

SLAC Jet/MET Retreat Hadronic Final State Reconstruction in ATLAS at LHC

Physics Requirements for Jet and Missing Et Measurements

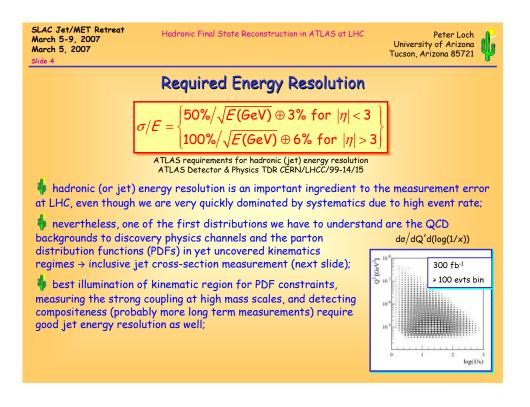
🆸 hadronic final state reconstruction requirements are stringent and often exceed what has been achieved in running experiments at Tevatron and HERA, for example;

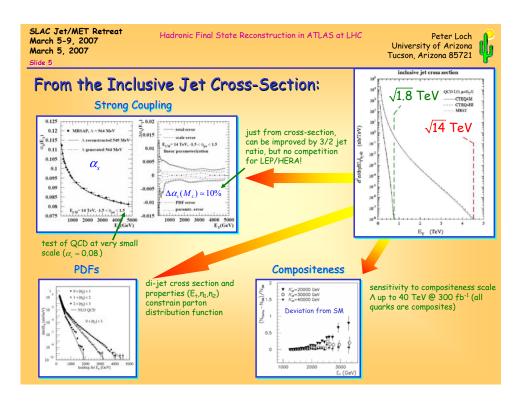
top reconstruction in *ttbar* events requires jet energy scale error of <1% absolute (immensely challenging!);

🐓 jets need to be tagged to highest possible rapidities (~5) to enhance Higgs signal-tobackground ratio in WW scattering production (order 10% of all Higgs over expected mass range);

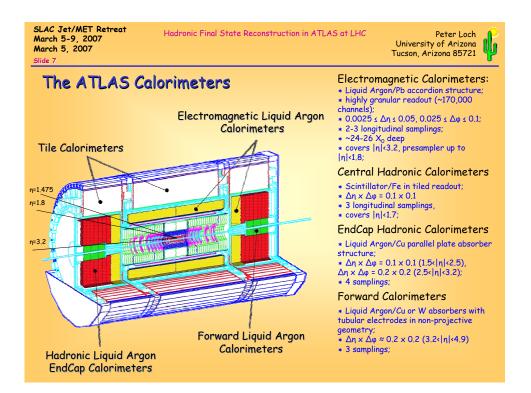
good missing Et resolution also requires largest possible rapidity coverage;

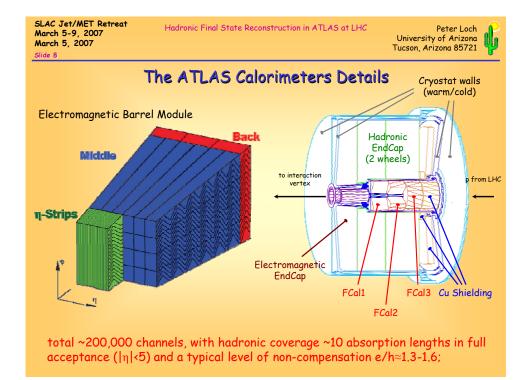
🆸 SUSY final state reconstruction also requires

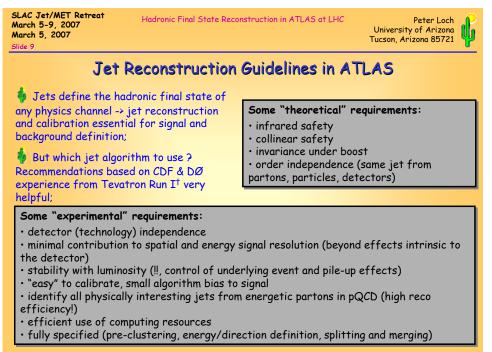

excellent hadronic calibration at a level of 1%;


March 5-9, 2007

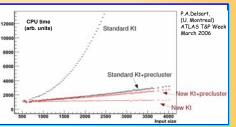
March 5, 2007 Slide


Interesting:

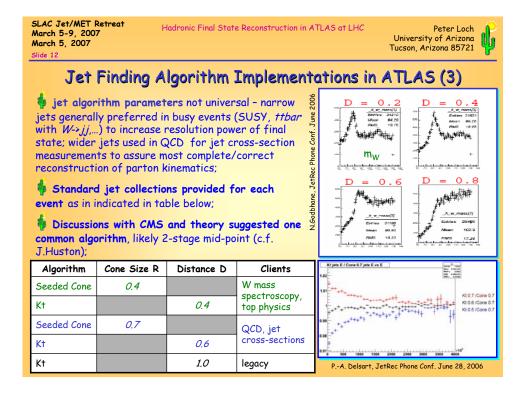

 increasing particle detection from |n|<3 to |n|<5 improves mass resolution for a light MSSM Higgs $(M_A = 150 \text{ GeV})$ from 8 to 2 GeV; • yet, quality requirements to forward particle measurements are relaxed \rightarrow most missing E_t is produced in the central region!

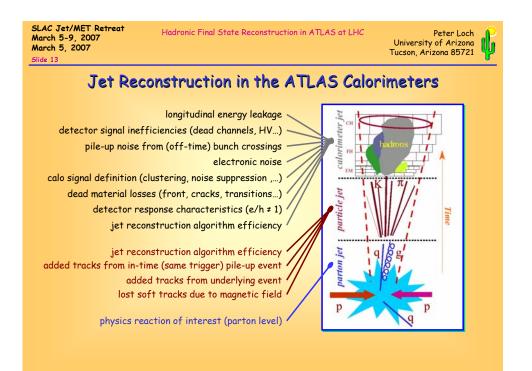


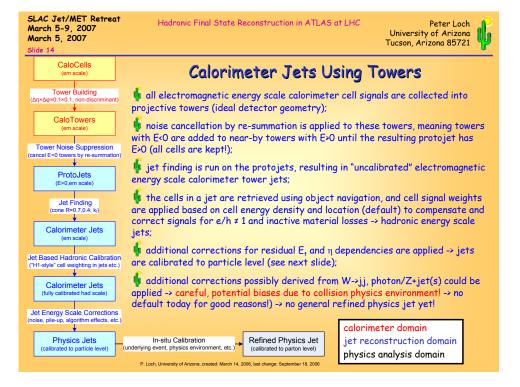
SLAC Jet/MET Retreat March 5-9, 2007 March 5, 2007 Slide 6	ction	in ATLAS	ι	P Jniversity o Jcson, Arizo	
Other Jet Features at LHC:	Process		σ (nb)	Evts/year (Λ=10 fb ⁻¹)	
<u>.</u>		W	$\rightarrow ev$	15	~10 ⁸
statistical errors are small → systematic uncertainties from jet algorithm, jet energy scale (mostly linearity of calorimeter response), and control of contributions from underlying event and pile-up dominate the total hadronic energy scale error rather guickly!		$Z \to e^* e^-$		1.5	~10 ⁷
			††	0.8	~107
			p _t > 200 GeV	100	~10 ⁹
		iclusive Jet	pt > 1 TeV	0.1	~106
		duction	pt > 2 TeV	10-4	~10 ³
			pt > 3 TeV	1.3×10 ⁻⁶	~10
several calibration channels for jets $(W \rightarrow jj)$, $Z/\gamma + jet(s))$ available with high statistics $\rightarrow \sim 1\%$ systematic error on energy scale possible; calibration measurements can be done in initial low luminosity running to minimize effects from pile-up events; Dominant direct photon production gives access to gluon structure at high x		E	ening W-mass] ///////////////////////////////////	30 pb-1 ~	4 days @ 10 ³³
(~0.0001-0.2)		0	20 40 60	80 100	120 140 GeV

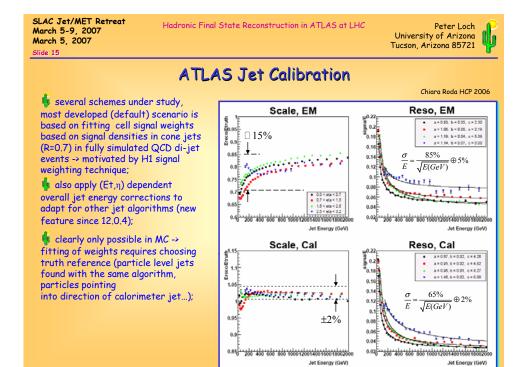

[†]G. Blazey et al., "Run II Jet Physics", hep-ex/0005012v2, 2000

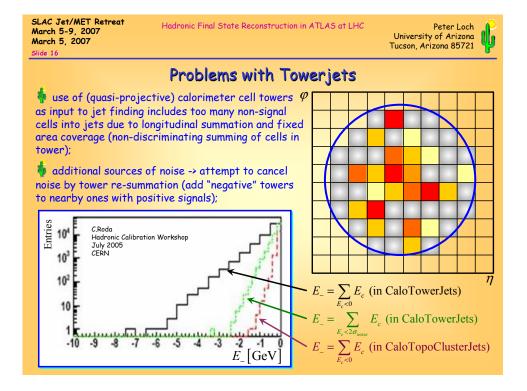
finders, but can be very slow in standard implementation (CPU time ~n³) -> use preclustering to reduce number of kinematic objects on input or new **FastKt** implementation; M.Cacciari/G.P.Salam hep-ph/0512210;

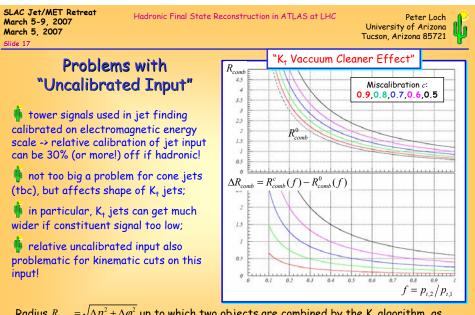

Common implementation details for all algorithms: default 4-momentum recombination in jet clustering procedures, user-

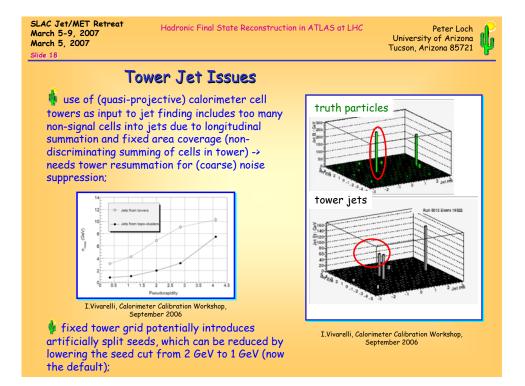


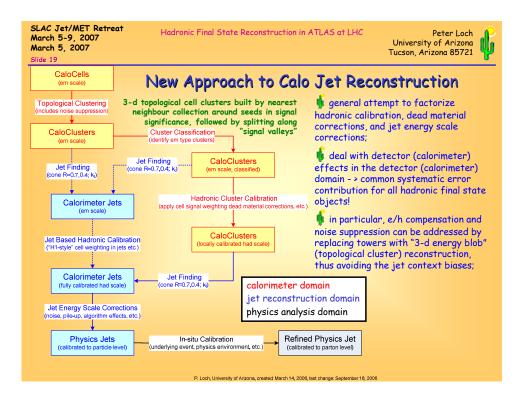

defined pre- and final selections, signal treatment/pre-processing (e.g. calorimeter signals, see later), universal jet finder implementations,...

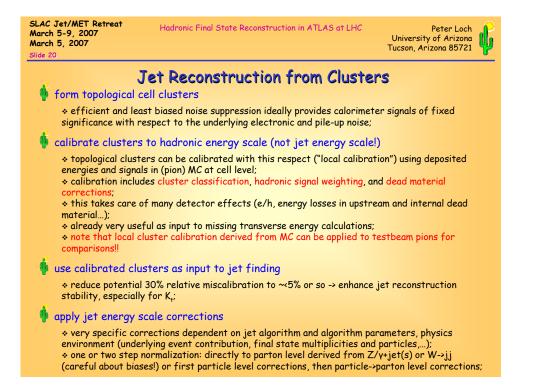

software design (jet event data model, jet algorithm implementations) provides universal jet finders (order independent?): can take tracks, calorimeter cells, -towers, clusters, energy flow objects, and MC truth objects on input without code changes or adaptations;

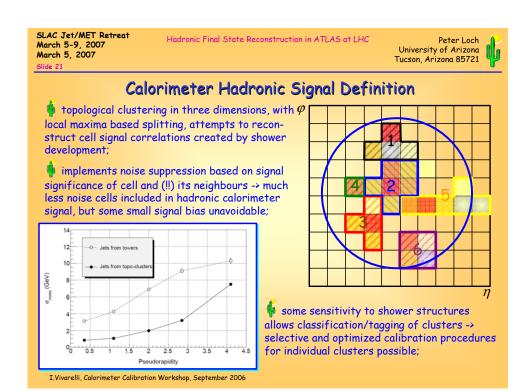

new algorithms under consideration: "Aachen"-style angular distance algorithm originally from M.Wobisch, ATLAS implementation by P.-A. Delsart (Montreal) Optimal Jet Finder - implementation by D.Lelas et al. (Victoria); and (soon) two-pass mid-point, initiated by J.Huston (Michigan), implementation by S. Thompson et al. (Glasgow);

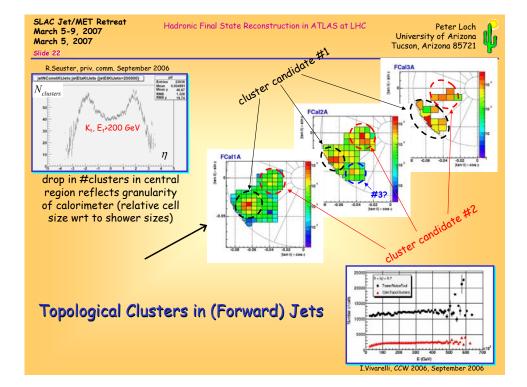


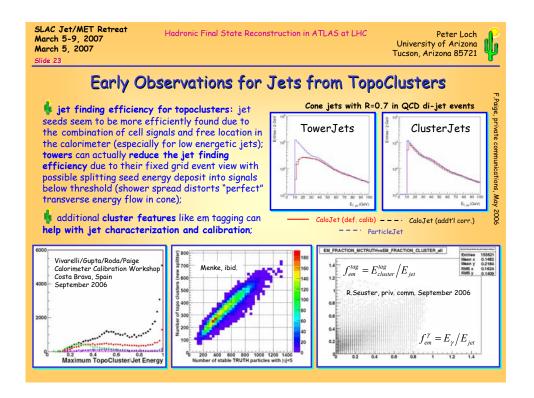


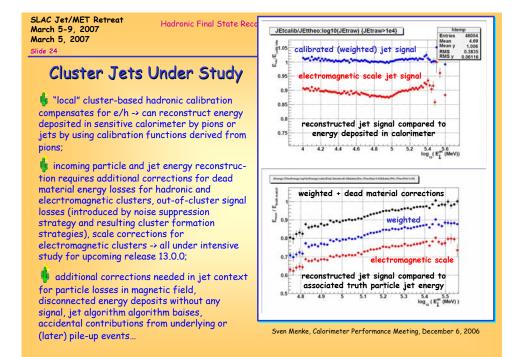


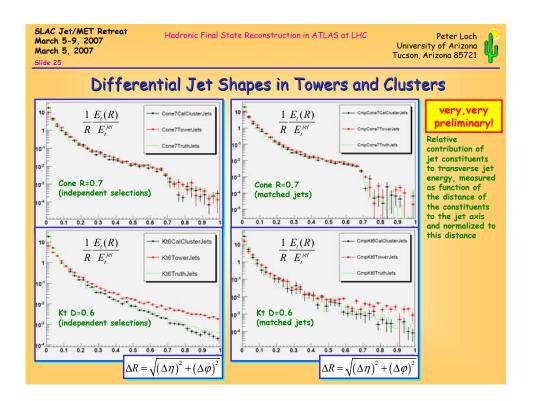


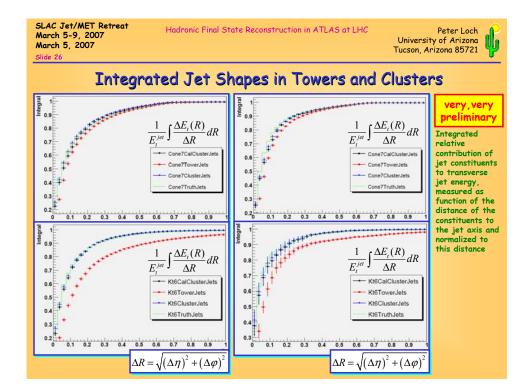


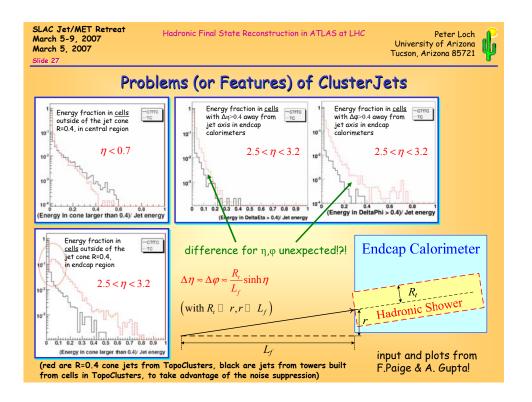

Radius $R_{comb} = \sqrt{\Delta \eta^2 + \Delta \varphi^2}$ up to which two objects are combined by the K_t algorithm, as function of the p_t ratio of the constituents, with $p_{t,1} > p_{t,2}$ (objects are always combined for $p_{t,1} < p_{t,2}$ if $R_{comb} < D$)

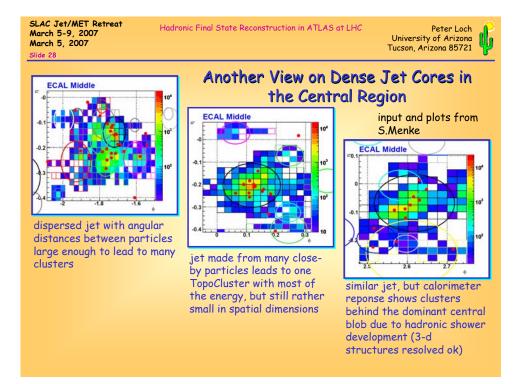


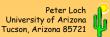




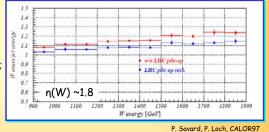






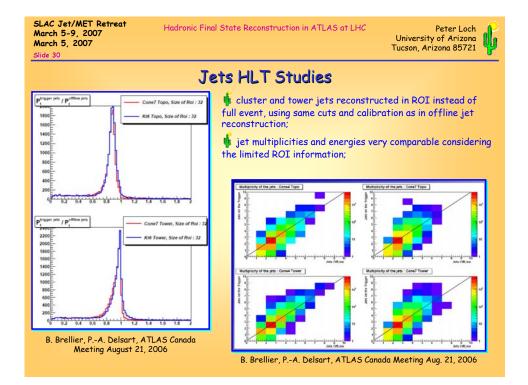


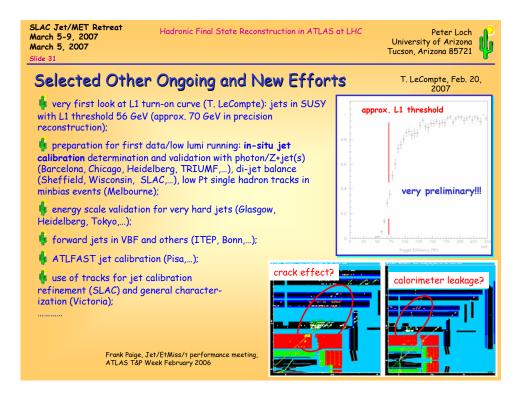
SLAC Jet/MET Retreat March 5-9, 2007 March 5, 2007 Slide 29

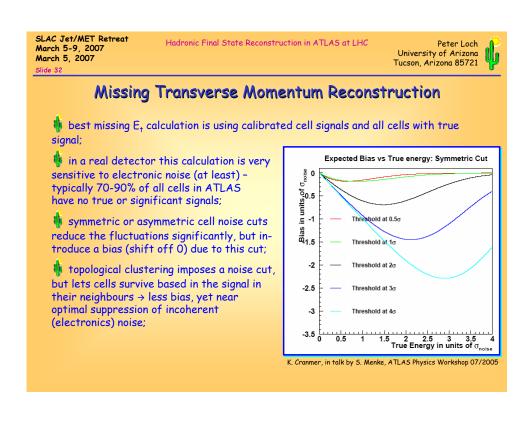

Hadronic Final State Reconstruction in ATLAS at LHC

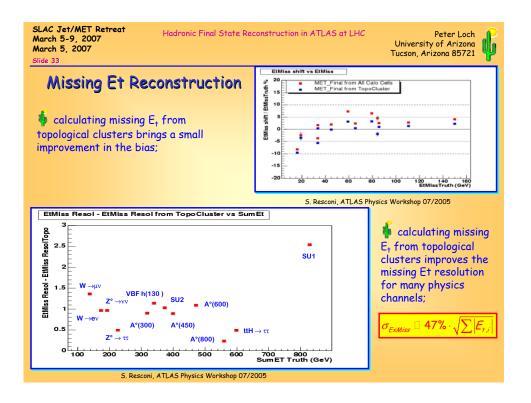
Final Jet Calibration

using fully calibrated and corrected clusters in jet finding reduces the problem of jet calibration to the understanding of the contributions from the jet algorithm inefficiencies, the underlying events, and the overall event topology possibly including pile-up;

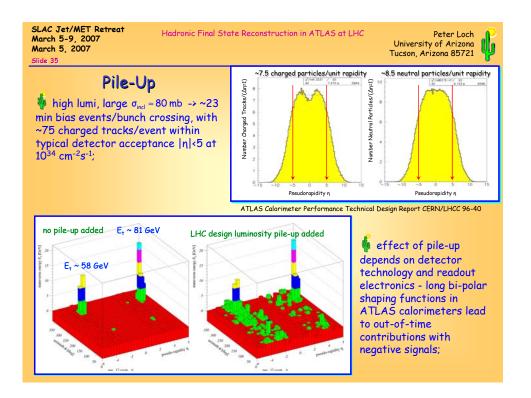

₩ → jj can help to estimate these final corrections, but are mostly found in a very specific $\frac{1}{12}$ topology (bias ?), and with special jets (no color link to rest of event); also, there are kinematical limits on the effectiveness of this calibration signal - order(3%) more likely than 1% today;

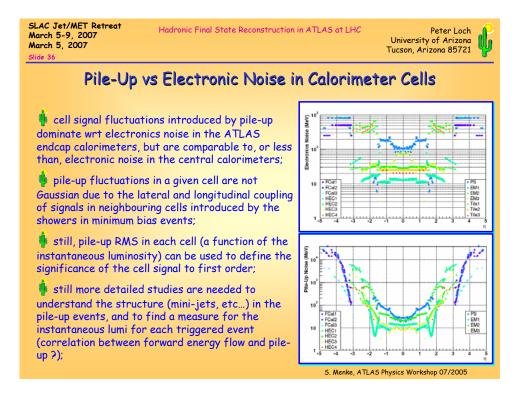


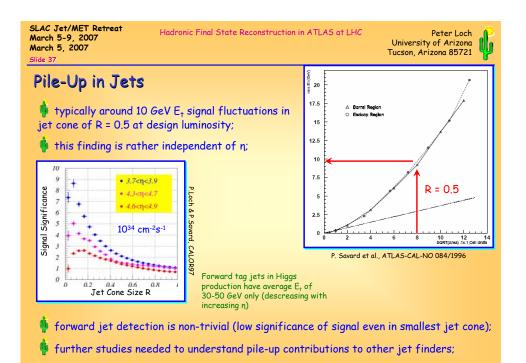

• other channels like Z+jet(s)


or photon+jet(s) can help, but good understanding of initial and final state radiation needed (modeling); also, kineamtical limit for 1% is about 400 GeV or so;

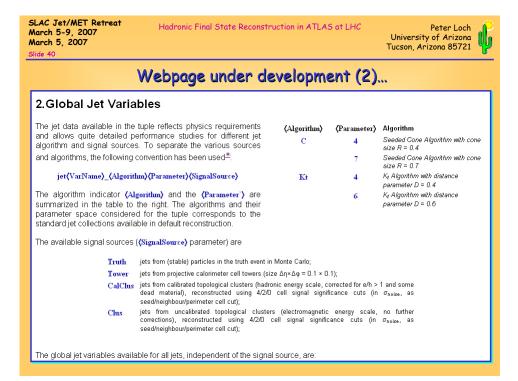
very hard (~TeV) jet energy scale validation under study – likely with QCD di-jets and bootstrapping from kinematic regime of photon/Z+jet(s); some worry about precision and bias;







SLAC Jet/MET Retreat March 5-9, 2007 March 5, 2007 Slide 34	ic Final State Reconstruction in ATLA	5 at LHC Peter Loch University of Arizona Tucson, Arizona 85721
Defa	ult Missing Et Calcu MET_RefFinal =	lation
MET_Calib	+ MET_Cryo	+ MET_Muon
$\begin{array}{c} \textbf{Calorimeter Cells} \\ E_{cell} > 2\sigma_{mase} \\ \text{calibrated with weights from jet calibration} \\ "H1" style jet calibration \end{array}$	$\begin{array}{c} \textbf{Cryostat Losses EMB/Tile} \\ \text{correction factors from reconstructed seeded cone} \\ \text{tower jets with } \Delta R = \Delta \eta \times \Delta \phi \leq 0.7 \\ \text{based on cone tower jets} \end{array}$	MuonBoy $ \eta \le 2.7$ best match/good quality required p_t from external spectrometer
Calorimeter Cells in TopoClusters (4a/2x0x) calibrated with weights from jet calibration "H1" style jet calibration	$\label{eq:cryostat} \begin{array}{c} \mbox{Cryostat Losses EMB/Tile} \\ \mbox{correction factors from reconstructed seeded cone} \\ \mbox{topocluster jets with } \Delta R = \Delta \mu^{x} \Delta \phi \leq 0.7 \\ \mbox{based on cone cluster jets} \end{array}$	MOORE $ t \le 2.7$ best match/good quality required p_t from external spectrometer
Calorimeter Cells in TopoClusters (4c/2cr0cr) cluster based calibration/dead material correction local hadronic calibration	Cryostat Losses EMB/Tile correction factors from reconstructed k topocluster jets with D=0.6 based on k cluster jets	Exclusively uses officially released calibrations from all sub-systems!
Calorimeter Cells in e+, γ, τ, jets, unused TopoClusters, outside weights from physics object calibration refined calibration	degree of freedom in physics of	ually available in AOD/ESD -> some unalysis; inest detector granularity in AOD
Calorimeter Cell Clusters TopoClusters (4c2ze0c) cluster based calibration/dead material correction local hadronic calibration	(e.g. calorimeter cells); highlighted combination rec improvements in refined calibr	commended even though still some ation expected (incomplete);



Webpage under development (1) TUPLE VARIABLES: JET, CLUSTERS, AND MISSING ET of Content Auction and Disclaimers al Jet Variables duction and Disclaimers duction and Disclaimers contains some documentation for the root-tuple variables available for the SLAC Jet/MissingEt retreat March 2007. The				
ERS, AND WISSING E_T				
Attention!				
ard. We expect most of them to become the				
pear, too!				
ble for the SLAC Jet/MissingEt retreat March 2007. The used Athena release 11.0.42 and some 11.0.5 [‡] . The al and jet algorithms. Generally, there are variables for onl), sliding window and topological cluster variables for ical clusters for jets, missing E_t blocks from various es of only one tree in root. The the Athena Aware Ntuple oduction code is based on release 12.0.3, with several e main development branch (toward 13.0.0). The main ocal hadronic calibration package lacking the recent ut-of-cluster corrections.				
ii e				

	Mor	e details	s for Jets	2		
		Seeded Cone R=0	.7 Jet Finder			
Variable Name	Туре	Truth	Tower	TopoCluster	Calibrated TopoCluster	
#jets	Uint t	jetNum C7Truth;	jetNum C7Tower;	jetNum C7Clus;	jetNum C7CalClus;	
pseudorapidity	vector <double>*</double>	jetEta C7Truth;	jetEta C7Tower;	jetEta C7Clus;	jetEta C7CalClus;	
azimuth	vector <double>*</double>	jetPhi_C7Truth;	jetPhi_C7Tower;	jetPhi_C7Clus;	jetPhi_C7CalClus;	
energy	vector <double>*</double>	jetE_C7Truth;	jetE_C7Tower:	jetE_C7Clus;	jetE_C7CalClus:	
transverse energy	vector <double>*</double>	jetEt_C7Truth;	JetEt_C7Tower:	jetEt_C7Clus;	jetEt_C7CalClus:	
mass	vector <double>*</double>	jetM_C7Truth;	jetM C7Tower;	jetM C7Clus;	jetM_C7CalClus;	
Px	vector <double>*</double>	JetPx_C7Truth;	jetPx_C7Tower;	jetPx_C7Clus;	jetPx_C7CalClus;	
Py	vector <double>*</double>	jetPy_C7Truth;	jetPy_C7Tower;	jetPy_C7Clus;	jetPy_C7CalClus;	
Pz	vector <double>*</double>	jetPz_C7Truth;	jetPz_C7Tower:	jetPz_C7Clus;	jetPz_C7CalClus;	
number of constituents	vector <long>*</long>	jetSize_C7Truth;	jetSize_C7Tower;	jetSize_C7Clus;	jetSize_C7CalClus;	
electromagnetic energy fraction	vector <double>*</double>	jetEmf_C7Truth;	jetEmf_C7Tower;	jetEmf_C7Clus;	jetEmf_C7CalClus;	
constituent final energy	vector <vector<double>>*</vector<double>	etCEf_C7Truth;	jetCEf_C7Tower;	jetCEf_C7Clus;	jetCEf_C7CalClus;	
constituent final Px	vector <vector<double>>*</vector<double>	jetCEPxf_C7Truth;	jetCEPxf_C7Tower;	jetCEPxf_C7Clus;	jetCEPxf_C7CalClus;	
constituent final Py	vector <vector<double>>*</vector<double>	jetCEPyf_C7Truth;	letCEPyf_C7Tower;	jetCEPyf_C7Clus;	jetCEPyf_C7CalClus;	
constituent final Pz	vector <vector<double>>*</vector<double>	jetCEPzf_C7Truth;	jetCEPzf_C7Tower;	jetCEPzf_C7Clus;	jetCEPzf_C7CalClus;	
constituent final pseudorapidity	vector <vector<double>>"</vector<double>	jetCEtaf_C7Truth;	jetCEtaf_C7Tower;	jetCEtaf_C7Clus;	jetCEtaf_C7CalClus;	
constituent final azimuth	vector <vector<double>>*</vector<double>	jetCPhif_C7Truth;	jetCPhil_C7Tower;	jetCPhif_C7Clus;	jetCPhil_C7CalClus;	
constituent final kinematic weight	vector <vector<double>>*</vector<double>	jetCWf_C7Truth;	jetCWf_C7Tower;	jetCWf_C7Clus;	jetCWf_C7CalClus;	
constituent reference	vector <vector<double>>*</vector<double>	jetCRef_C7Truth;	jetCRef_C7Tower;	jetCRef_C7Clus;	jetCRef_C7CalClus;	
constituent raw energy	vector <vector<double>>*</vector<double>			C7ClusjetCluEi;	C7CalClusjetCluEI;	
constituent cluster tag	vector <vector<double>>*</vector<double>			C7ClusjetCluTag;	C7CalClusjetCluTag:	
constituent cluster center X	vector <vector<double>>*</vector<double>	-		C7ClusjetCluXi;	C7CalClusjetCluXi;	
constituent cluster center Y constituent cluster center Z	vector <vector<double>>* vector<vector<double>>*</vector<double></vector<double>			C7ClusjetCluYi; C7ClusjetCluZi;	C7CalClusjetCluYi; C7CalClusjetCluZi;	
	vector <vector<double>>*</vector<double>			C7ClusjetCluFemi;	C7CalClusjetCluZi; C7CalClusjetCluFemi;	
constituent electromagnetic fraction raw constituent electromagnetic fraction final	vector <vector<double>>*</vector<double>			C7ClusjetCluFemf;	C7CalClusjetCluFemf;	

	Uncalibrated TopoClusters	Calibrated TopoClusters	1		Τ
More	Variable Name	Variable Name	Туре	Comment	1
11101 0	ci ecluster rawtopo:	cl ecluster caltopo:	Float t	total cluster energy sum in event	
مانمدمام	cl_nc_rawtopo;	cl_nc_caltopo;	Int_t	number of topo-clusters in tuple	12
details	cl nctotal rawtopo;	cl nctotal caltopo;	Int t	total number of topo-clusters	1 4
	ci_e_rawtopo;	cl_e_caltopo;	vector <float>*</float>	cluster energy	
for	ci_et_rawtopo;	cl_et_caltopo;	vector <float>*</float>	tranverse energy	기 진 /
TOP	ci eta rawtopo;	c/ eta caltopo;	vector <float>*</float>	cluster pseudorapidity	1 2 2
	ci phi rawtopo;	cl phi caltopo;	vector <float>*</float>	cluster azimuth	Kinemetic
1. manage	cl_ntotcells_rawtopo;	cl_ntotcells_caltopo;	vector <long>*</long>	# cells in cluster	184
Clusters	cl_reco_stat_rawtopo;	cl_reco_stat_caltopo;	vector <long>*</long>	cluster reconstruction status	
	ci_eemb0_rawtopo;	cl_eemb0_caltopo;	vector <float>*</float>	energy in barrel pre-sampler	
	ci_eemb1_rawtopo;	cl_eemb1_caltopo;	vector <float>*</float>	energy in barrel sampling 1	1
	cl_eemb2_rawtopo;	cl_eemb2_caltopo;	vector <float>*</float>	energy in barrel sampling 2	1
	cl_eemb3_rawtopo;	cl_eemb3_caltopo;	vector <float>*</float>	energy in barrel sampling 3	
	cl_eeme0_rawtopo;	cl_eeme0_caltopo;	vector <float>*</float>	energy in endcap pre-sampler	
	cl_eeme1_rawtopo;	cl_eeme1_caltopo;	vector <float>*</float>	energy in endcap sampling 1	
	ci_eeme2_rawtopo;	cl_eeme2_caltopo;	vector <float>*</float>	energy in endcap sampling 2	
	cl_eeme3_rawtopo;	cl_eeme3_caltopo;	vector <float>*</float>	energy in endcap sampling 3	1
	cl_efcal0_rawtopo;	cl_efcal0_caltopo;	vector <float>*</float>	energy in electromagnetic forward calorimeter	
	cf_efcaf1_rawtopo;	cl_efcal1_caltopo;	vector <float>*</float>	energy in hadronic forward calorimeter sampling 1	
	cl_efcal2_rawtopo;	cl_efcal2_caltopo;	vector <float>*</float>	energy in hadronic forward calorimeter sampling 2] §
	ci_ehec0_rawtopo;	cl_ehec0_caltopo;	vector <float>*</float>	energy in hadronic endcap sampling 0	- ž
	ci_ehec1_rawtopo;	cl_ehec1_caltopo;	vector <float>*</float>	energy in hadronic endcap sampling 1	- ž
	cl_ehec2_rawtopo;	cl_ehec2_caltopo;	vector <float>*</float>	energy in hadronic endcap sampling 2	
	cl_ehec3_rawtopo;	cl_ehec3_caltopo;	vector <float>*</float>	energy in hadronic endcap sampling 3	Variables
	cf_eta0_rawtopo;	cl_eta0_caltopo;	vector <float>*</float>	pseudo-rapidity in barrel pre-sampler	
	cl_eta1_rawtopo;	cl_eta1_caltopo;	vector <float>*</float>	pseudo-rapidity in barrel sampling 1	3
	cl_eta2_rawtopo;	cl_eta2_caltopo;	vector <float>*</float>	pseudo-rapidity in barrel sampling 2	- 5
	cl_eta3_rawtopo;	cl_eta3_caltopo;	vector <float>*</float>	pseudo-rapidity in barrel sampling 3	5
	cl_nemb0_rawtopo;	cl_nemb0_caltopo;	vector <long>*</long>	# cells in barrel pre-sampler	. 9
	cl_nemb1_rawtopo;	cl_nemb1_caltopo;	vector <long>*</long>	# cells in barrel sampling 1	<u></u>
	cl_nemb2_rawtopo;	cl_nemb2_caltopo;	vector <long>*</long>	# cells in barrel sampling 2	Calorimet
	cl_nemb3_rawtopo;	cl_nemb3_caltopo;	vector <long>*</long>	# cells in barrel sampling 3	-1 3-
	ci_neme0_rawtopo;	cl_neme0_caltopo;	vector <long>*</long>	# cells in endcap pre-sampler	- 2
	cl_neme1_rawtopo;	cl_neme1_caltopo;	vector <long>*</long>	# cells in endcap sampling 1	_
	cf_neme2_rawtopo;	cl_neme2_callopo;	vector <long>*</long>	# cells in endcap sampling 2	-
	cl_neme3_rawtopo;	cl_neme3_callopo;	vector <long>*</long>	# cells in endcap sampling 3	-
	cl_nfcal0_rawtopo;	cl_nfcal0_caltopo;	vector <long>*</long>	# cells in electromagnetic forward calorimeter	-
	cl_nfcal1_rawtopo;	cl_nfcalf_caltopo;	vector <long>*</long>	# cells in hadronic forward calorimeter sampling 1	-
	ci_nfcal2_rawtopo;	cl_nfcal2_caltopo;	vector <long>*</long>	# cells in hadronic forward calorimeter sampling 2	-
	cl_nhec0_rawtopo;	cl_nhec0_caltopo;	vector <long>*</long>	# cells in hadronic endcap sampling 0	-
	cl_nhec1_rawtopo;	cl_nhect_caltopo;	vector <long>*</long>	# cells in hadronic endcap sampling 1	-
	cf_nhec2_rawtopo;	cl_nhec2_callopo;	vector <tong>*</tong>	# cells in hadronic endcap sampling 2	-
	cl_nhec3_rawtopo;	cl_nhec3_callopo; cl_phi2_callopo;	vector <long>* vector<flont>*</flont></long>	# cells in hadronic endcap sampling 3 azimuth in barrel sampling 2	

More		Calibrated TopoClusters			
More	Variable Name	Variable Name	Туре	Comment	t –
	cl_etileb0_rawtopo;	cl_etileb0_caltopo;	vector*	energy in tile barrel sampling 0	
details	c/_etileb1_rawtopo;	cl_ebieb1_caltopo;	vector <float>*</float>	energy in tile barrel sampling 1	1 2
letaiis i	cl_etileb2_rawtopo;	cl_etileb2_caltopo;	vector <float>*</float>	energy in tile barrel sampling 2	Cluster
	c/ etilee0 rawtopo;	cl etilee0 caltopo;	vector <float>*</float>	energy in extended tile sampling 0	1 3
C	c/ etilee1 rawtopo;	c/ etilee1 caltopo;	vector <float>*</float>	energy in extended ble sampling 1	1 3
for	c/ etilee2 rawtopo;	c/ etilee2 caltopo;	vector <float>*</float>	energy in extended tile sampling 2	1 3
	cf_etileg1_rawtopo;	c/_etileg1_caltopo;	vector <float>*</float>	energy in tile sampling 1	Variables in The
	ci_etileg2_rawtopo;	cl etileg2 caltopo;	vector <float>*</float>	energy in tile sampling 2	1 🖁
lusters	c/_etileg3_rawtopo;	c/ etileg3 caltopo;	vector <float>*</float>	energy in tile sampling 3	18
1431613	ci ntileb0 rawtopo;	cl ntileb0 caltopo;	vector <long>*</long>	# cells in tile barrel sampling 0	1 5
	cl_ntileb1_rawtopo;	cl_ntileb1_caltopo;	vector <long>*</long>	# cells in tile barrel sampling 1	1 =
	cl_ntileb2_rawtopo;	cl_ntileb2_caltopo;	vector <long>*</long>	# cells in tile barrel sampling 2	18
	cl_ntilee0_rawtopo;	cl_ntilee0_caltopo;	vector <long>*</long>	# cells in extended tile sampling 0	1 5
	cl ntilee1 rawtopo:	cl ntilee1 caltopo;	vector <long>*</long>	# cells in extended tile sampling 1	1 🖁
	cl_ntilee2_rawtopo;	cl_ntilee2_caltopo;	vector <long>*</long>	# cells in extended tile sampling 2	1 3
	cl_ntileg1_rawtopo;	cl_ntileg1_caltopo;	vector*	# cells in tile gap sampling 1	1 💈
	cf_ntileg2_rawtopo;	cl_nt/leg2_caltopo;	vector*	# cells in tile gap sampling 2	Calorimete
	cl ntileg3 rawtopo;	cl ntileg3 caltopo;	vector*	# cells in tile gap sampling 3	1 7
	cl_center_lambda_rawtopo;	cl center lambda caltopo;	vector*	central cluster depth in calorimeter	-
	cl_center_x_rawtopo;	cl_center_x_caltopo;	vector <float>*</float>	barycenter x	1
	cf_center_y_rawtopo;	cl_center_y_caltopo;	vector <float>*</float>	barycenter y	1
	c/_center_z_rawtopo;	cl_center_z_caltopo;	vector <float>*</float>	barycenter z	1 .
	ci delta alpha rawtopo;	cl delta alpha caltopo;	vector <float>*</float>	angular distance principal axis-vertex direction	1 2
	cl_delta_phi_rawtopo;	cl delta phi caltopo;	vector <float>*</float>	azimuthal distance principal axis-vertex direction	Cluster maments (Shapes
	ci delta theta rawtopo;	cl delta theta caltopo;	vector <float>*</float>	polar distance principal axis-vertex direction	1 9
	cl_eng_frac_core_rawtopo;	ci_eng_frac_core_caltopo;	vector <float>*</float>	energy fraction of cluster core	1 3
	ci eng frac em rawtopo;	cl eng frac em caltopo;	vector <float>*</float>	energy fraction in electromagnetic calorimeter	1 1
	ci eng frac max rawtopo;	cl eng frac max caltopo;	vector <float>*</float>	energy fraction of cell with maximum signal	1 3
	ci lateral rawtopo;	cl_lateral_caltopo;	vector <float>*</float>	normalized lateral spread	1 8
	cl_longitudinal_rawtopo;	cl_longitudinal_caltopo;	vector*	normalized longitudinal spread	
	cl_m1_dens_rawtopo;	cl_m1_dens_caltopo;	vector <float>*</float>	first moment energy density	1 3
	cl_m1_eta_rawtopo;	cl m1 eta caltopo;	vector <float>*</float>	pseudorapidity first moment	1 8
	ci m1 phi rawtopo;	cl m1 phi caltopo;	vector <float>*</float>	azimuth first moment	1 8
	cl_m2_dens_rawtopo;	cl_m2_dens_caltopo;	vector <float>*</float>	second moment energy density	1 ~
	ci m2 lambda rawtopo;	cl m2 lambda caltopo;	vector <float>*</float>	second longitudinal moment	1
	ci_m2_r_rawtopo;	cl_m2_r_caltopo;	vector <float>*</float>	second radial moment	4

Further improvements are depending on a significant increase of the prediction power of hadronic shower models in Geant4 - continuing focus on validation using testbeam data;

A new hadronic calibration model in ATLAS using local cluster calibration for jets and missing Et looks very promising and is available for full evaluation;

We still miss systematic evaluations of jet shapes and topologies in the presence of pile-up;