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Frequentist Limit Recommendation

1 Introduction

We summarize the recommended procedure needed for computing frequentist exclusion limits
based on profile likelihood ratio tests. We consider testing a hypothesized signal strength µ,
defined such that µ = 0 is the background-only model, and µ = 1 corresponds to the nominal
signal model. The result of the significance test is a p-value, pµ. If one finds pµ < 0.05, then
this value of µ is excluded at 95% confidence level. The upper limit on µ is the highest value
of µ not excluded, in practice found by solving pµ = 0.05 for µ. The recommended limit
procedure is based on toy Monte Carlos which can be supplemented and partially validated
with simple and fast asymptotic formulas. The asymptotic formulas and the definitions are
extracted from Ref. [1], where more details can be found. Even though the recommendation
given here is based on power constrained limits (PCL) we also recommend to derive the CLs
limit [2] which is based on a ratio of p-values, to allow comparisons with the TEVATRON
limits.

2 The Recipe

We hereby give a recipe ’in a nut shell’ to find the observed and expected limits . Note that
to derive the observed limits, one uses the observed data, while to derive expected limits, one
generates simulated data sets via toy Monte Carlos.

1. Construct the likelihood function L(µ,θ) where µ is the signal strength and θ represent
the nuisance parameters. An example of a likelihood function is given in section 5.

2. Construct the test statistic q̃µ based on the λ̃(µ) likelihood ratio:

λ̃(µ) =


L(µ,

ˆ̂
θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0

(1)

Here
ˆ̂
θ(0) and

ˆ̂
θ(µ) refer to the conditional ML estimators of θ given a strength pa-

rameter of 0 or µ, respectively.

The test statistic q̃µ is given by

q̃µ =

{
−2 ln λ̃(µ) µ̂ ≤ µ

0 µ̂ > µ
=


−2 ln L(µ,

ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0 ,

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ ,

0 µ̂ > µ .

(2)

3. Find the observed test statistic for the tested µ, q̃µ,obs.
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4. Generate toy Monte Carlo experiments to construct the pdf of q̃µ under signal (with

strength µ) and background only experiments f(q̃µ|µ, ˆ̂θ(µ, obs)) and f(q̃µ|0, ˆ̂θ(0, obs)).

Here the
ˆ̂
θ(µ, obs) and

ˆ̂
θ(0, obs) are the conditional MLEs based on the observed data.

Also note, that the nuisance parameters are fixed to their conditional MLEs for gener-
ating the toy Monte Carlo, but are allowed to float in fits needed to evaluate the test
statistic. In the asymptotic limit the distribution f(q̃µ|µ,θ) is independent of θ.

Important: Conditional vs. Unconditional Ensembles –
When generating toy Monte Carlo pseudo-experiments, there is a subtle issue associated
with constraint terms on nuisance parameters that come from auxiliary measurements.
These often include constraints on luminosity, identification efficiencies, jet energy scale,
etc. that are not constrained by the main measurement. Consider a constraint on the
luminosity G(L0|L,∆L), where L is the nuisance parameter associated with the true,
unknown luminosity and L0 is an auxiliary measurement that provides the nominal
value of the luminosity. The nuisance parameter L is one of the components of θ,

and it has a particular value
ˆ̂
L(µ, obs) inside

ˆ̂
θ(µ, obs). The issue here is whether or

not one randomizes the auxiliary measurement L0 about
ˆ̂
L(µ, obs) when generating

the pseudo-experiments. In the “unconditional ensemble” L0 is randomized according

to G(L0| ˆ̂L(µ, obs),∆L). In the “conditional ensemble”, one would keep a fixed value
of the auxiliary measurement L0 for each pseudo-experiment (although the nuisance
parameter L would still float in each fit). Both are valid frequentist constructions,
but the asymptotic results correspond to the unconditional ensemble, so that is the
recommendation. There is an explicit example in Sect. 5.

5. From the constructed distribution of q̃µ for the signal+background, f(q̃µ|µ, ˆ̂θ(µ, obs)),
find the p-value of the observation

pµ =

∫ ∞
q̃µ,obs

f(q̃µ|µ, ˆ̂θ(µ, obs)) dq̃µ (3)

6. Find (by iteration or any other way) µup which satisfies pµup = 5%.

7. To find the median sensitivity, generate background-only toy MC experiments, for each
one of them, find µup (steps 5 and 6). Draw the µup distribution and find its median.

8. To find the ±1 and ±2 σ bands (green and yellow), use the above generated µup pdf
and derive the 68% and 95% bands.

9. The 2σ band allows to exclude signals with very low cross sections, such that the
experiment is not sensitive to. To protect against this one could use the CLs technique
(see next item) or construct the power constrained limit (PCL). We recommend to use
a power of 16% and not allow the observed limit to go below the −1σ expected limit.
This means practically that if the observed limit goes below the −1σ band, the quoted
limit is µup − 1σ.

In terms of the green/and/yellow plot the outer band would stretch down to zero, and
it should be dropped, colored white. The observed data should not be hidden - if we
have a downward fluctuation, show it. But when it passes the power constraint, mark
the power constraint solid and the downward fluctuation dotted so that the result we
are using is clear.
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10. Calculate the CLs upper limit. To do this calculate 1− pb where

pb = 1−
∫ ∞
q̃µ,obs

f(q̃µ|0, ˆ̂θ(0, obs))dq̃µ (4)

Define p′µ as a ratio of p-values,

p′µ =
pµ

1− pb
(5)

Follow steps 6-9 by solving for p′µup = 5% (replacing pµ by p′µ).

11. Use the approximate formulas in section 3 and/or section 4 and compare with your
derivations. If you find big differences, make sure you understand them.
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Figure 1: A flow chart for the recommendations..

3 Asymptotic Formulas for qµ

There are two possible definitions here for the Profile Likelihood. qµ and q̃µ. They both
allow µ̂ < 0 but q̃µ treats it in a special manner (see Equation 2). Both are asymptotically
equivalent as shown in [1]. The simplest way is to define the profile likelihood is by

qµ = −2 ln
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
; µ̂ < µ

qµ = 0; µ̂ > µ (6)

It is recommended to verify that qµ is distributed like f(qµ|µ) ∼ χ2
1 (Wilks theorem), this

will usually be the case, in particular when combining channels. The approximation works
best when Wilks theorem is satisfied.
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Following Wilks theorem, the upper limit on the signal strength µ95 is given by solving for
qµ95 = 1.642.

pµ95 = 1− Φ(
√
qµ) = 1− Φ(1.64) = 0.05 (7)

If µ95 < 1 the point is excluded (the 95% Confidence Interval does not contain µ = 1).

3.1 Expected Limit and Error Bands ”(CLs+b)”

To find the expected limit, one should plug in the Asimov data which is the expected back-
ground (with no fluctuations). The signal strength is set to zero. One then gets qµ,A and the
corresponding µmedup is given by solving qµmedup ,A = 1.642 The error bands are given by

µup+N = σ(Φ−1(1− α) +N) (8)

with

σ2 =
µ2

qµ,A
(9)

α = 0.05, µ can be taken as µmedup in the calculation of σ.

3.2 Expected Limit and Error Bands ”(CLs)”

To avoid setting limits when the experiment is not sensitive to the signal, one might use the
modified p-value defined above, ”p′s”

p′s =
ps

1− pb
(10)

We find

p′µ =
1− Φ(

√
qµ)

Φ(
√
qµ,A −

√
qµ)

(11)

The median and expected error bands will therefore be

µup+N = σ(Φ−1(1− αΦ(N)) +N) (12)

with

σ2 =
µ2

qµ,A
(13)

α = 0.05,µ can be taken as µmedup in the calculation of σ..

Note that for N = 0 we find the median limit

µmedup = σΦ−1(1− 0.5α) (14)

The expected µ and the expectation for error band N is shown in Figure 1. one can clearly
see the condensation when N → −∞
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Figure 2: µup+Nσ as a function of N (in units of σ). Red is based on ps blue is based on p′s
(CLs).
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4 Asymptotic Formulas for q̃µ

Large values of q̃µ (Equation 2) corresponding to increasing disagreement between the data
and the hypothesized µ. For a sufficiently large data sample, the pdf f(q̃µ|µ) is found to
approach

f(q̃µ|µ) =
1

2
δ(q̃µ) +


1
2

1√
2π

1√
q̃µ
e−q̃µ/2 0 < q̃µ ≤ µ2/σ2 ,

1√
2π(2µ/σ)

exp
[
−1

2
(q̃µ+µ2/σ2)2

(2µ/σ)2

]
q̃µ > µ2/σ2 .

(15)

This is the asymptotic formula that should be used for q̃µ (and not a chi squared).

Equation (15) requires the standard deviation σ of µ̂, under assumption of a signal strength
µ. This can be found by the Asimov data set

σ ∼ µ√
q̃µ,A

(16)

or more accurately with the covariance matrix. To this end we estimate the covariance
matrix from the matrix of second derivatives of the log-likelihood function, evaluated with
the Asimov data set that corresponds to the strength parameter µ that is being tested.

We denote the likelihood evaluated with the Asimov data values as LA(µ).

For the inverse covariance matrix one finds (see [1] Eq. (28)),

V −1jk = −∂
2 lnLA

∂θj∂θk
(17)

In Eq. (17) the parameter µ is regarded as one of the θi (say, θ0). To find σ, evaluate the
derivatives of lnLA numerically, use this to find the inverse covariance matrix, and then invert
and extract the variance of µ̂. One can see directly from Eq. (17) that this variance depends
on the parameter values assumed for the Asimov data set, in particular on the assumed
strength parameter µ.

The cumulative distribution for q̃µ corresponding to the pdf (15) is

F (q̃µ|µ) =


Φ
(√

q̃µ

)
0 < q̃µ ≤ µ2/σ2 ,

Φ
(
q̃µ+µ2/σ2

2µ/σ

)
q̃µ > µ2/σ2 .

(18)

The p-value of the hypothesized µ is as before given by one minus the cumulative distribution,

pµ = 1− F (q̃µ|µ) , (19)

and therefore the corresponding significance is

Zµ =


√
q̃µ 0 < q̃µ ≤ µ2/σ2 ,

q̃µ+µ2/σ2

2µ/σ q̃µ > µ2/σ2 .

(20)

The upper limit on µ at confidence level 1− α is found by setting pµ = α and solving for µ,
which gives
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µup = µ̂+ σΦ−1(1− α) . (21)

Note that because σ depends in general on µ, Eq. (21) must be solved numerically.

The error bands are given by Equation 8.

5 An Example of a Likelihood Function

We treat two kinds of systematic errors. The common ones, which we assume (for simplicity)
are fully correlated and the channel specific ones. The common correlated systematics include
the Luminosity, the Jet Energy Scale (JES) and Acceptance. We perform a Profile Likelihood
statistical analysis . Some measurements are data driven with a scale factor τ . We assume
all systematics are Gaussian (as an example).

The likelihood (for one bin, or for the global counting analysis) is given by

L(µ, β0j(j∈SB); δεs , δβj , δi) = Pois(n|µT ) N(mδs |δεs)
∏
j∈SB

Pois(nj |β0j )
∏
j

N(mδβj
|δβj )

∏
i

N(mδi |δi)

(22)
where j is an index over background processes, j ∈ SB are background channels which are
measured via Side Bands (or control regions), i is an index over systematic effects, µT is the
total number of expected events given by

µT =
∑

l µL σl(1 + εsl δεs)
∏
i(1 + εsliδi) (23)

+
∑

j Lβ
0
j (1 + εbjδβj )

∏
i(1 + εbjiδi),

• n is the number of events in the signal region,

• mδs ,mδβj
,mδi represent auxiliary measurements of the corresponding δ systematic un-

certainties. When generating toy Monte Carlo experiments, the mδ should fluctuate

around the value of δ in
ˆ̂
θ(µ, obs) or

ˆ̂
θ(0, obs). If they are not randomized, this corre-

sponds to a conditional ensemble in which the distribution of the test statistic departs
significantly from the asymptotic distributions. θ is the vector of nuisance parameters
given below.

• nj(j∈SB) is the number of events measured in the control sample which is scaled by an
extrapolation coefficient τ to estimate the number of events in the signal region. Since
τ itself has uncertainty, we standardize it by writing τj,j∈SB = 1 + εβjδβj ,

• L is the nominal integrated luminosity,

• µ is the one parameter of interest, the signal strength,

• σl is the effective cross section (in pb) for signal events in channel l,

• εsl is relative uncertainty on the efficiency of the channel l ,

• β0j is the nominal effective cross section (in pb) for background j,

• εbj is the relative uncertainty on the effective cross section for background j,

• εsli is the relative change in the effective cross-section due to the ith systematic effect on
signal channel l, and
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• εbji is the relative change in the effective cross-section due to the ith systematic effect
on channel j.

The nuisance parameters are θ = (β0j(j∈SB); δεs , δβj , δi) and the δ are constrained by the

normal distribution N(mδ|δ) = G(mδ|δ, 1).
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