
Job Options and Printing

1 LHCb software tutorial - March 2011

Job Options

•LHCb software tutorial - March 2011•2

 All applications run the same main program (gaudirun.py)

 Job options configure the job:

 What to run, in what order, with what data, with which cuts

 Provided by the user in a job options configuration file

 Job options configuration file is written in python

 Can use full power of python syntax

 Type checking

 Expressions, if-then-else, loops etc.

 Early Validation of configuration

 Job options file is passed to gaudirun.py as argument(s)

gaudirun.py MyOpts.py [someMoreOpts.py]gaudirun.py MyOpts.py [someMoreOpts.py]

Configurables

•LHCb software tutorial - March 2011•3

 Python classes, provided by the framework, used to set

the job options of the C++ components

 Each C++ component (Algorithm, Tool, Service) has a corresponding

python Configurables

 To set the properties of a component, must first instantiate the

corresponding python Configurable

Instance of the Python class

Python variable holding the instance

 Then use it to set the properties of the C++ component

from from Configurables import MyFirstAlgorithm

myAlgmyAlg = MyFirstAlgorithm()

myAlg.OutputLevelmyAlg.OutputLevel = DEBUG

Running the C++ algorithms

•LHCb software tutorial - March 2011•4

 Merely instantiating the python configurable does not
instantiate the corresponding C++ component

 Some special configurables have properties that define
sequences of algorithms to be executed

 Python instances must be added to these sequences

 Execute an instance of the C++ MyFirstAlgorithm, as configured on
the previous slide, in the TopAlg sequence of the ApplicationMgr

 Execute an instance of the C++ MyFirstAlgorithm, as configured on
the previous slide, in the UserAlgorithms sequence of DaVinci

ApplicationMgr().TopAlgApplicationMgr().TopAlg += [myAlg]

DaVinci().UserAlgorithmsDaVinci().UserAlgorithms += [myAlg]

Named algorithms

•LHCb software tutorial - March 2011•5

 By default, instance of an algorithm has the same name as
the C++ class (and python configurable class)

 e.g. “MyFirstAlgorithm”

 To run several instances of the same algorithm, give it an
an explicit name

 Execute two instances of MyFirstAlgorithm, with different values for
the MassWindow property; execute “Fred” before “George”

 N.B. MassWindow must have been declared as a property in the C++
code

myFred = MyFirstAlgorithm(name = “Fred”)

myGeorge = MyFirstAlgorithm(name = “

myFred.

myGeorge.

ApplicationMgr().TopAlg += [

myFred = MyFirstAlgorithm(name = “Fred”)

myGeorge = MyFirstAlgorithm(name = “George”)

myFred.MassWindow = 3. * GeV

myGeorge.MassWindow = 2500. * MeV

ApplicationMgr().TopAlg += [myFred, myGeorge]

Named Tools

•LHCb software tutorial - March 2011•6

 Tools always have a name, defined in the C++ code. They

are created by a named instance of a C++ component

(Algorithm, Tool, Service)

 In his case an algorithm of type MyFirstAlgorithm creates a tool of

type Knife, with interface ICutlery, called “MeatKnife”

 Use the same names in python configuration:

MyFirstAlgorithm::initialise() {

ICutlery

MyFirstAlgorithm::initialise() {

ICutlery* theTool = tool<ICutlery>(“Knife”, “MeatKnife”);

theCook = MyFirstAlgorithm(name = “

Create a configurable for a tool named “

type , and associate it to the theCook configurable

theCook.addTool(

Now set a property of the tool

theCook.

theCook = MyFirstAlgorithm(name = “Cook”)

Create a configurable for a tool named “MeatKnife”, of

type Knife, and associate it to the theCook configurable

theCook.addTool(Knife, name =“MeatKnife”)

Now set a property of the tool

theCook.MeatKnife.OutputLevel = DEBUG

Declaring properties in the C++ code

•LHCb software tutorial - March 2011•7

 Add a member variable to hold the property

 Declare as a property in the constructor and initialize it

with a default value

class MyFirstAlgorithm : public GaudiAlgorithm {

};

class MyFirstAlgorithm : public GaudiAlgorithm {

private:

double m_jPsiMassWin; ///< J/Psi mass window cut

...

};

MyFirstAlgorithm::MyFirstAlgorithm(<args>)

{

///< Variable initialized to default

}

MyFirstAlgorithm::MyFirstAlgorithm(<args>)

{

declareProperty(“MassWindow", ///< Property name used in job options file

m_jPsiMassWin = 0.5*Gaudi::Units::GeV, ///< Variable initialized to default

“The J/Psi mass window cut”); ///< Documentation string for Python

}

Aside: all member data must always be initialised in the constructorAside: all member data must always be initialised in the constructor

LHCb coding convention for member data doxygen documentation string

Printing

•LHCb software tutorial - March 2011•8

 Why not use std::cout, std::cerr, ... ?

 Yes, it prints, but

 Do you always want to print to the log file?

 How can you connect std::cout to the message window of an event

display?

 How can you add a timestamp to the messages?

 You may want to switch on/off printing at several levels just for one

given algorithm, service etc.

Printing - MsgStream

•LHCb software tutorial - March 2011•9

 Using the MsgStream class

 Usable like std::cout

 Allows for different levels of printing

 MSG::VERBOSE (=1)

 MSG::DEBUG (=2)

 MSG::INFO (=3)

 MSG::WARNING (=4)

 MSG::ERROR (=5)

 MSG::FATAL (=6)

 MSG::ALWAYS (=7)

 Record oriented

 Allows to define severity level per object instance

MsgStream - Usage

•LHCb software tutorial - March 2011•10

 Send to predefined message stream

 Print error and return bad status

 String formatting

 Set print level in options

Print everything of INFO level or higherPrint everything of INFO level or higher

info() << "PDG particle ID of " <<

err() << "Cannot retrieve properties for particle "

info() << "PDG particle ID of " << m_partName

<< " is " << m_partID << endmsg;

err() << "Cannot retrieve properties for particle "

<< m_partName << endmsg;

return Error(“Cannot retrieve particle properties”);return Error(“Cannot retrieve particle properties”);

debug() << debug() << format("E: %8.3f GeV", energy) << endmsg;

MessageSvc().OutputLevel = ERROR

MySvc().OutputLevel = WARNING

MyAlgorithm().OutputLevel = INFO

MessageSvc().OutputLevel = ERROR

MySvc().OutputLevel = WARNING

MyAlgorithm().OutputLevel = INFO

Units

•LHCb software tutorial - March 2011•11

 We use Geant4/CLHEP system of units
 mm, MeV, ns are defined to have value 1.

 All other units defined relative to this

 In header file “GaudiKernel/SystemOfUnits.h”

 In namespace Gaudi::Units

 Multiply by units to set value:

 Divide by units to print value:

 Units can be used also in job options:

double m_jPsiMassWin = 0.5 * Gaudi::Units::GeV;double m_jPsiMassWin = 0.5 * Gaudi::Units::GeV;

import

SomeAlgorithm

import GaudiKernel.SystemOfUnits as Units

SomeAlgorithm().MassWindow = 0.3 * Units.GeV

info() << “Mass window: ” << m_jPsiMassWin / Gaudi::Units::MeVinfo() << “Mass window: ” << m_jPsiMassWin / Gaudi::Units::MeV

<< “ MeV” << endmsg;

StatusCode

•LHCb software tutorial - March 2011•12

 Object returned by many methods
 Including GaudiAlgorithm::initialize(), GaudiAlgorithm::execute() , etc.

 Currently, takes two values:

 StatusCode::SUCCESS, StatusCode::FAILURE

 Should always be tested
 If function returns StatusCode, there must be a reason

 Report failures:

 If IAlgorithm methods return StatusCode::FAILURE,

processing stops
 Always return StatusCode::SUCCESS from these methods

StatusCode sc = someFunctionCall();

if (sc.isFailure())

StatusCode sc = someFunctionCall();

if (sc.isFailure())

{ Warning(“there is a problem”,sc,0).ignore();} }

Exercise

•LHCb software tutorial - March 2011•13

 Now read the web page attached to this lesson in the

agenda and work through the exercise

