

A Forward-Backward Asymmetry in Top Quark Pair Production

The CDF Collaboration D. Amidei, University of Michigan

lepton + jets mode

top quark pair production

• hard scatter cm-frame generically

$$\sigma \sim \frac{\alpha_s^2}{q^2} \Big[1 + \cos^2 \theta^* + f(q^2) \cos \theta^* \Big] \cdot g(\vec{s})$$

- specified by $lpha, q^2, heta^*, ec{s}$
- α , q^2 well measured in σ and M_{tt} spectrum. SM-like.
- here: the production angle ${m heta}^*$
 - in particular: asymmetry in production angle with respect to proton direction

$$A = \frac{F - B}{F + B}$$

- also of interest: q² dependence
- hadron collisions:

$$- \theta^* \to \Delta y = y_t - y_{\bar{t}}$$

tt charge asymmetry in NLO QCD

• Halzen, Hoyer, Kim; Brown, Sadhev, Mikaelian; Kuhn, Rodrigo; Ellis, Dawson, Nason; Almeida, Sterman, Vogelsang; Bowen, Ellis, Rainwater

 $A_{fb} \sim 0.06 \pm 0.015$

- verified for QED in $e^+e^- \rightarrow \mu^+\mu^-$
- strong interaction C tests at high energy? difficulty of jet charge
- reconstructed top pair system has accessible information on charge flow
 - test C in strong interactions at large q²

prior measurements (lepton + jets)

- CDF, 1.9 fb⁻¹, inclusive, corrected to "parton-level"
 - tt rest frame $A^{t\bar{t}} = 0.24 \pm 0.14$
 - NLO QCD $A^{t\bar{t}} = 0.06 \pm 0.01$

PRL 101, 202001 (2008)

- D0, inclusive, background subtracted "data-level"
 - tt rest frame $A^{t\bar{t}} = 0.12 \pm 0.08$ 0.9 fb⁻¹ PRL 100, 142002 (2008) $A^{t\bar{t}} = 0.08 \pm 0.04$ 4.3 fb⁻¹ ICHEP 2010 - NLO QCD $A^{t\bar{t}} = 0.02 \pm 0.01$

theoretical interest

- s-channel
 - massive chiral color octets
 - "axigluon"
 - RS gluon

– W´Z´

- color triplets, sextets

- model building must contend with
 - total σ in good agreement with SM
 - d σ /dM_{tt} in good agreement with SM

lepton + jets: selection and reconstruction

$$q\overline{q} \to g \to t\overline{t} \to (W^+b)(W^-\overline{b}) \to (l^+\upsilon b)(q\overline{q}\overline{b}) \to l^+ + E_T + 4j + \ge 1 btag$$

- 5.3 fb⁻¹
- lepton (e/ μ) $E_t/p_t > 20 \text{ GeV}$ (/c)
- missing $E_t > 20 \text{ GeV}$
- .g.e. 4 jets E_t > 20 GeV
 - at least one b-tagged jet
- 1260 events bkg = 283±50

top reconstruction

 $l^{+} + \mathbb{E}_{T} + 4j + \ge 1 \ btag \rightarrow (l^{+} \upsilon b)(q\overline{q}\overline{b}) \rightarrow (W^{+}b)(W^{-}\overline{b}) \rightarrow t\overline{t}$

- jet-parton assignment, $p_z(v)$ via minimum of simple χ^2
 - Constraints: M_W = 80.4 GeV/c2, M_t = 175 GeV/c², btag = b
 - Float jet p_t within errors
- sign of lepton fixes charge of tops and decay products

top pair rapidity difference

- frame invariant variables •
 - $\Delta y_{lh} = y_l y_h$ $\Delta y = q \cdot \Delta y_{lh} = y_t - y_{\bar{t}}$
 - interpretation

$$\Delta y = 2y_t^t$$

 $\delta y_l \approx 0.085$ $\delta y_h \approx 0.034$ tī D b 1+

h

asymmetry in Δy equals asymmetry in top quark production angle in tt rest frame

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$
$$= \frac{N(\cos\theta^* > 0) - N(\cos\theta^* < 0)}{N(\cos\theta^* > 0) + N(\cos\theta^* < 0)}$$

q

 \mathcal{Y}_h

expected QCD asymmetries

- three different calculations for expectation
 - Pythia: LO simulated sample
 - MCFM: NLO calculation at "parton level"
 - MC@NLO + CDFSIM: simulated sample for input the analysis

	$A^{\mathrm{t}\overline{\mathrm{t}}}$	level	model
truth	0.058 ± 0.009	parton	MCFM
truth	0.052 ± 0.008	parton	MC@NLO
sim + reco	0.024 ± 0.005	$t\overline{t}$	MC@NLO
sim + reco +bkg	0.017 ± 0.004	$t\bar{t}$ +bkg	MC@NLO

- n.b.
 - prediction for data level asymmetry < stat precision (0.028)
 - Pythia tt model remains good approximation of SM

inclusive $y_l - y_h$ distributions

- A_{FB} = 0.008 ± 0.028
- "uncharged" distribution is symmetric

inclusive $y_l - y_h$ distributions

- $A_{FB} = 0.008 \pm 0.028$
- "uncharged" distribution is symmetric
- but if separate by lepton charge see charge asymmetry
- CP conserving

inclusive
$$\Delta y = q \cdot (y_l - y_h)$$

then

- bkg subtract
 - yields tt "signal" at reco level
- unfold acceptance & resolution
 - yields tt at "parton level"

sample	level	$A^{{ m t}ar{{ m t}}}$
data	data	0.057 ± 0.028
MC@NLO	$t\bar{t}$ +bkg	0.017 ± 0.004
data	signal	0.075 ± 0.037
MC@NLO	$t \overline{t}$	0.024 ± 0.005
data	parton	0.158 ± 0.074
MCFM	parton	0.058 ± 0.009

A(Δy), parton level, data

sample	level	$ \Delta y < 1.0$	$ \Delta y \ge 1.0$
data	data	0.021 ± 0.031	0.208 ± 0.062
data	parton	$0.026 \pm 0.104 \pm 0.056$	$0.611 \pm 0.210 \pm 0.147$
MCFM	parton	0.039 ± 0.006	0.123 ± 0.018

$$q\overline{q} \to g \to t\overline{t} \to (W^+b)(W^-\overline{b}) \to (l^+\upsilon b)(l^-\overline{\upsilon}\overline{b}) \to l^+ + l^- + E_T + 2j$$

selection and reconstruction

- 5.1 fb⁻¹
- 2 OS lepton (e/μ) E_t/p_t > 20 GeV (/c)
 M_{II}.ne. M_Z
- missing $E_t > 25 \text{ GeV}$
- .g.e. 2 jets E_t > 15 GeV
- H_t > 200 GeV
- 334 events bkg = 87±17

lepton rapidity difference

$$\Delta \eta_l = \eta_{l^+} - \eta_{l^-}$$

- experimentally robust
- correlated with Δy

lepton rapidity difference in Z control samples

$\overline{A_{\rm obs}^{\Delta\eta_{\ell}, Z \to \ell\ell + n \text{ jets}}}$	Data	Prediction
$Z(\rightarrow ee) + 0$ jet	-0.045 ± 0.003 (stat.)	-0.046 ± 0.002
$Z(\rightarrow \mu\mu) + 0$ jet	-0.034 ± 0.003 (stat.)	-0.032 ± 0.002
$Z(\rightarrow ee) + 1$ jet	$-0.037 \pm 0.006 (\text{stat.})$	-0.048 ± 0.004
$Z(\rightarrow \mu\mu) + 1$ jet	$-0.031 \pm 0.007 (\text{stat.})$	-0.030 ± 0.003
$Z(\rightarrow ee) + \ge 2$ jet	-0.065 ± 0.012 (stat.)	-0.056 ± 0.008
$Z(\rightarrow \mu\mu) + \ge 2$ jet	$-0.058 \pm 0.014 (\text{stat.})$	-0.025 ± 0.007

lepton rapidity difference in top dilepton control samples

dilepton + MET+ 0 jets

dilepton + MET+ 1 jet

0

 $\Delta\,\eta_{\text{I}}$

CDF II Preliminary

2

L dt = 5.1 fb⁻¹

tt 📃 $\pm 1\sigma$ error Fake/Wγ

DY Ζ→ττ WW/WZ/ZZ

lepton rapidity difference in dilepton top signal

 $A_{obs}^{\Delta \eta_l} = 0.138 \pm 0.054$ $A_{pred}^{\Delta \eta_l} = -0.022 \pm 0.022$

KS = 0.8%

top reconstruction in the dilepton sample

- jet-parton match and top reconstruction via
 - M_W, M_t constraints
 - and likelihoods of $p_T^{t\bar{t}}$, $p_z^{t\bar{t}}$, $M_{t\bar{t}}$

• with reco in hand, examine Δy_{tt}

top rapidity difference in dilepton sample

$$A_{obs}^{\Delta y_{t}} = 0.138 \pm 0.054$$

 $A_{pred}^{\Delta \eta_{l}} = -0.015 \pm 0.023$
KS = 1.4%

correcting to the parton level

- sub bkg: $A_{fb} = 0.205 \pm 0.073$
- parton level:
 - minimal model assumptions
 - 1. $A(\Delta y) = \alpha \Delta y$
 - 2. Pythia Δy is true at A=0
 - reweight Pythia by $1+\alpha\Delta y$
 - find truth level A_{true}
 - find reco level A_{obs}
 - for ensemble of α , find $A_{true} = k A_{obs}$
- parton level in data:

 A_{fb} (DIL) = 0.417±0.156

• compare:

 $A_{fb}(ljets) = 0.158 \pm 0.074$

M_{tt} dependence of the asymmetry

MCFM: A(M_{tt})

data: $\Delta y vs M_{tt}$

A^{tt}(M_{tt, i})

color octet model

- to test methodologies on
 - large asymmetry
 - mass dependence
- color octets with axial couplings
 - after Ferrario and Rodrigo arXiv:0906.5541
 - thanks to T. Tait for Madgraph
- sample "Octet A"
 - $g_v = 0, |g_A = 3|$
 - $g^{q}{}_{A} = g^{t}{}_{A}$
 - $M_{G} = 2.0 \text{ TeV}$
 - xsec ratio: σ/σ_{sm} = 1.02
 - M_{tt} spectrum ~ compares to Pythia
 - Model: Parton $A_{tt} = 0.16$ Reco $A_{tt} = 0.08$
 - Data: Parton $A_{tt} = 0.15$, Reco $A_{tt} = 0.06$
- a test sample. not a hypothesis
- use to study parton level corrections and treatment of mass dependence
 - 2-bin $A(M_{tt})$

color octet model

- to test methodologies on
 - large asymmetry
 - mass dependence
- color octets with axial couplings
 - after Ferrario and Rodrigo arXiv:0906.5541
 - thanks to T. Tait for Madgraph
- sample "Octet A"
 - $g_v = 0, |g_A = 3|$
 - $g^{q}{}_{A} = g^{t}{}_{A}$
 - $M_{G} = 2.0 \text{ TeV}$
 - xsec ratio: σ/σ_{sm} = 1.02
 - M_{tt} spectrum ~ compares to Pythia
 - Model: Parton $A_{tt} = 0.16$ Reco $A_{tt} = 0.08$
 - Data: Parton $A_{tt} = 0.15$, Reco $A_{tt} = 0.06$
- a test sample. not a hypothesis
- use to study parton level corrections and treatment of mass dependence
 - 2-bin $A(M_{tt})$
 - optimal partition at M_{tt} = 450 GeV/c²

Δy at low and high mass

Δy_{lh} at high mass by lepton charge

Δy_{lh} at high mass by lepton charge

consistent with CP conservation

28

 argues against experimental artifact, as detection/reconstruction are sign independent

correction to parton level

- background subtraction
- unfold in 4 bins in Δy and M_{tt}
 - low mass forward
 - low mass backward
 - high mass forward
 - high mass backward

selection	$M < 450~{\rm GeV}/c^2$	$M \ge 450 \ { m GeV}/c^2$
data	-0.016 ± 0.034	0.210 ± 0.049
MC@NLO $t\bar{t}$ +bkg	$+0.012 \pm 0.006$	0.030 ± 0.007
data signal	$-0.022 \pm 0.039 \pm 0.017$	$0.266 \pm 0.053 \pm 0.032$
MC@NLO $t\bar{t}$	$+0.015 \pm 0.006$	0.043 ± 0.009
data parton	$-0.116 \pm 0.146 \pm 0.047$	$0.475 \pm 0.101 \pm 0.049$
MCFM	$+0.040 \pm 0.006$	0.088 ± 0.013

A(M) and A(Δy) for representative theories Gresham, Kim, Zurek ArXiv:1103.3501

frame dependence

• a selection of cross-checks in the lab frame using $-qy_h = y_t^{p\overline{p}}$

selection	all $M_{t\bar{t}}$	$M_{t\bar{t}} < 450 \ \mathrm{GeV}/c^2$	$M_{t\bar{t}} \ge 450 \text{ GeV}/c^2$
data reco	$0.073 {\pm} 0.028$	$0.059 {\pm} 0.034$	0.103 ± 0.049
MC@NLO	$0.001 {\pm} 0.003$	-0.008 ± 0.005	$0.022 {\pm} 0.007$
A_h^+	-0.070 ± 0.040	-0.028 ± 0.050	-0.148 ± 0.066
A_h^-	$0.076 {\pm} 0.039$	$0.085 {\pm} 0.047$	$0.053 {\pm} 0.072$
single b -tags	$0.095 {\pm} 0.032$	$0.079 {\pm} 0.034$	$0.130 {\pm} 0.057$
double b -tags	-0.004 ± 0.060	-0.023 ± 0.076	$0.028 {\pm} 0.097$

- the high mass asymmetry is less significant in the lab frame
 - like QCD ?
- the high mass double tag asymmetry is low in the lab frame
 - statistics?
 - $|\eta| < 1.0$ for b-tags. acceptance + physics?

summary

• significant inclusive $A_{fb}(\Delta y)$ is observed in two decay modes

		lepton + jets	dilepton
_	data	0.054 ± 0.028	0.138 ± 0.054
_	bkg sub	0.075 ± 0.037	0.205 ± 0.076
_	parton level	0.158 ± 0.074	0.417 ± 0.157
_	MCFM	0 058+0 009	

- in dileptons, well understood $A_{fb}(\eta_{II})$ is consistent with $A_{fb}(\Delta y)$
- in lepton+jets, $A_{fb}(\Delta y)$ is observed to depend on Δy and M_{tt}

		M_{tt} < 450 GeV/c ²	$M_{tt} \ge 450 \text{ GeV/c}^2$
_	data	-0.016 ± 0.034	0.210 ± 0.049
_	parton level	116 ± 0.153	0.475 ± 0.112
_	MCFM	0.040 ± 0.006	0.088 ± 0.013

- A_{fb} reverses sign under interchange of lepton (top) charge: CP conservation
- various data puzzles remain.
- interesting theoretical suggestions
- lots of work still to do

Backup

studies of A^{tt} at the data level

selection	N events	all M	$M < 450~{\rm GeV}/c^2$	$M \geq 450~{\rm GeV}/c^2$
standard	1260	$0.057 {\pm} 0.028$	$-0.016 {\pm} 0.034$	$0.212{\pm}0.049$
electrons	735	$0.026{\pm}0.037$	-0.020 ± 0.045	$0.120{\pm}0.063$
muons	525	$0.105 {\pm} 0.043$	$-0.012{\pm}0.054$	$0.348{\pm}0.080$
data $\chi^2 < 3.0$	338	$0.030{\pm}0.054$	-0.033 ± 0.065	0.180 ± 0.099
data no-b-fit	1260	$0.062{\pm}0.028$	0.006 ± 0.034	0.190 ± 0.050
data single b-tag	979	$0.058{\pm}0.031$	$-0.015 {\pm} 0.038$	$0.224{\pm}0.056$
data double b-tag	281	$0.053{\pm}0.059$	$-0.023 {\pm} 0.076$	$0.178 {\pm} 0.095$
data anti-tag	3019	$0.033{\pm}0.018$	$0.029{\pm}0.021$	$0.044{\pm}0.035$
pred anti-tag	-	$0.010 {\pm} 0.007$	$0.013 {\pm} 0.008$	$0.001{\pm}0.014$
pre-tag	4279	$0.040 {\pm} 0.015$	$0.017 {\pm} 0.018$	$0.100{\pm}0.029$
pre-tag no-b-fit	4279	$0.042{\pm}0.015$	$0.023{\pm}0.018$	$0.092{\pm}0.029$

bonus question

• Highest Q² prior test of C in strong interactions ?

PHYSICAL REVIEW D VOLUME 17, NUMBER 7

1 APRIL 1978

Test of charge-conjugation invariance in $\overline{p}p$ interactions

R. Cester, V. L. Fitch, R. W. Kadel,* R. C. Webb, J. D. Whittaker, and M. S. Witherell Department of Physics, Princeton University. Princeton. New Jersey 08540

M. May

Brookhaven National Laboratory, Upton, L.I., New York 11973 (Received 12 December 1977)

Using $\overline{p}p$ interactions at $\sqrt{s} = 5.44$ GeV we have tested for evidence of C noninvariance through a comparison of the transverse-momentum distributions of particle and antiparticle produced at 90° in the center of mass. We found an average charge asymmetry for pions with p_1 between 0.5 and 2.7 GeV/c of $\Delta = (N_+ - N_-)/(N_+ + N_-) = 0.006 \pm 0.009$. This corresponds to a limit on the magnitude of the C-violating (relative to C-conserving) amplitude of Rea < 0.0045.

top rapidity difference in dilepton sample w/ bkg subtraction

lepton rapidity difference in dilepton control samples

SS + MET+ 2 jets

candidates with $H_t < 200 \text{ GeV}$

expected correlation of $\Delta\eta$ and Δy for best fit

compare to best fit model

• top rapidity difference

KS = 51.2 %

• lepton rapidity difference

KS = 44.8%

inclusive distributions (both lepton charges)

• symmetric!

inclusive charge weighted

separate by lepton charge

backgrounds

- detailed model for all background components
- fully simulated model samples are reconstructed like data
- asymmetries small (but not zero)

tt rest frame

lab frame

backgrounds

- can be checked in events without b-tags. S:B = 0.3
- data and predictions in good agreement

tt rest frame

lab frame

correct to the "parton level"

- dN/dy parton level histogram
 - parton level bins j w/ contents P_i
- the top data signal
 - S_i = M_{ij} x A_j x P_j
- where
 - the A_i are the acceptances for each bin
 - the M_{ii} are the bin-to-bin migration ratios
 - both are estimated with Pythia
- dN/dy data level histogram
 - data level bins i w/ contents D_i
 - Sum of top and bkgrd: $D_i=S_i+B_i$
- to propagate data to parton level:
 - $P_j = A_j^{-1} \times M_{ji}^{-1} \times (D_i B_i)$
- result is optimized when number of bins = 4

sample	level	$A^{\mathbf{t}\overline{\mathbf{t}}}$
data	data	0.057 ± 0.028
MC@NLO	$t\bar{t}$ +bkg	0.017 ± 0.004
data	signal	0.075 ± 0.037
MC@NLO	$t \overline{t}$	0.024 ± 0.005
data	parton	0.158 ± 0.074
MCFM	parton	0.058 ± 0.009

$A(\Delta y)$, parton level, data

data parton $0.026 \pm 0.104 \pm 0.056$ $0.611 \pm 0.210 \pm 0.147$

MCFM parton 0.039 ± 0.006 0.123 ± 0.018

Systematic Uncertainties Inclusive

effect	$\delta A^{\mathrm{p}\bar{\mathrm{p}}}$	$\delta A^{\mathrm{t}\overline{\mathrm{t}}}$
background magnitude	0.015	0.011
background shape	0.014	0.007
ISR/FSR	0.010	0.001
JES	0.003	0.007
PDF	0.005	0.005
color reconnection	0.001	0.004
LO MC generator	0.005	0.005
total	0.024	0.017

binning in M_{tt}

- get A_{FB} in slices of M_{tt}
- but how to quantify?
- simplest A(M): two bins
 - high and low mass
- where to put boundary?

• look at significance
$$S_A = \frac{A}{\delta A}$$
 at high mass vs. boundary

best boundary: 450 GeV/c²

	OctetA			etB
bin-edge	$A^{\tt tt}$	significance	$A^{\tt tt}$	significance
(GeV/c^2)				
345	0.082 ± 0.028	2.90	0.168 ± 0.028	5.99
400	0.128 ± 0.036	3.55	0.235 ± 0.035	6.74
450	0.183 ± 0.047	3.91	0.310 ± 0.044	7.08
500	0.215 ± 0.060	3.60	0.369 ± 0.054	6.81
550	0.246 ± 0.076	3.25	0.425 ± 0.066	6.43
600	0.290 ± 0.097	2.97	0.460 ± 0.081	5.70

 $A^{tt}(M_{tt, i})$ by charge

sys uncertainty of unfold procedure

Source	$M < 450 \ {\rm GeV}/c^2$	$M \ge 450 \ { m GeV}/c^2$
background size	0.017	0.032
background shape	0.003	0.003
JES	0.005	0.012
ISR/FSR	0.012	0.008
color reconnection	0.009	0.004
PDF	0.018	0.004
physics model	0.035	0.035
total	0.047	0.049

TABLE XII: Systematic uncertainties in the two-mass bin unfold

Att at high and low mass: parton level

jet multiplicity dependence

- the NLO QCD asymmetry has a strong $N_{\mbox{\scriptsize jet}}$ dependence

selection	all M	$M < 450~{\rm GeV}/c^2$	$M \geq 450~{\rm GeV}/c^2$
inclusive	0.024 ± 0.004	0.015 ± 0.005	0.043 ± 0.007
4-jet	0.048 ± 0.005	0.033 ± 0.006	0.078 ± 0.009
5-jet	-0.035 ± 0.007	-0.032 ± 0.009	-0.040 ± 0.012

• data: the high mass asymmetry is significantly reduced for 5 jet events

selection	N events	all M	$M < 450~{\rm GeV}/c^2$	$M \geq 450~{\rm GeV}/c^2$
data 4-jet	939	$0.065 {\pm} 0.033$	-0.023 ± 0.039	$0.26{\pm}0.057$
data 5-jet	321	$0.034{\pm}0.056$	$0.0049 {\pm} 0.07$	$0.086{\pm}0.093$

need to study other models, color flow, asymmetry reco in ttj

Tevatron vs LHC (from Kuhn and Rodrigo)

x=x₁-x₃

Model

 $g_V^{\prime}, g_A^{\prime}$ Color-Octet G after Ferrario and Rodrigo g_V^q, g_A^q arXiv:0906.5541 • If $g_{A}^{q} = -g_{A}^{t}$ get positive asymmetry $\frac{d\sigma^{q\bar{q}\to t\bar{t}}}{d\cos\hat{\theta}} = \alpha_S^2 \, \frac{T_F C_F}{N_C} \, \frac{\pi\beta}{2\hat{s}} \left\{1 + c^2 + 4m^2\right\}$ J. Naganoma $+\frac{2\hat{s}(\hat{s}-m_G^2)}{(\hat{s}-m_C^2)^2+m_C^2\Gamma_C^2}\left[g_V^q g_V^t \left(1+c^2+4m^2\right)+2g_A^q g_A^t c\right]$ $+ \frac{\hat{s}^2}{(\hat{s} - m_C^2)^2 + m_C^2 \Gamma_C^2} \left[\left((g_V^q)^2 + (g_A^q)^2 \right) \right]$ $\times \left((g_V^t)^2 (1 + c^2 + 4m^2) + (g_A^t)^2 (1 + c^2 - 4m^2) \right)$ $+8 g_{V}^{q} g_{A}^{q} g_{V}^{t} g_{A}^{t} c$] }, (1)

Production Angle → Rapidity

- from qq to lab
 - black = SM
 - red = SM +0.34 $\cos\theta$

