
Job Options and Printing

1 LHCb software tutorial - March 2011

Job Options

•LHCb software tutorial - March 2011•2

 All applications run the same main program (gaudirun.py)

 Job options configure the job:

 What to run, in what order, with what data, with which cuts

 Provided by the user in a job options configuration file

 Job options configuration file is written in python

 Can use full power of python syntax

 Type checking

 Expressions, if-then-else, loops etc.

 Early Validation of configuration

 Job options file is passed to gaudirun.py as argument(s)

gaudirun.py MyOpts.py [someMoreOpts.py]gaudirun.py MyOpts.py [someMoreOpts.py]

Configurables

•LHCb software tutorial - March 2011•3

 Python classes, provided by the framework, used to set

the job options of the C++ components

 Each C++ component (Algorithm, Tool, Service) has a corresponding

python Configurables

 To set the properties of a component, must first instantiate the

corresponding python Configurable

Instance of the Python class

Python variable holding the instance

 Then use it to set the properties of the C++ component

from from Configurables import MyFirstAlgorithm

myAlgmyAlg = MyFirstAlgorithm()

myAlg.OutputLevelmyAlg.OutputLevel = DEBUG

Running the C++ algorithms

•LHCb software tutorial - March 2011•4

 Merely instantiating the python configurable does not
instantiate the corresponding C++ component

 Some special configurables have properties that define
sequences of algorithms to be executed

 Python instances must be added to these sequences

 Execute an instance of the C++ MyFirstAlgorithm, as configured on
the previous slide, in the TopAlg sequence of the ApplicationMgr

 Execute an instance of the C++ MyFirstAlgorithm, as configured on
the previous slide, in the UserAlgorithms sequence of DaVinci

ApplicationMgr().TopAlgApplicationMgr().TopAlg += [myAlg]

DaVinci().UserAlgorithmsDaVinci().UserAlgorithms += [myAlg]

Named algorithms

•LHCb software tutorial - March 2011•5

 By default, instance of an algorithm has the same name as
the C++ class (and python configurable class)

 e.g. “MyFirstAlgorithm”

 To run several instances of the same algorithm, give it an
an explicit name

 Execute two instances of MyFirstAlgorithm, with different values for
the MassWindow property; execute “Fred” before “George”

 N.B. MassWindow must have been declared as a property in the C++
code

myFred = MyFirstAlgorithm(name = “Fred”)

myGeorge = MyFirstAlgorithm(name = “

myFred.

myGeorge.

ApplicationMgr().TopAlg += [

myFred = MyFirstAlgorithm(name = “Fred”)

myGeorge = MyFirstAlgorithm(name = “George”)

myFred.MassWindow = 3. * GeV

myGeorge.MassWindow = 2500. * MeV

ApplicationMgr().TopAlg += [myFred, myGeorge]

Named Tools

•LHCb software tutorial - March 2011•6

 Tools always have a name, defined in the C++ code. They

are created by a named instance of a C++ component

(Algorithm, Tool, Service)

 In his case an algorithm of type MyFirstAlgorithm creates a tool of

type Knife, with interface ICutlery, called “MeatKnife”

 Use the same names in python configuration:

MyFirstAlgorithm::initialise() {

ICutlery

MyFirstAlgorithm::initialise() {

ICutlery* theTool = tool<ICutlery>(“Knife”, “MeatKnife”);

theCook = MyFirstAlgorithm(name = “

Create a configurable for a tool named “

type , and associate it to the theCook configurable

theCook.addTool(

Now set a property of the tool

theCook.

theCook = MyFirstAlgorithm(name = “Cook”)

Create a configurable for a tool named “MeatKnife”, of

type Knife, and associate it to the theCook configurable

theCook.addTool(Knife, name =“MeatKnife”)

Now set a property of the tool

theCook.MeatKnife.OutputLevel = DEBUG

Declaring properties in the C++ code

•LHCb software tutorial - March 2011•7

 Add a member variable to hold the property

 Declare as a property in the constructor and initialize it

with a default value

class MyFirstAlgorithm : public GaudiAlgorithm {

};

class MyFirstAlgorithm : public GaudiAlgorithm {

private:

double m_jPsiMassWin; ///< J/Psi mass window cut

...

};

MyFirstAlgorithm::MyFirstAlgorithm(<args>)

{

///< Variable initialized to default

}

MyFirstAlgorithm::MyFirstAlgorithm(<args>)

{

declareProperty(“MassWindow", ///< Property name used in job options file

m_jPsiMassWin = 0.5*Gaudi::Units::GeV, ///< Variable initialized to default

“The J/Psi mass window cut”); ///< Documentation string for Python

}

Aside: all member data must always be initialised in the constructorAside: all member data must always be initialised in the constructor

LHCb coding convention for member data doxygen documentation string

Printing

•LHCb software tutorial - March 2011•8

 Why not use std::cout, std::cerr, ... ?

 Yes, it prints, but

 Do you always want to print to the log file?

 How can you connect std::cout to the message window of an event

display?

 How can you add a timestamp to the messages?

 You may want to switch on/off printing at several levels just for one

given algorithm, service etc.

Printing - MsgStream

•LHCb software tutorial - March 2011•9

 Using the MsgStream class

 Usable like std::cout

 Allows for different levels of printing

 MSG::VERBOSE (=1)

 MSG::DEBUG (=2)

 MSG::INFO (=3)

 MSG::WARNING (=4)

 MSG::ERROR (=5)

 MSG::FATAL (=6)

 MSG::ALWAYS (=7)

 Record oriented

 Allows to define severity level per object instance

MsgStream - Usage

•LHCb software tutorial - March 2011•10

 Send to predefined message stream

 Print error and return bad status

 String formatting

 Set print level in options

Print everything of INFO level or higherPrint everything of INFO level or higher

info() << "PDG particle ID of " <<

err() << "Cannot retrieve properties for particle "

info() << "PDG particle ID of " << m_partName

<< " is " << m_partID << endmsg;

err() << "Cannot retrieve properties for particle "

<< m_partName << endmsg;

return Error(“Cannot retrieve particle properties”);return Error(“Cannot retrieve particle properties”);

debug() << debug() << format("E: %8.3f GeV", energy) << endmsg;

MessageSvc().OutputLevel = ERROR

MySvc().OutputLevel = WARNING

MyAlgorithm().OutputLevel = INFO

MessageSvc().OutputLevel = ERROR

MySvc().OutputLevel = WARNING

MyAlgorithm().OutputLevel = INFO

Units

•LHCb software tutorial - March 2011•11

 We use Geant4/CLHEP system of units
 mm, MeV, ns are defined to have value 1.

 All other units defined relative to this

 In header file “GaudiKernel/SystemOfUnits.h”

 In namespace Gaudi::Units

 Multiply by units to set value:

 Divide by units to print value:

 Units can be used also in job options:

double m_jPsiMassWin = 0.5 * Gaudi::Units::GeV;double m_jPsiMassWin = 0.5 * Gaudi::Units::GeV;

import

SomeAlgorithm

import GaudiKernel.SystemOfUnits as Units

SomeAlgorithm().MassWindow = 0.3 * Units.GeV

info() << “Mass window: ” << m_jPsiMassWin / Gaudi::Units::MeVinfo() << “Mass window: ” << m_jPsiMassWin / Gaudi::Units::MeV

<< “ MeV” << endmsg;

StatusCode

•LHCb software tutorial - March 2011•12

 Object returned by many methods
 Including GaudiAlgorithm::initialize(), GaudiAlgorithm::execute() , etc.

 Currently, takes two values:

 StatusCode::SUCCESS, StatusCode::FAILURE

 Should always be tested
 If function returns StatusCode, there must be a reason

 Report failures:

 If IAlgorithm methods return StatusCode::FAILURE,

processing stops
 Always return StatusCode::SUCCESS from these methods

StatusCode sc = someFunctionCall();

if (sc.isFailure())

StatusCode sc = someFunctionCall();

if (sc.isFailure())

{ Warning(“there is a problem”,sc,0).ignore();} }

Exercise

•LHCb software tutorial - March 2011•13

 Now read the web page attached to this lesson in the

agenda and work through the exercise

