
GANGA Tutorial for LHCb

Prepared by GANGA Team::Mike Williams (ICL, London)

Presented by GANGA User::Jibo He (LAL, Orsay)

March 25th, 2011

59th LHCb Week

Mike Williams (ICL) GANGA Mar. ’11 1 / 27



Outline

1 Introduction

2 Distributed Analysis @ LHCb

3 GANGA

4 Etc.

5 Summary

Mike Williams (ICL) GANGA Mar. ’11 2 / 27



Outline

1 Introduction

2 Distributed Analysis @ LHCb

3 GANGA

4 Etc.

5 Summary

Mike Williams (ICL) GANGA Mar. ’11 2 / 27



LHCb Data Taking

LHCb takes data @ O(100) MB/s & expects to collect O(1/2) PB in 2011.

LHCb is a super bit factory (not to be confused w/ a Super B factory).

Mike Williams (ICL) GANGA Mar. ’11 3 / 27



LHCb Data Taking

LHCb takes data @ O(100) MB/s & expects to collect O(1/2) PB in 2011.

LHCb is a super bit factory (not to be confused w/ a Super B factory).

Mike Williams (ICL) GANGA Mar. ’11 3 / 27



LHCb Computing Resource Usage

LHCb used over 300 CPU years (shared resources only) in Sept. 2010.

65% User Jobs 18% MC Production 17% Data Reconstruction

C
u

m
u

la
ti

ve
C

P
U

Y
ea

rs

Time (during Sept. 2010)

We’ve also used close to 700 TB of disk space in Sept. 2010. So, that’s
10 CPU years and 35 TB every day. We need The Grid!

Mike Williams (ICL) GANGA Mar. ’11 4 / 27



What is the Grid?

The Grid is a collection of computing resources located at sites around the
world and consists of computing and storage elements (CEs and SEs).

Only a single login is required to
access the system. After ID, security
is handled by the system.

There are several flavors of the Grid;
however, in LHCb we only use the
LHC Computing Grid (LCG).

Mike Williams (ICL) GANGA Mar. ’11 5 / 27



Grid Resources

Your grid certificate is what gives you a unique identification on the Grid
(2 files in your .globus directory). By joining a virtual orginization (VO),
you gain access to the resources available to the VO∗.

By sending a grid proxy along with your Grid jobs, you allow computers to
act on your behalf for a limited time. This lets your jobs run at LCG sites
and read(write) files from(to) LCG SEs.

If your proxy expires while some of your jobs are running on the LCG, the
jobs will continue to run; however, you will not be able to access the
results w/o renewing your grid proxy.

∗You all should have joined the LHCb VO!

Mike Williams (ICL) GANGA Mar. ’11 6 / 27



Outline

1 Introduction

2 Distributed Analysis @ LHCb

3 GANGA

4 Etc.

5 Summary

Mike Williams (ICL) GANGA Mar. ’11 6 / 27



LHCb Division of Labor

GANGA is a user-friendly frontend
that handles job definition and
management for LHCb users.

GANGA’s main goal is to ensure
users are able to efficiently access
all available resources (local, batch,
grid, etc.).

DIRAC is the workload/data
mgmt. system (WMS/DMS) for
LHCb. It does the heavy lifting for
all DA in LHCb.

DIRAC’s main goal is to insure that
the VO uses its resources efficiently
and to enforce job prioritization.

Mike Williams (ICL) GANGA Mar. ’11 7 / 27



The DIRAC WMS/DMS

Distributed Infrastructure w/ Remote Agent Control

DIRAC provides us with the following benefits (not an exhaustive list):

job monitoring via web portal;

DIRAC’s many failover mechanisms greatly
increase user success rates;

user & production jobs happily coexist;

having only one central task queue means that
the VO’s highest priority jobs always run first;

–NOT–

“This is the one thing I didn’t do.”

and, of course, all of the behind-the-scenes work the DIRAC team does
investigating problems w/ sites, production jobs, etc.

Mike Williams (ICL) GANGA Mar. ’11 8 / 27



GANGA Usage in LHCb

Almost 100% of LHCb grid users used GANGA in Sept. 2010

filler

U
se

rs
/d

ay

100

000

0 Days in Sept. 2010

GANGA provides a complete analysis environment for LHCb and greatly
simplifies the user experience (the topic of the rest of this talk). Thus, the
vast majority of LHCb users choose to use GANGA for most tasks.

N.b., you can use DIRAC directly; however, the DIRAC team actually
prefers that you use GANGA unless you really know what you’re doing.

Mike Williams (ICL) GANGA Mar. ’11 9 / 27



Outline

1 Introduction

2 Distributed Analysis @ LHCb

3 GANGA

4 Etc.

5 Summary

Mike Williams (ICL) GANGA Mar. ’11 9 / 27



Efficient Usage of Computing Resources
(Users)

Users (should) want:

development on their laptop/desktop;

full analysis utilizing all available resources
(wherever they are);

to get results quickly and easily;

a familiar and consistent UI for all resources.

Users don’t want:

to know all of the details about the Grid or any
other resources;

to learn yet another tool to access a resource;

to have to reconfigure their application to run
on different resources.

Mike Williams (ICL) GANGA Mar. ’11 10 / 27



GANGA

The GANGA mantra: Configure once, run anywhere!

Localhost

Batch

Grid

GANGA was developed to meet the needs of ATLAS & LHCb for a grid
user interface and is now used by many other groups as well. Usage: 45%
ATLAS, 45% LHCb, 10% other.

550+ unique users, 40k+ sessions, run at 70+ sites (all in Sept. 2010!)

Mike Williams (ICL) GANGA Mar. ’11 11 / 27



GANGA Features

GANGA handles the complete life cycle of a job:

Build → Configure → Split → Submit → Monitor → Merge

GANGA does the following (and much more) for the user:

builds/compiles applications;

configures jobs, including
building input sandboxes, to run
on user-specified backends;

submits jobs locally, to batch
systems and to the grid;

monitors jobs and updates the
user on any status changes;

automatically retrieves output
when jobs complete;

merges output (if requested).

Mike Williams (ICL) GANGA Mar. ’11 12 / 27



GANGA LHCb Features

Loading the LHCb plug-in adds the following features to GANGA:

DIRAC backend and ability to contact the DIRAC server;

many built-in DIRAC-based methods, e.g. Dirac().checkSites();

automatic collection of user-modified LHCb software for sandbox;

input data site-based job splitting (DiracSplitter);

LHCb data file (DST) merger (DSTMerger);

automatic output file discovery (from application options);

ability to checkout and build LHCb software packages;

etc. (too many to list them all here).

The automatic features are truly that; i.e., the user is often not even aware
of them. E.g. many users forget to add their output to the GANGA job
definition for LHCb applications. GANGA notices this and automatically
adds the output for them (ignorance is bliss).

Mike Williams (ICL) GANGA Mar. ’11 13 / 27



Running GANGA

Since version 5.4.0, GANGA is now part of the LHCb software framework;
thus, to set up the environment you should do:

[you@computer] SetupProject Ganga

To run GANGA interactively (∼ 50% of usage), do:

[you@computer] ganga

To run GANGA on a script (∼ 50% of usage), do:

[you@computer] ganga your-script.gpi

To run the GANGA GUI (∼ 0% of usage), do:

[you@computer] ganga --gui

Mike Williams (ICL) GANGA Mar. ’11 14 / 27



The GANGA Prompt & Configuration

GANGA is written in Python and has an enhanced Python
prompt (IPython) that supports:

Python syntax;

Shell commands;

TAB completion, scrolling thru your history, etc.

It’s similar to working on the command line except Python syntax is valid
and TAB completion works for Python objects, methods, variables, etc.

GANGA allows the user to configure many of its settings. To permanently
change a setting (i.e., to change it for the current and future sessions),
simply edit it in your .gangarc file. Settings can also be viewed/changed
in the current session by accessing the config object (these changes are
not persisted).

Mike Williams (ICL) GANGA Mar. ’11 15 / 27



GANGA Jobs

GANGA jobs are handled by the Job object.

Mike Williams (ICL) GANGA Mar. ’11 16 / 27



Job Basics

To create a GANGA job, simply do:

In[1]:j = Job()

You can then edit its properties (application, backend, etc.); thus, you
can configure the job to do what you want.

To submit the job to whatever backend you’ve chosen to run on, do:

In[2]:j.submit()

GANGA will monitor the job and let you know when it’s done. When it’s
done, it’ll also automatically collect the output you wanted back.

N.b., once a job is submitted, you cannot modify most of its properties
(there are very good reasons for this).

Mike Williams (ICL) GANGA Mar. ’11 17 / 27



Applications/Backends

GANGA/LHCb supports the following types of applications:

Executable (binaries, scripts, etc.);

Root (ROOT macros, PyROOT scripts);

Gaudi-type applications (GaudiPython, Brunel, Moore,

DaVinci, Panoptes, Gauss, Boole, Bender, Vetra).

GANGA/LHCb supports the following backends:

Interactive (foreground on client node);

Local (background on client node);

Batch (LSF at CERN; SGE,PBS,Condor at other sites);

Dirac (The Grid).

Mike Williams (ICL) GANGA Mar. ’11 18 / 27



Splitting/Merging

Users often want to run a large number of similar jobs. GANGA makes
this easy.

GANGA/LHCb supports the following splitters:

Input data (SplitByFiles,DiracSplitter);

Gaudi-app (GaussSplitter,OptionsFileSplitter);

General (GenericSplitter,ArgSplitter).

GANGA/LHCb supports the following mergers:

TextMerger (text files);

RootMerger (ROOT files);

DSTMerger (DST files);

General (SmartMerger,CustomMerger).

Mike Williams (ICL) GANGA Mar. ’11 19 / 27



Example Job

To run DaVinci tutorial, in GANGA I’d simply do:

In[1]:j = Job()

In[2]:j.application = DaVinci(version=’v26r3p2’)

In[3]:j.application.optsfile =

stuff[’<path>/DaVinciTutorial 1.py’,’<path>/Bs2JPsiPhi.py’]

In[4]:j.backend = Interactive()

In[5]:j.outputsandbox = [’DVHistos 1.root’]

In[6]:j.submit()

To run on the Grid, we’d simply do j.backend = Dirac(). GANGA will
automatically collect all of your modified files and send them w/ the job.
Yes, it’s really that easy.

Mike Williams (ICL) GANGA Mar. ’11 20 / 27



Example Job

GANGA will tell you the status of the jobs – it’ll update you whenever a
job changes state, you can also check directly by doing j.status. Once
the jobs are complete, GANGA will download the output automatically
(and merge them if needed).

You can check the output of a job by doing, e.g.:
In[7]:j.peek()

total X

-rw-r--r-- 1 you z5 X Jan 5 10:00 DVHistos 1.root

lrwxr-xr-x 1 you z5 X Jan 5 10:00 stdout
...

or open a shell running ROOT w/ the file loaded by doing:
In[8]:j.peek(’DVHistos 1.root’)

or specify the program you want to use:
In[8]:j.peek(’stdout’,’less’).

Mike Williams (ICL) GANGA Mar. ’11 21 / 27



More GANGA LHCb Features

GANGA doesn’t just handle jobs, it also deals w/ data files & data sets:

full support for logical & physical files including
downloading, uploading, replicating, removing,
obtaining metadata and replicas, etc.;

filler

job.inputdata = browseBK()

bookkeeping queries can also
be persisted in a BKQuery

object and updated at any
time w/o the need for the GUI
or web interfaces.

Mike Williams (ICL) GANGA Mar. ’11 22 / 27



Outline

1 Introduction

2 Distributed Analysis @ LHCb

3 GANGA

4 Etc.

5 Summary

Mike Williams (ICL) GANGA Mar. ’11 22 / 27



GANGA Help

Help is available for GANGA:

Interactively in GANGA via the help function:
In[9]:help(BKQuery)

Online via the GANGA manuals and GANGA/LHCb FAQ:
http://ganga.web.cern.ch/ganga/user/index.php
https://twiki.cern.ch/twiki/bin/view/LHCb/GangaLHCbFAQ

Via the mailing list (lhcb-distributed-analysis@cern.ch).

For Python help, see http://docs.python.org/tut/tut.html

Mike Williams (ICL) GANGA Mar. ’11 23 / 27

http://ganga.web.cern.ch/ganga/user/index.php
https://twiki.cern.ch/twiki/bin/view/LHCb/GangaLHCbFAQ
mailto:lhcb-distributed-analysis@cern.ch
http://docs.python.org/tut/tut.html


Persistence

Mike Williams (ICL) GANGA Mar. ’11 24 / 27



DIRAC Monitoring

https://lhcbweb.pic.es/DIRAC/LHCb-Production/lhcb/jobs/JobMonitor/display

Mike Williams (ICL) GANGA Mar. ’11 25 / 27

https://lhcbweb.pic.es/DIRAC/LHCb-Production/lhcb/jobs/JobMonitor/display


Correct Usage of Computing Resources

Testing/Debuging:

↓

Full Running:

Mike Williams (ICL) GANGA Mar. ’11 26 / 27



Outline

1 Introduction

2 Distributed Analysis @ LHCb

3 GANGA

4 Etc.

5 Summary

Mike Williams (ICL) GANGA Mar. ’11 26 / 27



Summary

The LCG provides LHCb users w/ a massive amount of CPU power
and disk space.

GANGA allows users to run jobs locally, on batch systems and on the
Grid in a seamless way.

GANGA is written in Python; its syntax is easy to understand.

GANGA/LHCb provides a number of specific tools for running LHCb
jobs wherever resources are available.

Try getting started with the “hands on” GANGA/LHCb tutorial:
https://twiki.cern.ch/twiki/bin/view/LHCb/GangaTutorial1

Mike Williams (ICL) GANGA Mar. ’11 27 / 27

https://twiki.cern.ch/twiki/bin/view/LHCb/GangaTutorial1

	Introduction
	Distributed Analysis @ LHCb
	GANGA
	Etc.
	Summary

