Introduction to DAVINCI

Introduction

- overview of DAVINCI structure
- Input
- My first Selection
 - Read $J/\psi \rightarrow \mu\mu$ all in python, no C++ to write

LHCb Week 25 March 2011

Patrick Koppenburg

Patrick Koppenburg

Introduction to DAVINCI

DAVINCI LINKS

• DAVINCI web page:

http://cern.ch/LHCb-release-area/DOC/davinci/
From there you'll find :

- Some documentation. Links to doxygen.
- $\bullet~\ensuremath{\mathsf{The DAVINCI}}$ wiki and Tutorial page
- Bugs and feature requests are tracked in the LHCb software Savannah page. If you think you see a bug, go there first.
- Any DAVINCI question can be asked at the DAVINCI mailing list: lhcb-davinci@cern.ch .
 - You need to be registered to use it. You can do that online.
- Distributed analysis question should be asked at lhcb-distributed-analysis@cern.ch .

Always give all information that is relevant to your question! (no "It stopped working. What has changed?")

Patrick Koppenburg

Introduction to DAVINCI

DAVINCI

ProtoParticles: are the end of the reconstruction stage

- have all the links about how they have been reconstructed
- have a list of PID hypothesis with a probability
- contain the kinematic information

CHARGED ProtoParticles: One per Track

→ Add Rich, Calo, Muon info

NEUTRAL ProtoParticles: One per Cluster

→ Add Track info (could be an electron)

Particles

- Particle = ProtoParticle + one PID choice
 - ➔ one defined mass
- Physics analyses deal with Particles
 - You need to know the 4-vectors to compute the mass of a resonance
- The PID is your choice
 - The same <code>ProtoParticle</code> can be made as a π and as a $\mu...$
 - This makes sense. Think of a pion from $B \to \pi\pi$ decaying in flight. Does it stop being a signal pion because it decayed before the Muon detector?
 - Some ProtoParticles can be ignored
 - All this is done by configuring a ParticleMaker algorithm
 - You don't need to worry about the configuration.
 - Many standards are pre-defined
 - But you need to choose which to use
 - ➔ Next slide

STANDARD Particles

- The Particles are actually already done for you. To ensure that everybody agrees on what is a K^+ , a π or a K_S^0 , we have a set of standard particles predefined.
- They are defined in python/CommonParticles/*.py (svn) in the Phys/CommonParticles package.
- All you need to know are the names of the algorithm that created them : StdLooseKaons, StdTightProtons ...
 STDNOPIDSXxxx: All tracks are made to Xxxx STDLOOSEXxxx: Loose PID cuts for hypothesis Xxxx (no cuts for pions)

STDTIGHTXXXX: Tight PID cuts for hypothesis Xxxx

• They are interfaces to the selection framework (see later) from StandardParticles import StdLooseMuons, StdLoosePions print StdLooseMuons.outputLocation()

THE SELECTION FRAMEWORK

- A selection is a sequence of algorithms reading in Particles and writing out other Particles
 - You want to make sure that the output of one algorithm is the input to another one
 - Some of this is enforced in C++, but not in python.
 - 🗶 You can make mistakes

→ Use a selection framework that tells you from the start that something is wrong

There are actually several ways to quickly get a physics result:

PLAIN C++: DVAlgorithm inherits from GaudiAlgorithm (and GaudiTupleAlg ...), some typing is saved
LoKi: "loops and kinematics". Templated C++. More typing saved.
GAUDIPYTHON, BENDER: Interactive python.
LoKi::Hybrid: Used in Stripping.

The common assumption is that physicists always do the same, hence any line of C++ you type is likely to be a duplication of what your office-mate is typing right now.

Example: Read J/ψ 's

Using LoKi-Hybrid and the selection framework

What to do?

The workflow of you analysis should be:

- Read your candidates
- Prefine your candidates (more cuts)
- TisTos your candidate
 - If TIS, you're lucky → keep it
 - If TOS, keep it only if Tossed by one of "your" lines
- Store (or fit) it somehow
 - DST
 - MicroDST (better)
 - DecayTreeTuple (not good, but sometimes useful)

➔ Make sure you know what you need before starting

The Data

- No reconstructed 2011 data available yet
- Look at Collision10. You can take magnet down or up. No off!
- Then Reco08/ 90000000/ Stripping12b/ DIMUON.DST
 - → One file per run (if size permits)

 Standard 	Advanced Queries	Bookmarks		
Page Size:	ALL			
	Tree	Description		
Coll				
	ision10 Simulation Conditions/DataTaking			
	Beam1721GeV VeloOpen MaqDown			
	Beam1923GeV-VeloOpen-MagDown			
	Beam1992GeV-VeloOpen-MagDown			
	Beam2332GeV-VeloOpen-MagDown-Excl-IT-R1-R2-TT-VE			
	Beam3500GeV-VeloClosed-MagDown			
	Processing Pass			
	Real Data			
	Event types			
	90000000 9 m 91000000	Full stream Express stream		
	92000000	Error stream online		
	93000000	Luminosity stream online		
	CHARM-FIRST-14-NB			
	E CHARM-FIRST-14-NB-Merged			
	Recol3			
	E 🛅 Recold			
	e 🛅 RecoDS			
	Reco07			
	Recoll Recoll			
	Processing Pass			
	🗄 🔚 Stripping12b			
	Event types			
	🖻 🚞 90000000	Full stream		
	fileTypes			
	BHADRON DST			
	CALIBRATION DST CHARM MDST			
	CHARM MDST CHARMCONTROLDST			
	CHARMFULL DST			
	DAVINCIHIST			
	DIELECTRON.DST			
	🗉 🔚 DIMUON.DST			
	A No of Files/Events	867/17958981		
	EWDST EPTONIC MDST			

Queries

SimCond/ProcessingPass/Eventtype/Production/FileType/Program/Files

- Event type/SimCond/ProcessingPass/Production/FileType/Program/Files
- O Production lookup
- O Run lookup

I want the candidates of the tight $J/\psi \rightarrow \mu \mu$ selection

Let's look at the Dimuon stream. Do:

```
SetupProject DaVinci v26r3p2
python
from StrippingSettings.Stripping12.StreamDimuon import stream
locations = {}
for line in stream.lines :
    locations[line.name()] = stream.name() + '/' + line.outputLocation()
for line, loc in locations.iteritems() :
    if 'DiMuon' in line : print line, loc
...
StrippingNeuroBayesJPsiLine Dimuon/Phys/NeuroBayesJPsiLine
StrippingDiMuonHighMassSameSignLine Dimuon/Phys/DiMuonHighMassSameSignLine
StrippingBd2KstarMuMu_SignalTriggered Dimuon/Phys/Bd2KstarMuMu_SignalTriggered
StrippingBs2MuMulDLooseLine Dimuon/Phys/Bd2KstarMuMu_SignalTriggered
```

→ Line StrippingNeuroBayesMuMuLine puts candidates in /Event/Dimuon/Phys/NeuroBayesMuMuLine/Particles

See https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbStripping

I want the candidates of the tight $J/\psi \rightarrow \mu \mu$ selection

- Line StrippingNeuroBayesMuMuLine puts candidates in /Event/Dimuon/Phys/NeuroBayesMuMuLine/Particles
- Actually, the candidates are moved there from /Event/Phys/NeuroBayesMuMuLine/Particles

See https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbStripping

I want the candidates of the tight $J/\psi \rightarrow \mu\mu$ selection

- Line StrippingNeuroBayesMuMuLine puts candidates in /Event/Dimuon/Phys/NeuroBayesMuMuLine/Particles
- Actually, the candidates are moved there from /Event/Phys/NeuroBayesMuMuLine/Particles
- Try PrintDecayTree:

PrintDiMuons.PrintDecay							INFO	
<>								
	Name	E	М	Р	Pt	phi	Vz	
		MeV	MeV	MeV	MeV	mrad	mm	
J/psi(1S)	9150	52.06	1758.35	91545.18	4543.92	-1294.93	-5.05	
+>mu+	3218	33.09	105.66	32182.92	961.42	-1736.07	-36.29	
+>mu-	5930	64.25	105.66	59364.16	3696.71	-1186.00	-24.25	

See https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbStripping

I want the candidates of the tight $J/\psi \rightarrow \mu\mu$ selection

- Line StrippingNeuroBayesMuMuLine puts candidates in /Event/Dimuon/Phys/NeuroBayesMuMuLine/Particles
- Actually, the candidates are moved there from /Event/Phys/NeuroBayesMuMuLine/Particles
- Try PrintDecayTree:
- What if I have no candidates? Still stick to you line!

You can check the result of the selection with

from Configurables import LoKi__HDRFilter as StripFilter MySequencer = GaudiSequencer('Sequence') MySequencer.Members += [StripFilter('StripPassFilter', Code="HLT_PASS('StrippingNeuroBayesMuMuLineDecision')", Location="/Event/Strip/Phys/DecReports")]

Note the location (the default is the HLT).

Introduction to DAVINCI

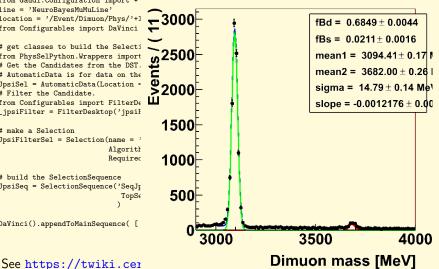
How to Refine your Candidates

```
from Gaudi.Configuration import *
line = 'NeuroBayesMuMuLine'
location = '/Event/Dimuon/Phys/'+line+'/Particles'
from Configurables import DaVinci
```

```
# get classes to build the SelectionSequence
from PhysSelPython.Wrappers import AutomaticData, Selection, SelectionSequence
# Get the Candidates from the DST.
# AutomaticData is for data on the DST
JpsiSel = AutomaticData(Location = location)
# Filter the Candidate.
from Configurables import FilterDesktop
_jpsiFilter = FilterDesktop('jpsiFilter', Code = '(M>2500*MeV) & (M<4000*MeV)')</pre>
```

```
DaVinci().appendToMainSequence( [ JpsiSeq.sequence() ] )
```

See https://twiki.cern.ch/twiki/bin/view/LHCb/ParticleSelection


How to Refine your Candidates

from Gaudi.Configuration import * line = 'NeuroBayesMuMuLine' location = '/Event/Dimuon/Phys/'+] from Configurables import DaVinci

get classes to build the Selecti from PhysSelPython.Wrappers import # Get the Candidates from the DST. # AutomaticData is for data on the JpsiSel = AutomaticData(Location = # Filter the Candidate. from Configurables import FilterDe _jpsiFilter = FilterDesktop('jpsiF

make a Selection JpsiFilterSel = Selection(name = ' Algorith Required # build the SelectionSequence JpsiSeg = SelectionSequence('SeqJr TopS€

DaVinci().appendToMainSequence([

LOKI-HYBRID

- The previous slide contained the line Code = '(M>2500*MeV) & (M<4000*MeV)'
- This is a bit of python that manipulates LoKi functors
 - Commonly used are M, P, PT, TRCHI2, but also BPVLTCHI2, CHILDCUT. Some take arguments, some don't.
 - But also VFASPF(VCHI2/VDOF) ...
 - The idea is that any *reasonable* selection requirement can be coded this way.
- The list can be viewed here : https:

//twiki.cern.ch/twiki/bin/view/LHCb/LoKiHybridFilters

- It's very sensitive to syntax orthodoxy. The parentheses are not optional. And it's &, not && or and.
- But as it's python it can be tested at the python prompt.
 - → Demo!

LOKI-HYBRID

		from math import sqrt
•	The previous slide containe	from LoKiPhys.decorators import *
	(M<4000*MeV)'	from LoKiCore.functions import monitor
•	This is a bit of python tha	<pre>p = LHCb.Particle() p.setParticleID(LHCb.ParticleID(11))</pre>
	• Commonly used are M,	m = p.momentum()
	CHILDCUT. Some take ar	m.SetPx (1000)
	 But also VFASPF(VCHI2 	m.SetPy (-1000)
	 The idea is that any rea. 	m.SetPz (10000)
	this way.	<pre>m.SetE (sqrt(m.P2() + 5000*5000))</pre>
_	The list can be viewed have	p.setMomentum (m)
•	The list can be viewed here	IUN = PX+PI
	//twiki.cern.ch/twiki/	<pre>print PX(p), PY(p) , fun(p)</pre>
•	It's very sensitive to syntax	fun2 = PX>750
	optional. And it's &, not &	$n_{n+1} + f_{n+1} - f_{n+1}$
		Tuns - monitor(Tunz)
•	But as it's python it can b	print fun3(p)
	→ Demo!	from LoKiCore.doxygenurl import browse
		browse(PT)

Introduction to DAVINCI

How to Select a Trigger Line

I assume you already know which L0/Hlt1/Hlt2 lines you want

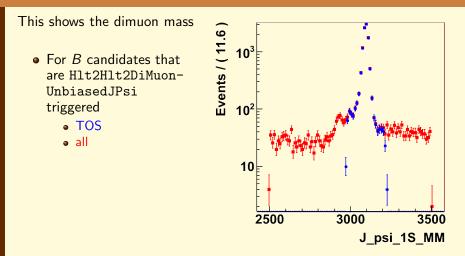
• You can use the DecReports to refine your selection

How to Select a Trigger Line

I assume you already know which L0/HIt1/HIt2 lines you want

- You can use the DecReports to refine your selection
- But to really understand what the trigger is doing to your signal you need to TisTos it.
 - See Tomasz' tutorial
 - If you use DecayTreeTuple, configure TupleToolTISTOS

```
############ DecayTreeTuple
from Configurables import DecayTreeTuple, TupleToolTrigger,
tuple = DecayTreeTuple("Jpsi_Tuple")
tuple.ToolList += [
    "TupleToolGeometry"
    , "TupleToolKinematic"
     "TupleToolPrimaries"
      "TupleToolEventInfo"
     "TupleToolTrackInfo"
     "TupleToolTISTOS"
      "TupleToolAngles"
      "TupleToolPid"
     "TupleToolPropertime"
tuple.Decav = "J/psi(1S) -> ^mu+ ^mu-"
tuple.InputLocations = [ pt, JpsiSeq.outputLocation() ]
tuple.addTool(TupleToolTISTOS)
tuple.TupleToolTISTOS.TriggerList = [ "Hlt2DiMuonUnbiasedJF
tuple.TupleToolTISTOS.VerboseHlt2 = True
```


```
DaVinci().appendToMainSequence( [ JpsiSeq.sequence(), tuple
```

```
DaVinci().DataType = "2010"
DaVinci().EvtMax = -1
DaVinci().PrintFreq = 100
DaVinci().TupleFile = "Jpsi.root"
```

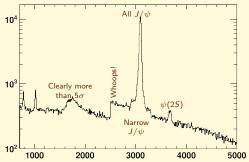
See https://twiki.cern.ch/twiki/bin/view/LHCb/TriggerTisTos

How to Select a Trigger Line

See https://twiki.cern.ch/twiki/bin/view/LHCb/TriggerTisTos

Patrick Koppenburg

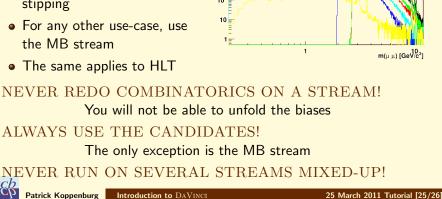
CombineParticles

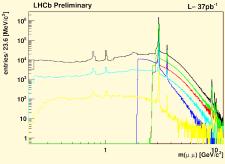

- CombineParticles combines Particles to produce new Particles
- That's what is used in the stripping
- You can also use it yourself
 - To add something to stripped candidates (look for $B^0 \rightarrow J/\psi \pi^0$ using NeuroBayes stripped J/ψ 's and π^0 from CommonParticles)
 - To develop a new stripping line on MC
 - But not to redo combinatorics on a stripped DST!

Observation of a Resonance at 1.8 GeV

This is the dimuon spectrum on the dimuon stream with $\mu\mu$ combinatorics redone

It is biased by all selections. Including "trivial" ones (thresholds) and complicated one, like $B \rightarrow \mu \mu K^*$.





Observation of a Resonance at 1.8 GeV

- Use the candidates from one of the dimuon lines
- If you want $X \rightarrow (\mu \mu) Y$ you may make the Y yourself if you use the $(\mu\mu)$ from the stipping
- For any other use-case, use the MB stream
- The same applies to HLT

Patrick Koppenburg

EXERCISES!

- Ex. 0: Set things up
- $\operatorname{Ex.}\ 1\colon$ Loop over muons and make some plots
- Ex. 2: Extend the algorithm to make a J/ψ (if you have time)
- Ex. 3: Make your algorithm more generic: select also a ϕ Do Ex. 1 to 3 if you plan to develop C++ in DAVINCI.
- $\operatorname{Ex.}\ 4:$ The recommended way of writing a selection
 - Everything you need is on the wiki page
 - The main difficulty is to figure out what to copy-paste where.
 - Don't be afraid to ask if you are unsure
- Ex. 5: Debugging
- $\operatorname{Ex.}\ 6\colon$ MC truth, Trigger, Tagging, and much more
- Ex. 7: More Tuples
- Ex. 8: Read Stripped DSTs

Backup

Patrick Koppenburg

Introduction to DAVINCI

25 March 2011 Tutorial [27/26]

Any (flavour-) physics analysis is a sequence of A \to B C (...), with some cuts in between.

Hence: An analysis algorithm should know:

Any (flavour-) physics analysis is a sequence of A \to B C (...), with some cuts in between.

Hence: An analysis algorithm should know:

Where to get the particles

Where to put the data

Handled by DVAlgorithm

Any (flavour-) physics analysis is a sequence of A \rightarrow B C (...), with some cuts in between.

Hence: An analysis algorithm should know

- Where to get the
- What decay to real

Where to put the

```
for { LHCb::Particle::ConstVector::const_iterator mK = KMinus.begin() ;
    mK != KMinus.end() ; ++mK ){
    for { LHCb::Particle::ConstVector::const_iterator pK = KPlus.begin()
        pK != KPlus.end() ; ++pK ){
        for { LHCb::Particle::ConstVector::const_iterator pi = Pions.begin()
            pi != Pions.end() ; ++pi ){
        [...]
```

```
Can be shorter:
```

for (Loop Ds = loop("K K pi", "D_s+", FitVertex) ; Ds ; ++Ds) {

Or:

DsForBs2DsPi.DecayDescriptor = "[D_s+ -> K+ K- pi+]cc"

Introduction to DAVINCI

Any (flavour-) physics analysis is a sequence of A \rightarrow B C (...), with some cuts in between.

Hence: An analysis algorithm should know:

- Where to get the particles
- What decay to reconstruct
- What cuts to apply
- Where to put the data

Anything else?

Hard-coding cuts is a bad idea...

Better to use options of the algorithm

... or predefined filters configurable by options:

DsForBs2DsPi.MotherCut = "PT > 2000*MeV"

Introduction to DAVINCI