauss,2) ;

[LA RooPlot of "x" l [LA RooPlot of "x" I [LA RooPlot of "x" l

=10 =10 =10

& 8-
RS n s F n
r &).7-:—
61 :
F 8
0.5} E
F 0.5
04 :
0.3 E
g 03
02 0.2k
4 : ! !
0.4 0.1-
o -
r -
s aaala 1 o
T T) . T S T R R | R R

Wouter Verkerke, NIKHEF
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The parametrized response narrative ggir;;";;;;:cs(?

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

\

L(x|Hy) =
/“\ N AN ~
__I.-"r '\ 'a,. [T T T T T T T .||||||\||!|||||||||‘
w " CDF Runll Preliminary | |
P 3 5 E \ _[Ld::ﬂh"'m ts
18T 1745 2278 18TT 1745 22r9 1871 rE5 2218 o (78 events)
Fal T ™ 1 r ~ — :
iy Y N = o1 : —
: [1+] :
\ \_\‘ 0
" \, E
N . , N o §
1217 1745 2279 1811 1745 2279 1271 745 2278 -— : :
C 005 -
. 1T © '
.-'f\'-. -'J’H\‘-. .-"A‘\ = :
\'\_ _. D i iIIII‘IIIIiIIIIiI\III I
/ 1 N |/ N\ 145150 155 160 165 170 175 180 185
1877 1745 22r9 1BTT 1745 22r9 17T 745 2278 M, [GeV/c
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The parametrized response narrative ggzg;;«;e;ggcf‘{

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

P(x|M;) = }\I /d@ (M(p;s M) 1| £ (piy i) fror (1) fror(e)

| |

Phase-space Transfer
Integral - Functions
Matrix
Element
, ./P\ NN ™
\ 'a,. L L R R .||||||\||!|||||||||‘
w " CDF Runll Preliminary | |
¢ | .. 5  Jeaern
18T T745  2Ere 13T 1745 2219 1ATT 1745 2278 a L dt=11b" (78 events]
~ N ~ = :
A FA a T O —
\ o
\ \. o :
1217 1745 2279 1211 1745 2278 1211 745 2278 - : :
E o -
~ ~ 1~ S
\.‘- : D i iIIII‘IIIIiIIIIiI\III I
' E hN Ak \ 145 150 155 160 165 170 175 180 185
18T 1745 2279 1T 1745 22r9 1877 1745 2279 M, [GeV/c
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Example: CDF Z° — py T

CDF Run II Preliminary

“a matrix element based likelihood

g 0.5 :]D
providing an approximately 20% relative S04 :
Increase 1n Cross section sensitivity at large F
Z' mass” %

5
é 10 _§| A Data
q>) 10* —;. [ Jzn
H 1 [ ]e
3
10 3 ww
102 | [l Fakes 20400 600 $00 1000
E .Cosmics Z’ Mass [GeV/c ]
10 VVVVVVVV ?_ LT I\NULL 1L ru;:uuuualy
,,,,,, . : -
I O e o I . 3 100 =
fffffffff 3 =
10" _f E’ -200
5 1300
102 still stronger than « °: o0
200 400 600 800 1000 1200 0.25
MMP_ [GCV/C2] ATLAS & CMS 02k -500
j -600
TABLE I: Mass limits on specific spin-1 Z’ models [12] in data 0151
with 4.6 fb~! of integrated luminosity at 95% confidence level. 0.1 700
0.05|- 800
Model 7] Zie Zy Z, Z. Z) Zsu -,

|
600 800 1000
7’ Mass [GeV/cz]

0 1 1
200 400

Mass Limit (GeV/c®) 817 858 900 917 930 938 1071 &
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Examples of parametrized response :g:,:;;f;;;';;f‘f
While we often see the parametrized response as overly simplistic, the
parametrizations are often based on some deeper understanding

» and parameters can often be measured in data with in situ calibration
strategies. No reason we can’t propagate uncertainty to next stage.

Muon Energy Loss (Landau) Jet Resolution
§105""| [ A AN R §0-22: T LT ' T T ]
(3/ 9;— T—; 'Iy 0-2;— * *‘O” . 0.00<1<0.50 : a=0.69 b=0.03 ¢=6.30 —;
sg g " 0.4<n[<0.5 = Sor A N =
- < - = 3 o o 1.50<1<2.00 : a=1.19 b=0.01 ¢=10.00 ]
7E- e 1.2<In|<1.3 ; s 0165 . 3 E
6 * 2.0<n|<2.1 E 0.14F- x‘_\ﬁ S E
5;— —; 0.12;— + o —;
af*® E Wl L E
3;— —; 0.08] Q.’q:ﬁ QO’}O«\ =
- - - '-’=‘._‘_ »—c>~.~~ =
) 3 E 0.06] “.a.:.;h*»—oto;:b* .
1E E 004=  ATLAS e i T
L | S 0.02——— L — L
2 3 10° 10°
10 10 o, (GEV) E™" [GeV]
(0) a C
mpv __mpv mpv mpv L
Eyoss (Pu) =ay +a;" Inpy+a,™ py - Gbd ok
VE (GeV)
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Fast Simulation

CENTER FOR
COSMOLOGY AND
PARTICLE PHYSICS

Fast simulations based on parametrized detector response are very useful and

can often be tuned to perform quite well in a specific analysis context

- For example: tools like PGS, Delphis, ATLFAST, ...

Same sign di-lepton + jets + MET search

CMS Preliminary, L =35 pb”,\'s =7 TeV
U L L ror

— 500 _ ]

% [T=LSP - NLO Observed Limit D LEP2 3 i
S - ----NLOlimit[efficiency model| [ LEp2 7 ]
s B ) —
& 400: (800, oy oo ;. % :
- tanf =3, A =0, sign(u) >0 v (800)cev]
300— 9(650)Gey l
: g (650)Gev:
200 ‘_ §(500)GeV__
1 OO _I 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 Il 1 1 | 1 1 1 l

0 100 200 300 400 500
m, (GeV)

CMS SUSY Results, D. Stuart,

April 2011, SUSY Recast, UC Davis

Paper includes a simple efficiency model
(i.e. for PGS calibrations) and compares
full limit to limit with simple model.

Kyle Cranmer (NYU)
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Fast Simulation S e |

Fast simulations based on parametrized detector response are very useful and
can often be tuned to perform quite well in a specific analysis context

-~ For example: tools like PGS, Delphis, ATLFAST, ...
But these tools still use accept/reject Monte Carlo.

- Would be much more useful if the parmaetrized detector response could be
used as a transfer function in Matrix-Element approach

I 1 | 1 I 1 I I
Oom im im im am 5m 6m m
Key:
Muon ¥
Electron N
Charged Hadron (e.q.Pion) e \
— = = - Neutral Hadron (e.g.Neutron) " :
""" Photon G

=\ =

=

/ g /
- Y= » I/
\ /
" Electromagnetic \\\ /,'
y
| “ ' Calonmeter . /
! ~

Iron return yoke interspersed
Transverse skce with Muon chambers
through CMS
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Narrative styles s:zr,z‘:r.:ﬁz';?cf‘%
The Monte Carlo Simulation narrative (MC narrative)

- each stage is an accept/reject Monte Carlo based on P(out|in) of some
microscopic process like parton shower, decay, scattering

- PDFs built from non-parametric estimator like histograms or kernel estimation
- need to supplement with interpolation procedures to incorporate systematics
- smearing approach fundamentally Bayesian

- pros: most detailed understanding of micro-physics

- cons: computationally demanding, loose analytic scaling properties, relies on
accuracy of simulation

- new ideas: improved interpolation, Radford Neal’s machine learning, “design of
experiments”

The Data-driven narrative

» independent data sample that either acts as a proxy for some process or can be
transformed to do so

» pros: nature includes “all orders”, uses real detector

» cons: extrapolation from control region to signal region requires assumptions,
introduces systematic effects. Appropriate transformation may depend on many
variables, which becomes impractical
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Narrative styles s:zr::‘;?;ﬁz';?cf‘f
Effective modeling narrative

» parametrized functional form: eg. Gaussian, falling exponential para polynomial fit
to distribution, etc.

» pros: fast, has analytic scaling, parametric form may be well justified (eg. phase
space, propagation of errors, convolution)

» cons: approximate, parametric form may be ad hoc (eg. polynomial from)
» new ideas: using non-parametric statistical methods

Parametrized detector response narrative (eg. kinematic fitting, Matrix-Element
method, ~fast simulation)

- pros: fast, maintains analytic scaling, response usually based on good
understanding of the detector, possible to incorporate some types of uncertainty in
the response analytically, can evaluate P(out|in) for arbitrary out,in.

- cons: approximate, best parametrized detector response is often not available in
convenient form

- new ideas: fast simulation is typically parametrized, but we use it in an accept/
reject framework (see Geantb)
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COSMOLOGY AND
PARTICLE PHYSICS

Hypothesis Testing
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Hypothesis testing i W
One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)

» assume one has pdf for data under two hypotheses:
 Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background

» one makes a measurement and then needs to decide whether
to reject or accept Ho

0.05
0.045
0.04
0.035
0.03
0.025
0.02
0015
0.01 : : : , : : N
0005 [ fri ] NCTCIRERN ISP S
0 ‘\\\‘\LA"’ \‘\\\‘\\
60 80 100 120 140 160 180
Events Observed
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Hypothesis testing i W
One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)

» assume one has pdf for data under two hypotheses:

 Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background

» one makes a measurement and then needs to decide whether
to reject or accept Ho

005 IIIIIIIIIIIIIIIIIIIIIII

2
B 0045 ottt B
o yp— ! ' ‘ :
'S 004 3 S
S 0035 ; e T
S 003 3 R
A< 0.025 g SR AN -
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0.015 e 3
0.01 R
0005 | frin N T -
A Y
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: : W
Hypothesis testing e S |
Before we can make much progress with statistics, we need

to decide what it is that we want to do.
» first let us define a few terms:

Actual condition

Guilty Not guilty
. Rate Of Type I error o False Positive
Verdict of T » (i.e. guilt reported
. 'quilty rue Positive unfairly)
Rate of Type Il 3 e
Decision .
* POWGF — 1 — /8 Fals‘e Neg‘atlve
Verdict of (i.e. guilt

True Negative
'not guilty' not detected)

Type Il error
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: : W
Hypothesis testing e S |
Before we can make much progress with statistics, we need

to decide what it is that we want to do.
» first let us define a few terms:

Actual condition

Guilty Not guilty
. Rate Of Type I error o False Positive
Verdict of T » (i.e. guilt reported
. 'quilty rue Positive unfairly)
Rate of Type Il 3 e
Decision .
* POWGF — 1 — /8 Fals‘e Neg‘atlve
Verdict of (i.e. guilt

True Negative
'not guilty' not detected)

Type Il error

Treat the two hypotheses asymmetrically
» the Null is special.
- Fix rate of Type | error, call it “the size of the test”
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: : W
Hypothesis testing e S |
Before we can make much progress with statistics, we need

to decide what it is that we want to do.
» first let us define a few terms:

Actual condition

Guilty Not guilty
. Rate Of Type I error o False Positive
Verdict of T » (i.e. guilt reported
. 'quilty rue Positive unfairly)
Rate of Type Il 3 e
Decision .
* POWGF — 1 — /8 Fals‘e Neg‘atlve
Verdict of (i.e. guilt

True Negative
'not guilty' not detected)

Type Il error

Treat the two hypotheses asymmetrically
» the Null is special.
- Fix rate of Type | error, call it “the size of the test”
Now one can state “a well-defined goal”
» Maximize power for a fixed rate of Type | error
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Hypothesis testing i W
The idea of a “50" discovery criteria for particle physics is really a
conventional way to specify the size of the test
» usually 5o corresponds to ,, — 2.87.107
* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

005 IIIIIIIIIIIIIIIIIIIIIII
0045 | R o

004 E : :
0035 | i T
e R A AN
0025 [ SR W L S
S o ANTTANS S Y o
0015 Ff A
B R\ S Y B
ooos |/ NS L
0E ‘\\\‘\LA"’ \‘\V\‘\\\
60 80 100 120 140 160 180
Events Observed
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Hypothesis testing covenron WY

PARTICLE PHYSICS

The idea of a “50" discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 5o corresponds to ,, — 92.87. 107

* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

15

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 87




CENTER FOR

Hypothesis testing i W
The idea of a 50 discovery criteria for particle physics is really a
conventional way to specify the size of the test
» usually 50 corresponds to o = 2.87- 107
* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

005 IIIIIIIIIIIIIIIIIIIIIII
0045 | R o

004 E : :
0035 | i T
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0015 Ff A
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Hypothesis testing covenron WY

PARTICLE PHYSICS

The idea of a “5o " discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87- 107
* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

- ‘&;{:‘;" f@"
I | accept = ¥

[G. Cowan] C;
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Hypothesis testing covenron WY

PARTICLE PHYSICS

The idea of a “5o " discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87- 107
* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

gt l # Z
accept = |

accept

[G. Cowan] C;
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The Neyman-Pearson Lemma CosmoLoay Ao b

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H, (background only)
- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
a= P(x ¢ W|H,)

(Convention: if data falls in W then we accept Ho)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hi is true)

ﬁ:P(ZCEW‘Hl)
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The Neyman-Pearson Lemma e, @8

The region W that minimizes the probability of wrongly
accepting Hy is just a contour of the Likelihood Ratio

P($ Hl)
P(CIZ‘ H())

Any other region of the same size will have less power

> kq

The likelihood ratio is an example of a Test Statistic, eg. a
real-valued function that summarizes the data in a way
relevant to the hypotheses that are being tested
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A short proof of Neyman-Pearson e S |

Consider the contour of the likelihood ratio that has size a given
size (eg. probability under Hp is 1-(v)
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A short proof of Neyman-Pearson ?’

Now consider a variation on the contour that has the same
size
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A short proof of Neyman-Pearson ggig;f;H:':cs?

P(\_|Ho) = P(_“|Hy)

Now consider a variation on the contour that has the same size
(eg. same probability under Ho)
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A short proof of Neyman-Pearson e |

- P(\_|Hy) = P(_“|Ho)
P(z|Hyp)

P(\_IH1) < P(\_|[Ho)k,

Because the new area is outside the contour of the likelihood
ratio, we have an inequality

< kg

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 94




A short proof of Neyman-Pearson e i |

P(x|H,)
P(z|Ho)

P(z|Hy)
P(z|Hy)

P(\_|H1) < P(\_|Ho)k, P(_/|Hy) > P(_/|Ho)k,

And for the region we lost, we also have an inequality

> kg

< kg

Together they give...
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A short proof of Neyman-Pearson e i |

K\Ho /\Ho)

P(x|H,) P(x|H;)
Pla|Hy) = ™ PlalHy) ~
P(\_|H1) < P(\_|Ho)k, P(_/|H1) > P(_/|Ho)k,

P(\_|H1) < P(_/|H1)

The new region region has less power.
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2 discriminating variables (‘{

Often one uses the output of a neural network or multivariate algorithm in
place of a true likelihood ratio.

» That's fine, but what do you do with it?
» If you have a fixed cut for all events, this is what you are doing:

fv(q) fs(q)

q
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Experiments vs. Events (‘Tg

q2

|deally, you want to cut on

the likelihood ratio for your Folqu) Forslaia) y
experiment

P s N

» equivalent to a sum of

log likelihood ratios Iz — q1 + 0 m

Easy to see that includes
experiments where one

event had a high LR and the
other one was relatively
small

d1 p)
@ e

X1 L2
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L(z|Hy) _ [TV e Pois(n|s; + b;) [} Sleletbiduley)

Q _ J S'L+b
o o Nc an ; 1
In that case: Liz|Ho) [Li Pois(nilbi) 115" folis)
Nehan  my
S . aj ..
g = an _ _Stot+z Zln (1 4+ ZfS( Z]))
bif b(%‘j)
50 T 1 T T T T T T
- (@) LEP ~ L
0.12 —— Observed my =115 GeV/c’ g
-------- Expected for background E 40
01 B N 3

S
=
&
T ‘ T T T
o
S

Probability density

0.06 - 10
’ 0 B B
0.04 - B ]
: 10 |- -
- - — Observed 5
0.02 - 20 [ T Expected for backgrornd B
| ) - Expected for signal plus background 7
0 | el \-.L-w-'r"\/\ [y _30 - clc b | L".l\ e b .

-15 -10 -5 0 5 10 15 106 108 110 112 114 116 118 120

-2 In(Q) -
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The Test Statistic and its distribution ggir;’cl;f;&gcs(?

To get a feel for the different approaches, consider this schematic diagram

signal + background background-only

Probability Density

O
(on
wn
M
5
o
=a ! B\l

Test Statistic

signal like background like

The “test statistic” is a single number that quantifies the entire experiment, it
could just be number of events observed, but often its more sophisticated, like
a likelihood ratio. What test statistic do we choose?

And how do we build the distribution? Usually “toy Monte Carlo”, but what
about the uncertainties... what do we do with the nuisance parameters?

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 100




Building the distribution of the test statistic (‘Tﬁ

LEP Higgs Working group developed formalism to combine channels and take advantage of
discriminating variables in the likelihood ratio.

L(z|Hy)  TI Pois(nils + by) [T} gt

L(z|Ho) [T, Pois(n|bi) TT}* fo(i))
Nchan M Szf (xw)
1=InQ= _StOHZ Zln( bfb(xw)>

@ _ Hu and Nielsen's CLFFT used Fourier Trans-
f(x)) W@ | @ form and exponentiation trick to transform

0 =

(%) | q(x)=log(1

> — the log-likelihood ratio distribution for one
X)) o J9(X)=1(x) f,s(@ 0 49) . . )
L event to the distribution for an experiment
T fy=explb(y )
b 3exPIbGD + 56, 1) Cousins-Highland was used for systematic er-

ror on background rate.

Getting this to work at the LHC is tricky nu-
merically because we have channels with n;

from 10-10000 events (physics/0312050)

-s ~(s+b)L
CLb
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Building the distribution of the test statistic ::zr,z‘::.:;::;?cf%*

LEP Higgs Working group developed formalism to combine channels and take advantage of
discriminating variables in the likelihood ratio.

L(z|Hy)  TI Pois(nils + by) [T} gt

L(x|Ho) [T, Pois(na|b) [T} fol(2s;)

0 =

Nchan mi

¢=InQ = _3t0t+z Zln (H bfb( ;)

For NV events, use Fourier transform to perform N convolutions

pni(q) = pni(q) @ -+ @ pw,ilg) = F {[7: (Pl,z‘)]N}

-~

N times

To include Poisson fluctuations on N for a given luminosity, one can exponentiate

pi(q) = Z P(N; Lo;) - pn,i(q) = F! {eLJi[ﬂpl,i(q))_l]}

N=0

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 101




With nuisance parameters: Hybrid Solutions e e ]

Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist
treatment of the main measurement, while eliminating nuisance
parameters (deal with systematics) with an intuitive Bayesian technique.

P(non|s) = / db Pois(ney|s + b) (D), p=3" P(n|s)

nN=—Nobs

Tracing back the origin of z(b)
» clearly state prior 77(b); identify control samples (sidebands) and use:

)  Plnaglb)n(d)
(8) = PORS) = 1 Plalbyn()

Note, if we do not want to use the Hybrid Bayesian-Frequentist approach
for the nuisance parameters, then we must consider both non, and nos
when generating our toy Monte Carlo

P(non, Noft|s, b) = Pois(nen|s + b) Pois(neg|7h).
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Coverage as calibration

This prototype problem has been 130
studied extensively. 120
» instead of arguing about the merits of |
various methods, just go and check their ™
rate of Type | error (coverage) %

80

» Results indicated large discrepancy in o
“claimed” coverage and “true” coverage .
for various methods .

» eg. 50 is really ~40 for some points s0!

Introduce idea of coverage as a calibration
of our statistical apparatus

contours for b

true
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=100, critical regions for t = 1

/

No Systematics

N

Ag profile
Ap profile
ad hoc

40* > RO

\
N ,
AN
N
N
~ 7
AT L I

correct coverage

’/l

! 1
/ /

I//
[

| R .
I [ I

J’/ L L
80 100 12

tours of Lg from Eq. 15.

o\

o \". [ I
160 180 200
X

140

Figure 7. A comparison of the various methods critical bou
ary Tcrit(y) (see text). The concentric ovals represent c

Kyle Cranmer (NYU)
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http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer_LHCStatisticalChallenges.ps
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Coverage as calibration S @

Gaussian-mean problem (relative o), ZN=5

This prototype problem has been —
studied extensively. aof

80—

» instead of arguing about the merits of
various methods, just go and check their
rate of Type | error (coverage)

70

» Results indicated large discrepancy in a0f-
“claimed” coverage and “true” coverage a0
for various methods 20

» eg. 50 is really ~40 for some points

O:Illllll|III|III|III|III|III|I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Introduce idea of coverage as a calibration relative background uncertainty

of our statistical apparatus Recent work by Bob Cousins & Jordan
Tucker, [physics/0702156]
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The Profile Likelihood Ratio (‘%

Define (4 to be signal rate in units of SM expectation
Definer to be the shape parameters (nuisance parameters)

In the LEP approach the likelihood ratio is equivalent to:
_ L(data|lp = 1,b,v)
Qrep = L(data|p = 0,b,v)
» but this variable is sensitive to uncertainty on v/

Alternatively, one can define profile likelihood ratio
L(datalu =0, b(u = 0),% (1 =0))
L(data|fi,b, )

» where D is best fit with i fixed to O
»and U is best fit with 1 left floating
» conventional ratio is reciprocal in hypo test <-> limit

)

Au=0)=

Kyle Cranmer (NYU CERN Academic Training, Feb 2-5, 2009 104
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An example ;i:zr:;t:“.:;;';?cs&%

Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0

o
VN

L(datalu = 0,b(u = 0),%(u = 0))

Au=0)=
A 5 A 9
) L(data|pi,b,V) .
L(datalfi, b, 0) L(datalp = 0,b, )
P T T T | T T T | T T T | T T T | T T T | T T T P T T T | T T T | T T T | T T T | T T | T T T
> L i _ > L i N
ol4f ATLAS 1 g% ATLAS :
Wiok VBF H(120)—tt—Ih - Lok VBF H(120)—tt—lh
P \Us=14TeV, 301fb"- P \s=14TeV, 301fb"-
=10 . =10 o
() i i ) i
> i >
L 8 B —_ LLJ 8 _
61 - 6 -
4 = 4 =
2 T 2 !t
O N ..+.-1"'|::| o |...|::'-|"'.+:' :1'- p | .-. | 1] O N Lol L | .....u"' i l AT L |
60 80 100 120 140 160 180 60 80 100 120 140 160 180
M.. (GeV) M., (GeV)

)5




Properties of the Profile Likelihood Ratio S |
After a close look at the profile likelihood ratio

A = 0) = Ldatalu = 0,b(u=0),v(u =0))
L(data|{,b,v) ’

one can see the function is independent of true values of

» though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the
distribution of the profile likelihood ratio has an asymptotic form

—2log A(p = 0) ~ X7
Thus, we can calculate the p-value for the background-only
hypothesis by calculatin
) ) ° —2log A( = 0)

or equivalently:

7 = +/—2log A(u = 0)
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Hypothesis Testing

Now on a real PROOF cluster with 30 machines

» real world example throws millions of toys experiments, does full fit on 50
parameters for each toy.

» also supports producing simple shells scripts for use with GRID or batch queues
Now importance sampling is also implemented,

» following presentation at Banff with particle physics & statistics experts

» allows for 1000x speed increase!

» Still being tested in detail

signalplusbackground

o
III|'|T|_

signalplusbackground

background 1 0

— test statistic data

background

—-— test statistic data

3

2-channel 5-channel

; 10"
107 44
: 3-350 10-2 X . 0
102 g N\ N
BN 10 L RN
VI NN Al
109 fo Nk
g_ §§§§§ RRRRRRRRRNY
H AN q0 R
NN : NN
104 Ry Alhng
= ARRRRRNNY -5 1 §§§\§§§§§\§ N\
H RN 10 E\k\\\k\\\\k
aAlhnneg
10°% HR Al
NN 108 oo
AR RN RARRRRRRRRRRRRRS
N N
10-67 \\}\‘l\ IIIIIIIIIIIIIIIIIIIIIIIII '7 §§§§§$§{§$§S§§§}il L I IIIIIIIIIIIIIIIIIIIIIII 1
0 5 10 15 20 25 30 35 40 1070590 15 20 25 30 35 40 45
Profile Likelihood Ratio Profile Likelihood Ratio
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Experimentalist Justification

So far this looks a bit like magic. How can you claim that you
incorporated your systematic just by fitting the best value of your
uncertain parameters and making a ratio?

It won't unless the the parametrization is sufficiently flexible.

CENTER FOR
COSMOLOGY AND L
PARTICLE PHYSICS

So check by varying the settings of your simulation, and see if the
profile likelihood ratio is still distributed as a chi-square

=) Nominal (Fast Sim)
§10'1§ —— Smeared P7**
° I Q? scale 1
* 02 Q° scale 2
S Q? scale 3
of Q®scale4
e . Leading-order tt
= M e Leading-order WWbb
10% & Full Simulation
oL L dt=10 fb”
Ei 10 P | [ 4 |

0 2 4 6 8 10 12

34 16 18 20

log Likelihood Ratio

Here it is pretty stable, but
it’s not perfect (and this is
a log plot, so it hides some
pretty big discrepancies)

For the distribution to be
independent of the nuisance
parameters your
parametrization must be
sufficiently flexible.
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Ingredients to Frequentist methods e
RooStats supports several statistical methods used in high energy physics
> Choose a test statistic

- simple likelihood ratio (LEP) Qrep = Lsys(pn=1)/Ly(p = 0)
. ratio of profiled likelihoods (Tevatron) Qrev = Lsts(n=1,0)/Ly(n=0,0")
- profile likelihood ratio (LHC) Ap) = Loss (1, 0)/Lgi(f1, D)

- Define your ensemble (sampling strategy)
- toy MC randomizing nuisance parameters according to 7 (V)
- aka Bayes-frequentist hybrid, prior-predictive, Cousins-Highland
- toy MC with nuisance parameters fixed (Neyman Construction)
- assuming asymptotic distribution (Wilks and Wald)
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Lecture 3
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Confidence Intervals (Limits)
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Simple vs. Compound Hypotheses e, @

The Neyman-Pearson lemma is the answer for simple hypothesis
testing

> a hypothesis is simple if it has no free parameters and is
totally fixed f(z|Ho) vs. f(x|Hy)

What about cases when there are free parameters?
- eg. the mass of the Higgs boson f(x|Hg)vs. f(x|H1, mmg)

A test is called similar if it has size a for all values of the
parameters

A test is called Uniformly Most Powerful if it maximizes the
power for all values of the parameter

Uniformly Most Powerful tests don’t exist in general
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Similar Test Examples (‘T’

In some cases Uniformly Most Powerful tests do exist:
» some examples just to clarify the concept:
» Ho is simple: a Gaussian with a fixed 1= Ho,0 = 00
» H1 is composite: a Gaussian with i < [o, 0 = 0g

- consider H. and H..

- same size, different power, but both max power
H. Ho
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Similar Test Examples (‘T’

In some cases Uniformly Most Powerful tests exists:
» some examples just to clarify the concept:
» Ho is simple: a Gaussian with a fixed 1= [0, 0 = 00

» H1 is composite: a Gaussian with ¢4 > po, 0 = 00
- consider H+ and H++

- same size, different power, but both max power
HO H+

N

HO H++
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Similar Test Examples e S |
Slight variation, a Uniformly Most Powerful test doesn'’t exit:

» some examples just to clarify the concept:

» Ho is simple: a Gaussian with a fixed  # = Mo, 0 = 00

» H1 is composite: a Gaussian with ¢ = o, 0 # 09

- Either H+ has good power and H. has bad power

« Or vice versa
H- H-

N
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Composite Hypothesis & the Likelihood Function e

When a hypothesis is composite typically there is a pdf that can
be parametrized f(Z|0)

» for a fixed g it defines a pdf for the random variable x

» for a given measurement of r one can consider f(Z|0) asa
function of g called the Likelihood function

» Note, this is not Bayesian, because it still only uses
P(data | theory) and

- the Likelihood function is not a pdf!
Sometimes @ has many components, generally divided into:
- parameters of interest: eg. masses, cross-sections, etc.

 nuisance parameters: eg. parameters that affect the shape
but are not of direct interest (eg. energy scale)
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A simple example: e S |
A Poisson distribution describes a discrete event count » for a real-
valued mean u. o—H

Pois(n|u) = ”7

The likelihood of u given n is the same

equation evaluated as a function of u e VR
» Now it's a continuous function S @

» But it is not a pdf! 5_ s _
L(u) = Pois(n|p) N E

Common to plot the -2 In L 2E E
» helps avoid thinking of it as a PDF 'E E

» connection to %2 distribution N R Ea

Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)
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[

1 —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

150 175 200

118
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COSMOLOGY AND _—

Confidence Interval e |

[

1 —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

What is a “Confidence Interval?

150 175 200

118
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COSMOLOGY AND _—

Confidence Interval e |

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

- you see them all the time:

150 175 200

118
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COSMOLOGY AND _—

Confidence Interval e |

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

- you see them all the time:

>
Want to say there is a 68% chance & 4, ,]
that the true value of (mw, mt) is in N

this interval

150 175 200

118
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COSMOLOGY AND _—

Confidence Interval e |

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

- you see them all the time:

>
Want to say there is a 68% chance & 4, ,]
that the true value of (mw, mt) is in N

this interval

- but that's P(theory|data)!

150 175 200

118
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COSMOLOGY AND _—

Confidence Interval e |

[

1 —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

What is a “Confidence Interval?

> you see them all the time:

that the true value of (mw, my) is in
this interval

>
Want to say there is a 68% chance & 4, ,]
=

=

- but that's P(theory|data)!

Correct frequentist statement is that 150 175 200

the interval covers the true value
68% of the time

118
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Confidence Interval e |

[

1 —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

What is a “Confidence Interval?

> you see them all the time:

>
Want to say there is a 68% chance & 4, ,]
that the true value of (mw, mt) is in N

this interval

- but that's P(theory|data)!

Correct frequentist statement is that 150 175 200

the interval covers the true value
68% of the time

- remember, the contour is a function of
the data, which is random. So it moves

around from experiment to experiment

118
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Confidence Interval e i |

[

What is a “Confidence Interval? ] —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)
> you see them all the time: 1 68%CL

that the true value of (mw, mt) is in

this interval < _
- but that's P(theory|data)!

>

Want to say there is a 68% chance & 4, ,]
=
=

Correct frequentist statement is that 150 175 200

the interval covers the true value m, [GeV]
68% of the time

- remember, the contour is a function of
the data, which is random. So it moves
around from experiment to experiment
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[

What is a “Confidence Interval? ] —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)
> you see them all the time: 1 68%CL

Want to say there is a 68% chance
that the true value of (mw, mt) is in

this interval < _
- but that's P(theory|data)!

Correct frequentist statement is that 150 175 200

the interval covers the true value m, [GeV]

5 .
68% of the time -Bayesian “credible interval” does

mean probability parameter is
in interval. The procedure is
very intuitive:

) ) /(@) (0)
POeV)= /‘/W(e\x) ) defdgf(x|9)7r(9)

- remember, the contour is a function of
the data, which is random. So it moves
around from experiment to experiment
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Neyman Construction example e
For each value of gconsider f(x|0)

f(z0)

A
y
05 )
0, i
to _
L
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Neyman Construction example (‘T’

Let’s focus on a particular point f(x|0,)
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Neyman Construction example g:me;&-gcf‘{

Let’s focus on a particular point f(z|0,)
» we want a test of size o
» equivalent to a 100(1 — )% confidence interval ong
» so we find an acceptance region with1l — o probability

A

f(x|6o)
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Neyman Construction example e

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
» here’s an example of a lower limit
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Neyman Construction example e

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
»and an example of a central limit

v’oz/2”
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Neyman Construction example Coe e

Let’s focus on a particular point f(z|6,)
» choice of this region is called an ordering rule

» In Feldman-Cousins approach, ordering rule is the
likelihood ratio. Find contour of L.R. that gives size o

A A

f(x|6o)
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Neyman Construction example g:zrgg;x;cs?

Now make acceptance region for every value of ¢

f(x|0)
A
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Neyman Construction example e
This makes a confidence belt for 6

f(z0)

A
y
(92 /“J _
VAl / / _
to _
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Neyman Construction example e
This makes a confidence belt for 6

the regions of data in the confidence belt can be
considered as consistent with that value of 6
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Neyman Construction example e
Now we make a measurement o

the points ¢ where the belt intersects zo a part of the
confidence interval in 4 for this measurement

€g. [9—7 H-I-]

X0
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Neyman Construction example commeroer e Y
For every point @, if it were true, the data would fall in its
acceptance region with probability 1 — «

If the data fell in that region, the pointgd would be in the

interval [§_, 6. ]

So the interval[f_, 61| covers the true value with probability 1 — «

129

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




A Point about the Neyman Construction e T

This is not Bayesian... it doesn’t mean the probability
that the true value ofg is in the interval is1 — a!

Ay A
2ra
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Inverting Hypothesis Tests e S |
There is a precise dictionary that explains how to move from from
hypothesis testing to parameter estimation.

» Type | error: probability interval does not cover true value of the
parameters (eq. it is now a function of the parameters)

» Power is probability interval does not cover a false value of the
parameters (eg. it is now a function of the parameters)

- We don’t know the true value, consider each point 6’0 as if it were true

What about null and alternate hypotheses?
» when testing a pointfyit is considered the null
» all other points considered “alternate”
So what about the Neyman-Pearson lemma & Likelihood ratio?
- as mentioned earlier, there are no guarantees like before
>~ @ common generalization that has good power is:

f(x|Hyp)
f(x|Hy)
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There is a formal 1-to-1 mapping between hypothesis tests and
confidence intervals:

» some refer to the Neyman Construction as an “inverted
hypothesis test”

Table 20.1 Relationships between hypothesis testing and interval estimation

Property of corresponding

Property of test confidence interval
Size = « Confidence coefficient = 1 — «
Power = probability of rejecting a  Probability of not covering a false
false value ot 8 =1 -8 valueof 0 =1 - 8
Most powerful Uniformly most accurate
Unbiased

— { Urbiased ] .

Equal-tails test o) = a2 = %af Central interval
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Discovery in pictures ::zr;;gegﬁzgfcs(%’
Discovery: test b-only (null: s=0 vs. alt: s>0)
- note, one-sided alternative. larger N is “more discrepant”

obs b-only p-value

b-only s+b

—_ P ! aka “CLDb”

Neo) 4 N\,

; :
7)) / i
Z / I
— / !
o K4 I
/ I
/ I
/ I
/ '
/ I
/ I
4 1
e ~~e_ ]

Nevens = more discrepant —»
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Sensitivity for discovery in pictures e e ]
When one specifies 50 one specifies a critical value for the data before
“rejecting the null”.
Leaves open a question of sensitivity, which is quantified as “power” of the test
against a specific alternative

> In Frequentist setup, one chooses a “test statistic” to maximize power

- Neyman-Pearson lemma: likelihood ratio most powerful test for one-sided alternative

Power of test against s

Critical region defined by 50

So+b

P(N | s+b)

N events
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Measurements in pictures SN |
Measurement typically denoted o0 = Xt Y.
» X is usually the “best fit” or maximum likelihood estimate
» £Y usually means [X-Y, X+Y] is a 68% confidence interval
Intervals are formally “inverted hypothesis tests”: (null: s=so vs. alt: s# so)
> One hypothesis test for each value of so against a two-sided alternative

> No “uniformly most powerful test” for a two-sided alternative

obs, (Sbest+b)

2.5%

P(N | s+b)
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Upper limits in pictures ;::mﬁe;&.gcf‘{
What do you think is meant by “95% upper limit” ?

Is it like the picture below?
» ie. increase s, until the probability to have data “more discrepant” is < 5%

obs )
b-only j ok Sost excluded
7~ I3 ” — I ““ll'll.l.," ““‘ull.,,""'
o) aka CLs+b //‘ ~\*
/ \
+ / RN
v 5% : )
_ s
IS
z i
o |
I
I
I
I
I
I
I

O
R
™~

0N
.
K

-+
O
\~~
~~~~
~~--—__

<— more discrepant—— N events
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Upper limits in pictures g:zr;:f;G;H:';?cs(‘Tﬁ
Upper-limits are trying to exclude large signal rates.

» form a 95% “confidence interval” on s of form [0,Sos]
Intervals are formally “inverted hypothesis tests”: (null: s=so vs. alt: s<so)

> One hypothesis test for each value of sp against a one-sided alternative
Power of test depends on specific values of null sp and alternate s’

- but “uniformly most powerful” since it is a one-sided alternative

ok Sg5+Db excluded

5%

P(N | s+b)

[T
—
I iy

<— more discrepant—— N events
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The sensitivity problem (‘Tﬁ
The physicist’'s worry about limits in general is that if there is a strong
downward fluctuation, one might exclude arbitrarily small values of s

» with a procedure that produces proper frequentist 95% confidence
intervals, one should expect to exclude the true value of s 5% of the time,
no matter how small s is!

» This is not a problem with the procedure, but an undesirable consequence of the Type | / Type
|l error-rate setup

P(N | s+b)

e

~-
_——
I ———

N events
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Power in the context of limits ::f,:;;f;“z';;f%’
Remember, when creating confidence intervals the null is s=sg
» and power is defined under a specific alternative (eg. s=0)

Power of test against s=0

b-only Sgs+b

P(N | s+b)

4

-
~—
—
----~__

N events
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CLs e T
To address the sensitivity problem, CLs was introduced
» common (misused) nomenclature: CLs = CLs+/CLyp
» idea: only exclude if CLs<5% (if CLp is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%
- Note: CLs is NOT a probability

“The CLs ... methods combine size and power in a very ad hoc way and are

L unlikely to have satisfactory statistical properties.” -- D. Cox & N. Reid
b

P(N | s+b)

*

[T
—
I iy

N events
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The Power Constraint gzi;«me;&.gcf‘{

An alternative to CLs that protects against setting limits when one has no
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

» A clean separation of size and power. (a new, arbitrary threshold for sensitivity)

» Feldman-Cousins foreshadowed the recommendation sensitivity defined as
50% power against b-only

» David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

Power of test against s=0

b-only Sgs+b

P(N | s+b)

4

—~
—y,
-
~—~--__

N events
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The Power Constraint
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An alternative to CLs that protects against setting limits when one has no
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

» A clean separation of size and power. (a new, arbitrary threshold for sensitivity)

» Feldman-Cousins foreshadowed the recommendation sensitivity defined as

50% power against b-only

» David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

Power of test against s=0 10°

b-only Sgs+b
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The Power Constraint g:f,r;:f:;;;';?cf‘{
An alternative to CLs that protects against setting limits when one has no
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

» A clean separation of size and power. (a new, arbitrary threshold for sensitivity)

» Feldman-Cousins foreshadowed the recommendation sensitivity defined as
950% power against b-only

» David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

“ Both measures are useful quantities that should be reported in order to extract the most science from catalogs’

Power of test against s=0 10°

1 IIIIIIII I IIIIIIII I Illlllt
v

i
i

I T TTTTL

b-only Sgs+b

Taken from
Feldman-Cousins
paper
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“Power-Constrained” CLs+p limits S e |

Even for s=0, there is a 5% chance of a strong downward fluctuation that would
exclude the background-only hypothesis

» we don’t want to exclude signals for which we have no sensitivity

» idea: don’t quote limit below some threshold defined by an N-oc downward
fluctuation of b-only pseudo-experiments (Choose -10 by convention)

11

101

b‘% N b-only expectation
\ -
b 8.._
c
o s — -10 background
H [l
I fluctuation
5 Observed limit is
4T “ ”
S ~ “too lucky” for
:3 3T \ ‘ - comfort, impose
N2y | “power constraint”
o |
1 \
, 5 5 , ; 5 . | -20 band must go
%20 130 140 150 160 170 180 190 20(%““ 1.'0 O by Simp|e g
m, (GeV) logical argument,
so remove it
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“Power-Constrained” CLs+p limits S s |

Even for s=0, there is a 5% chance of a strong downward fluctuation that would
exclude the background-only hypothesis

» we don’t want to exclude signals for which we have no sensitivity

» idea: don’t quote limit below some threshold defined by an N-oc downward
fluctuation of b-only pseudo-experiments (Choose -10 by convention)

11

101

b‘% ol b-only expectation
\ -
b I
c
o 7] - -10 background
S 6 fluctuation
g Observed limit is
g2 ° “too lucky” for
= " " comfort, impose
N7 - ‘ “power constraint”
(@) . 3
. | . S . i -20 band must go
0
120 130 140 150 160 170 180 190 20(?(‘—““ to 0 by simple
m, (GeV) logical argument,
so remove it
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Coverage Comparison with CLs e |
The CLs procedure purposefully over-covers (“conservative™)
» and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until
the constraint is applied, at which point the coverage is 100%

» limits are not ‘aggressive’ in the sense that they under-cover

Coverage probability

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Coverage Comparison with CLs commeroer e Y
The CLs procedure purposefully over-covers (“conservative”)
» and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until
the constraint is applied, at which point the coverage is 100%

» limits are not ‘aggressive’ in the sense that they under-cover

Coverage probability
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Discrete Problems comenror Y

PARTICLE PHYSICS

In discrete problems (eg. number counting analysis with counts
described by a Poisson) one sees:

» discontinuities in the coverage (as a function of parameter)
» over-coverage (in some regions)

» Important for experiments with few events. There is a lot of
discussion about this, not focusing on it here

@Vé’?’)ﬂ CoVERAGE oF ‘[’%FOUENTQT ?0.%
prek Linits pr Suace Poissen Senst

| e

‘ffve VALVE OF /u——->

o (¢ e
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Flip-Flopping
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flip/flop point

one-sided

(0]
1

(o)}
1

-‘F- )

5

W o o o o o o o o o e - -

X
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101

flip/flop point

8t onhe-sided

+ Two-sided
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ok

worst

worst
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Flip-flopping coverage ST e |
The flip-flopping procedure will under-cover

» can be avoided with a ‘unified method’ or if we always provide both p-value for b-only and
1-sided upper-limit

“As 1s emphasized in Neal [4], upper and lower one-sided confidence limits should replace
confidence intervals, and a full plot of the log-likelihood function is better still.” - D. Cox, N. Reid

In practice, we care about coverage on physical parameters (eg. a cross-section, not the
number of events). This leads to a subtle semi-philosophical point

» So the relevant ‘ensemble’ of experiments may be different. With 100x more data one
might quickly leave the regions effected by flip-flopping

10 JIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII_
- I Coverage for 0=0.1 with Flip-Flopping at 5-sigma |
9 =
o - 1F Tommaso Dorigo
- 0.98F
TE 0.96[
= 0.04
%5 = 0.921-
=, B 0.9F
= 0.881
3 . C
- 0.86—
2 ;— 0.84—
1 E = = 082
: | | | | : 0 :1111l111ll1111ll11lllllllllllllllllllllll111}1111
0 CL ettt bbb rrerrbererirglr BO 1 2 3 4 5 6 7 8 9 10
2 -1 0 1 2 3 4 5 6 7 38 True value of p (in ¢ units)

Measured Mean x
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Now let’s study Feldman-Cousins
" looks like this:

Feldman & Cousins “Unified Approach
Neyman Construction ,
- For each u: find region R : = i
with probability 1 — « 6 I~ = .
. . 5 = =
- Confidence Interval includes all : . V== :
consistent with observation at xg 14 — = 7
Ordering Rule specifies what region b = -
1Y 4 :
0 : I -%=_II I I 11 I 111 I 111 I 11 :
0 1 2 3 4 5 6 7
X

(o | 7 > ko

F-C ordering rule is the Likelihood Ratio

151

R, =
The F-C ordering rule follows naturally from Neyman-Pearson Lemma

CERN Academic Training, Statistics, April 2011
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A different way to picture Feldman-Cousins
Most people think of plot on left when thinking of Feldman-Cousins
Wi P(z|p)dx

bars are regions “ordered by” R = P(n|u)/P(n|uest), With /
But this picture doesn’t generalize well to many measured quantities

Instead, just use R as the test statistic... and R is A(p)

IIIIIIIIIIIIIIII%III

~
I

152

6 :— : _— —:
5 L == =
4 = .
S F — - =.
3 = — x
B = - = bso
" = - —=—
2 — 7 ] ——
_ = i ——
1 = = — el .
_ — E - R
O B %I 1 I I L1 I L1 1 I L1 1 I L1 I_ ~ -
O 1 2 3 4 5 6 7
) -log ()
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Generalizing the Likelihood Ratio with Nuisance Parameters coswowosyan S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)
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Generalizing the Likelihood Ratio with Nuisance Parameters coswowosyan S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.

f(z|Ho) ~ f(z]6o)
f(z|Hy) f(@|Opest (2))
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Generalizing the Likelihood Ratio with Nuisance Parameters coswowosyan S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?
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Generalizing the Likelihood Ratio with Nuisance Parameters cosvowcs ane 'S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?

Variable Meaning

r physics parameters
nuisance parameters

»

unconditionally maximize L(:z:|9Ar, és)

sy $b> > D
D
w

»

conditionally maximize L(x|60,, és)

llepuay| wo.4
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Generalizing the Likelihood Ratio with Nuisance Parameters cosvowcs ane 'S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?

Variable Meaning

0, physics parameters

0, nuisance parameters

6,0, unconditionally maximize L(z|6,,6;) -

0, conditionally maximize L(z|6,¢, 6;) g
(Ho : 6, = br0) ®
(Hl 0, # ‘97"0) 8-
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Generalizing the Likelihood Ratio with Nuisance Parameters cosvowcs ane 'S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?

Variable Meaning

r physics parameters
s nuisance parameters

0
0
0,0, unconditionally maximize L(z|6,,6;)
0

o conditionally maximize L(x|60,, és)

(Hy: 0, = 6,) Now consider the Likelihood Ratio
9 HTO) | — L($|0T07 éS)
- L(z|6,,6,)

Intuitively [ is a reasonable test statistic for Hy: it is the maximum likelihood

llepuay| wo.

under Hy as a fraction of its largest possible value, and large values of [ signify

that Hj is reasonably acceptable.

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 153




CENTER FOR

An example ;i:zr:;t:“.:;;';?cs&%

Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0

o
VN

L(datalu = 0,b(u = 0),%(u = 0))

Au=0)=
A 5 A 9
) L(data|pi,b,V) .
L(datalfi, b, 0) L(datalp = 0,b, )
P T T T | T T T | T T T | T T T | T T T | T T T P T T T | T T T | T T T | T T T | T T | T T T
> L i _ > L i N
ol4f ATLAS 1 g% ATLAS :
Wiok VBF H(120)—tt—Ih - Lok VBF H(120)—tt—lh
P \Us=14TeV, 301fb"- P \s=14TeV, 301fb"-
=10 . =10 o
() i i ) i
> i >
L 8 B —_ LLJ 8 _
61 - 6 -
4 = 4 =
2 T 2 !t
O N ..+.-1"'|::| o |...|::'-|"'.+:' :1'- p | .-. | 1] O N Lol L | .....u"' i l AT L |
60 80 100 120 140 160 180 60 80 100 120 140 160 180
M.. (GeV) M., (GeV)
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Feldman-Cousins with and without constraint

CENTER FOR

With a physical constraint (u>0) the confidence band changes, but
conceptually the same. Do not get empty intervals.

-2 In M(pn)

t, =—2InA(p)

Two-sided
unconstrained

22 In Mp)

oy L)

COSMOLOGY AND L
PARTICLE PHYSICS

- s <0
t, = —21In A(M) — L(0,0(0))
' _on LefGm) 5 s
L(i1,0) =
Two-sided

constrained

Kyle Cranmer (NYU)

CERN Academic Training, Statistics, April 2011

155




Modified test statistic for 1-sided upper limits
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For 1-sided upper-limit one construct a test that is more powerful for all
u>0 (but has no power for u=0) simply by discarding “upward fluctuations”

-2 In M(pn)

o He8w) 4
—2In A i < o L(0.0(0))
qu:{ (1) ,LAL_,‘M qu—<_21n% 0<i<u
0 p=ps L0 > .
One-sided

One-sided
unconstrained |

22 In Mp)

constrained |

Kyle Cranmer (NYU)
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A real life example e, @
Each colored curve is represents a single pseudo-experiment
» the test statistic is changing as u, the parameter of interest, changes

C N
[T T

95% threshold on "c'|ILl
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Recall: Hybrid Solutions T
Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist

treatment of the main measurement, while eliminating nuisance
parameters (deal with systematics) with an intuitive Bayesian technique.

P(non|s) = / db Pois(ney|s + b) (D), p=3" P(n|s)

nN=—Nobs

Tracing back the origin of z(b)
» clearly state prior 77(b); identify control samples (sidebands) and use:

)  Plnaglb)n(d)
(8) = PORS) = 1 Plalbyn()

Note, if we do not want to use the Hybrid Bayesian-Frequentist approach
for the nuisance parameters, then we must consider both non, and nos
when generating our toy Monte Carlo

P(non, Noft|s, b) = Pois(nen|s + b) Pois(neg|7h).
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Conditional vs. Unconditional Ensemble e, @8

PARTICLE PHYSICS

In the Conditional ensemble the
global observables / auxiliary
measurements are always the same

Yl[llllllllllllllll

-

Threshold
N
[$7 W

I'IIIIIIII'I'ITIIIITI'I'ITI]I’I'

)

- if there are very few events
expected, the test statistic takes 1.5
on discrete values

E‘llllll I llllll:

b - - - T ' -

-nnuﬂﬂﬂﬂ nnﬂllﬂ””n"” il

Confidence Belt:
Conditional ensemble

—

<
3]

- discreteness leads to over-

coverage In some areas 0520 40 50" 1E0" 100" 1150 140 166" 186 " 200
M
o “RARE RARR EAREH R R T T T =
5 14f Tnnll.n 0 - =
@ + - M~ - _ =
In the Unconditional ensemble the & 12 I el =
global observables / auxiliary 1t 2
measurements fluctuate “smearing o8- [ H 2
out” the value of the test statistic. 06 _ :
_ _ 04f- Confidence Belt: :
- also more fluctuations in results B Unconditional ensemble :
L : LA T
More on conditioning tomorrow! 2 10 20 DT K0 50 HN A 90 1
M
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Conditional vs. Unconditional Ensemble e, @8

PARTICLE PHYSICS

10°

—

Confidence Belt:

T T . T T T ln = I 5o ; E :_, LN B S B L B B B R I: T LI | T '_
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B >3 Py = 4% | S 3 ]

4 — q1 | n=01 m=2.3 1 g : :
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global observables / auxiliary 1t 2
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_ _ 04f- Confidence Belt: :
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More on conditioning tomorrow!
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Coverage S, W
Coverage can be different
at each point in the

parameter space

Example: L e A
G. Punzi - PHYSTAT 05 - Oxford, UK 9 7 //////,////////// 1
5

7 . ///// 7 . 7

15

Poisson(+background), with a systematic uncertainty on etticiency:

x ~ Pois(elL+b) e~ G(g,0)

e is a measurement of the unknown efficiency €, with resolution ¢

€ 1s the efficiency (a “normalization factor”, can be larger than 1).
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Neyman Construction with Nuisance parameters b |
In the strict sense, one wants coverage for u for all values of the nuisance
parameters (here €)

» The “full construction” one n

Challenge for full Neyman Construction is computational time (scan in 50-
D isn’t practical) and to avoid significant over-coverage

» note: projection of nuisance parameters is a union (eg. set theory) not
an integration (Bayesian)

ideal shape of conf. region full construction
A
&
X i
G. Punzi - PHYSTAT 05 - Oxford, UK K. Cranmer - PHYSTAT 03 - SLAC
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Profile Construction

Gary Feldman presented an approximate Neyman profile gonsiraint
Construction, based on the profile likelihood bs)*,_
ratio as an ordering rule, but only performing the "y

CENTER FOR
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Ay

—~_

construction on a subspace (eg. their conditional

maximum likelihood estimate) /’\/

A Subtlety, [Hustrated

b known exactly

the full construction

Gary Feldman 12 Formidab Workshop

EEREERERC0) . .
EEEEEEOO00 The profile construction means that one does
n | HERBROOO0O0 .
EEREOO00000 not need to scan each nuisance parameter (keeps
ERERCOO0O0000 . . ;
b r=1 dimensionality constant)
L » easier computationally
n | HEBRBROOO0O0 . . .
OOooOoo00oo This approximation does not guarantee exact
0000000000
b r<<t coverage, but
—_— » tests indicate impressive performance
5
n » one can expand about the profile construction to
' Improve coverage, with the limiting case being
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Profile Construction: professional literature ggg;;;e;;;gcf‘{

While | have been calling it the “profile construction”, it has been called
a “hybrid resampling” technique by professional statisticians

» Note: ‘hybrid’ here has nothing to do with Bayesian-Frequentist Hybrid, but
a connection to “boot-strapping”

Statistica Sinica 19 (2009), 301-314

ON THE UNIFIED METHOD WITH
NUISANCE PARAMETERS

Bodhisattva Sen, Matthew Walker and Michael Woodroofe

. . . The University of Michigan
Resampling methods for confidence intervals in group

sequential trials 6
By CHIN-SHAN CHUANG
Department of Statistics, University of Wisconsin at Madison, Madison, Wisconsin 53706, 5
US.A.
cchuang@stat.wisc.edu ab
AND TZE LEUNG LAI
Department of Statistics, Stanford University, Stanford, California 94305, U.S.A. ,
lait@leland.stanford.edu 37
Chuang, C. and Lai, T. L. (1998). Resampling methods for confidence intervals in group se-

quential trials. Biometrika 85, 317-332. 2r

Chuang, C. and Lai, T. L. (2000). Hybrid resampling methods for confidence intervals. Statist.

Sinica 10, 1-50
W /‘
0 ) T ) T . ‘
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Previous ways of addressing spurious exclusion
The problem of excluding parameter values to which one has
no sensitivity known for a long time; see e.g.,

Virgil L. Highland, Estimation of Upper Limits from Experimental Data, July 1986,
Revised February 1987, Temple University Report C00-3539-38.

In the 1990s this was re-examined for the LEP Higgs search by
Alex Read and others

T. Junk, Nucl. Instrum. Methods Phys. Res., Sec. A 434, 435 (1999); A.L. Read, J.
Phys. G 28, 2693 (2002).

and led to the “CL_” procedure.
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