ORACLE

ORACLE

The latest GCC release series and the special
modes of its runtime C++ library

Paolo Carlini ORACLE"
CONSULTING

. Overall summary

- Highlights of the GCC 4.6 series (and beyond)
— C++ front-end
— Optimizers
— x86/x86 64 backend

- The special modes of the C++ runtime library
— Namespace association
— Debug-mode
— Parallel-mode
— Profile-mode
— Your-mode ;)

ORACLE

The GCC 4.6 release
series (and beyond)

ORACLE

. The GCC 4.6 release series (and beyond)

- GCC 4.6.0 released March 25th, after an unusually
long “Stage 4" phase

— 4.6.1 forthcoming, many serious bugs fixed

- Definitely too many interesting improvement for half a
talk, I'll concentrate on some topics
— No Fortran 2003 / 2008 (see Release Notes about those)
— No backend != x86/x86 64
— Some discussion of the general outlook post 4.6.x

— General advice: do not trust too much the Release Notes in
terms of coverage (and accuracy too)

+ in my experience developers don't like writing docs, eg, a
lot is missing from the C++ runtime section (also my fault)

ORACLE

. The GCC 4.6 release series (and beyond)

- Interesting new warnings:
— -Wunused-but-set-variable / -Wunused-but-set-parameter

— -Wsuggest-attribute=[const|pure|noreturn]

- Much better diagnostics for common mistakes
— Misplaced/missing colons, semicolons, etc
— Solicited by CLANG

- #pragma gcc diagnostic

- Anew GO (http://golang.org/) front-end

>>> -fgplit-stack in C/C++

— Useful for threaded programs, in that it is no longer necessary
to specify the maximum stack size when creating a thread

ORACLE

http://golang.org/

. C++ front-end & C++0x

- The C++0x effort continues both in the front-end and
In the runtime library:

— constexpr (more later)

- The first publicly available implementation

- Runtime library completely updated to exploit it

- Still a bit buggy, improved a lot in GCC 4.6.1
— nullptr

- nullptr_t in the library (+ all the additional overloads)
— noexcept

- Sort-of compile-time throw () (std::terminate called)

- -fnothrow-opt

— “Microsoft-style” throw ()

ORACLE

. C++ front-end & C++0x

— Forward declaration of enums

- Completing the enums package begun in GCC 4.5
— Range-based for loops

* Including the library bits

— By the way these bits will not be necessary anymore in
the updated specs, implemented for GCC 4.7

— Unrestricted unions
— More...

- See http://gcc.gnu.org/gcc-4.6/cxx0x_status.html for
links to ISO papers including rationale for each one

— http://gcc.gnu.org/projects/cxx0x.html can be also useful to
see the progress from one series to the next

ORACLE

http://gcc.gnu.org/gcc-4.6/cxx0x_status.html
http://gcc.gnu.org/projects/cxx0x.html

. C++0x constexpr (crash intro)

- Consider the following snippet, in C++03:

template<int> struct F { };

F<std::numeric limits<int>::max()> £; // Error!

- Thus the C-style way of using limits, via macros like INT_MAX,
was still unavoidable with templates. Also, code like:

const int z = numeric limits<int>::max();

is legal in C++03 but z is dynamically (ie, at run-time), not
statically initialized

ORACLE

. C++0x constexpr (2)

- In GCC 4.6, C++ runtime library functions like max above
are decorated with the constexpr keyword, ie (modulo

irrelevant details):

static constexpr
int max ()
{ return _ INT MAX ; }

- Only sufficiently simple functions (eg, the body must consist of a
single return statement, no iteration, no changes to the
arguments, etc.) can be syntactically declared as such but then
(assuming the arguments are in turn constant expressions) the
function is completely evaluated at compile-time and the return
value “inlined” at each call site.

ORACLE

. C++0x constexpr (examples)

constexpr int square(int x) { return x * x; }

constexpr int abs(int x)
{ return x < 0 ? -x : x; }

constexpr int

fact(int x)

{ return x > 2 ? x * fact(x -1) : 1; }

float array[square(9)]; // Ok (not C99 VLA!)

std: :bitset<abs (-87)> s; // Ok

enum { Max = fact(5) }; // Ok

ORACLE

. C++0x constexpr (4)

- Important clarification. Code like:

extern const int medium;
const int high = square (medium); // Ok, dynamic init

is also legal in C++0x, but the call boils down to a normal
function call, thus high is initialized at run-time, because at
compile-time the value of medium is unknown. Indeed:

constexpr int high = square (medium); // error!
VS
constexpr int s = square(5); // Ok

s is called constexpr data (compile-time, “rodata”).

ORACLE

. C++0x constexpr (5)

- constexpr constructors also exist (see std::complex):

struct complex ({
constexpr complex(double r, double i) : re(r), im(i) {}
constexpr double real() { return re; }
constexpr double imag() { return im; }

private:
double re; double im;

};

constexpr complex I(0, 1); // Ok
constexpr double i = I.imag(); // Ok

ORACLE

. Optimizers: inlining

- Partial inlining: -fpartial-inlining (enabled by -0O2)
- Inlining of callbacks is now more aggressive

— Example: testcase fmtflags_manipulators.cc in the
performance testsuite of the library

ostringstream os;
os.setf (ios _base: :uppercase);
VS

os << uppercase;

ORACLE

. Optimizers: WHOPR, LTO, FDO...

- Scalable Whole Program Optimizer (WHOPR)

— Link time optimization can now split itself into multiple parallel
compilations. Can be controlled in various ways, eg:

- -flto=n
- -flto-partition=[none|balanced|none]

- Rather recent blog entry by Mike Hommey on Firefox vs
FDO with GCC 4.5

— http://glandium.org/blog/?p=1975
- In GCC 4.6 LTO too works for Firefox (and other large
applications, like GCC itself)

- Vastly improved in terms of memory use, performance,
bugs fixed.

ORACLE

http://glandium.org/blog/?p=1975

. GCC 4.6: backend tidbits & varia

- libquadmath

— Primary motivation: Fortran
- -march(-mtune)=[core2|corei7|corei/-avx|btver1]

- Ongoing work on OpenMP 3.1, will be in GCC 4.7
— 3.0 delivered in GCC 4.4

— A couple of serious bugs affecting OpenMP vs C++ being fixed
in GCC 4.6

ORACLE

. GCC 4.6/ 4.7: looking forward

- Quite a few active development branches

— See both:
- http://gcc.gnu.org/svn.html
- http://gcc.gnu.org/wiki

— Many Google people involved, besides the traditional Red Hat,
Novell, etc.

- Pre-parsed Headers

- Profile Feedback Based Lightweight IPO
- Graphite targeting OpenCL (vs OpenMP)
« C++0x Memory Model

— In particular bitfields-related issues, currently being worked on
- Transactional memory

ORACLE

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/wiki

The special modes of the
C++ runtime library

ORACLE

. A Chronology

- 2004 (GCC 3.4): debug-mode

— Contributed by Doug Gregor
— Exploits the “strong using” GNU extension

- 2008 (GCC 4.3): parallel-mode

— Contributed by Johannes Singler and Leonor Frias
- 2009 (GCC 4.4): “inline namespace” mechanism

- 2010 (GCC 4.5): profile-mode
— Contributed by Silvius Rus, Lixia Liu, and Changhee Jung

- 2011 (GCC 4.6): debug-mode performance work

— More profile-mode forthcoming

ORACLE

. Namespace association everywhere

- The idea is segregating the code for each special
mode in a separate namespace and then importing it
on demand in namespace std.

- However, the normal using-declaration mechanism is
way too weak for that

— A template can only be specialized in its actual namespace.

— Argument-dependent lookup (aka “Koenig lookup”) breaks
down if library components are split across multiple
namespaces.

- The “inline namespace” mechanism, standardized in

C++0x, solves all those issues!

— See N2535 on the WG21 web site for details...

— Available in GCC in C++03 mode too as an extension (like,
eg, variadic templates)

ORACLE

Namespace association (N2535 example)

namespace Lib
{
inline namespace Lib 1 // Lib 1 is an inline namespace of Lib
{
template <typename T> class A;

}
template <typename T> void g(T);

}
struct MyClass { .. };

namespace Lib

{
template <> class A<MyClass> { .. }; // Ok, can specialize

int main ()

{
Lib: :A<MyClass> a;

g(a); // Ok, Lib is an associated namespace of A, is searched

}
ORACLE

. Debug-mode

- Today, most implementations of the C++ standard
library provide a debug-mode, at least performing
runtime checks via

— Some kind of safe iterators, keeping track of the container
whose elements they reference (eg, trying to increment past-
the-end iterators, dereferencing iterators pointing to
destructed container, are all easily detected)

— Pre-conditions in the algorithms (eg, valid ranges, sorted
ranges)

- Well established in GCC, -D_GLIBCXX_DEBUG

— Pedantic mode also available

- Refer to the documentation about the specific design
choices of the implementation

ORACLE

Debug-mode issues

Many still today!

Issues with std::string, exported, weaker checking

— The extern template mechanism (standard in C++0x, by
the way) is disabled in order to always check pre-conditions

— No safe iterators

std::bitset vs C++0x

— Would not be a literal type anymore

Performance can be poor in some cases

— Improvements in GCC 4.6 thanks to Francois Dumont' help
(see libstdc++/46659 for some rather impressive numbers)

— More can be probably done, Francois is on it..
— ... do you care?

ORACLE

. Debug-mode issues (2)

- Behavior vs threads

— ldeally, the debug-mode library, should be indistinguishable
from the normal library, but the safe iterators are a pain!

— Not anticipated in the original design
— First fixes: rather brutal locking strategies
— Good improvements in GCC 4.6: essentially a pool of locks,
randomly selected via hashing. We can certainly do better!
- What about exceptions instead of assert?
— Long standing libstdc++/23888, differing opinions
— C++0x knows about throwing checking libraries (see N3248)

ORACLE

. Parallel-mode

. Enabled by -D_GLIBCXX_ PARALLEL -fopenmp

- Stems from an University of Karlsruhe project aimed
at parallelizing the C++ library via OpenMP.

- At the current stage of development, many algorithms
are already available, both in <algorithm> proper and
IN <numeric>.

- Tuning and customization are easy (see docs), in any
case the defaults are often sensible (at least on x86 /
x86_64-linux).

ORACLE

. Parallel-mode, some (rough) numbers

- A very simple experiment

— On an i7-980x Linux machine, using /dict/words: 3878904
chars, 380646 words

— Everything default, -O2 vs -O2 + parallel-mode
— Relative real times in the Table
— (# of iterations, etc, full details available)

serial parallel
sort & random_shuffle 15 3
find (“thing”) 7 1
stable sort & random_shuffle 25 4

ORACLE

. Parallel-mode issues

- Dynamic memory allocation

— As happens for other scientific computing software, the code
assumes that memory is just available and no memory
allocation throws.

— This is of course a big issue if the parallel replacements are
supposed to behave exactly like the serial counterparts
(besides performance).

 Correctness vs C++0x about “move-only types”

— Quite a few parallel algorithms (eg, std::sort) assume that the
types are just CopyConstructible and CopyAssignable, C++03
way. But in C++0x only MoveConstructible and
MoveAssignable are required.

- See “xfailed” testcases in the testsuite

ORACLE

. Parallel-mode issues (2)

- Integration with debug-mode
— Currently the special modes are mutually exclusive

— As noticed by Francois Dumont, doesn't have to be like that,
at least for debug-mode and parallel-mode. Will be hopefully
fixed in GCC 4.7

- Vectorization?

— For bits of <numeric> seems an obvious choice
— How does that mix with OpenMP / OpenCL?

- Other forms of parallelization?

ORACLE

. Profile-mode

- Silvius Rus @ google is the main contributor of the
original code and maintainer today

- Enabled by -D_GLIBCXX_PROFILE

- Focused on the selection of the optimal std:: container
(or of its parameters) for each problem

- During representative runs the instrumented library
records the call patterns, collects statistics

- Basing on a performance model, which also includes
details of the architecture (eg, Opteron vs Core2),
diagnostics is produced about whether a different
container would be more efficient in each “context”

— normally the granularity is an individual function call

ORACLE

. Profile-mode (2)

- Examples of diagnostics (various subsets)
— Vector-to-list
— Ordered-to-unordered

— Hashtable-too-small
— Hashtable-too-large

— Vector-too-small
— Vector-too-large

— (see on-line docs for a detailed list & status table)
- Adding more is work in progress

ORACLE

. Profile-mode, simple example (from Silvius)

#include <vector>

int main()

{

std: :vector<int> v;
for (int k = 0; k < 1024; ++k)
v.insert(v.begin (), k);

- It works! Profile-mode suggests to switch from std::vector
to std::list and indeed the code runs about two times faster.

- Also...

ORACLE

. Profile-mode (4)

- ... the current - ie, as delivered in GCC 4.5 and 4.6 -
profile-mode is already able to detect cases where
std::vector is instead preferable to std::list - thanks to
the compact memory layout - even if many insertions
In the middle happen, something badly known in the
community until quite recently.

— A typical simple case (by Bjarne) would be inserting while
maintaining the sequential container ordered

- http://gcc.gnu.org/ml/libstdc++/2010-12/msg00080.html
— “A call for libstdc++ profile mode diagnostic ideas”
— Aot of improvements forthcoming in 2011
— Please get in touch with Silvius!

ORACLE

http://gcc.gnu.org/ml/libstdc++/2010-12/msg00080.html

. Profile-mode issues

- Of course still at an initial stage, needs testing

- Make sure it works well also on non-x86/x86 64
and/or non-Linux machines

- The memory footprint of the instrumented code could
be optimized (too much is inline). Known issue.

- Double check and likely fix some parts of the models
vs C++0x. Tricky.

— For example, internal bookkeeping operations of containers
like std::vector can be much faster for “moveable” types: the
performance model cannot be the same.

ORACLE

. Profile-mode issues (2)

- Probably do something about controlling granularity in
a case by case way

- Science-fiction: automatic decisions, without asking
the user to change himself the code, thus adjust the

container, etc.

ORACLE

. Conclusions

- Let's stop here today.

- Please also send your ideas, observations, etc, to:
libstdc++@gcc.gnu.org

* ... 0or simply to me ;)
paolo.carlini@oracle.com

ORACLE

mailto:libstdc++@gcc.gnu.org
mailto:paolo.carlini@oracle.com

. Bibliography about the special modes

 http://'www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2535.htm
 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
- http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug_mode.html
- http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
- http://gcc.gnu.org/onlinedocs/libstdc++/manual/profile_mode.html

- Parallelization of Bulk Operations for STL Dictionaries. Johannes
Singler. Leonor Frias. Copyright © 2007 Workshop on Highly Parallel
Processing on a Chip (HPPC) 2007. (LNCS).

- The Multi-Core Standard Template Library. Johannes Singler. Peter
Sanders. Felix Putze. Copyright © 2007 Euro-Par 2007: Parallel
Processing. (LNCS 4641).

- Perflint: A Context Sensitive Performance Advisor for C++ Programs.
Lixia Liu. Silvius Rus. Copyright © 2009. Proceedings of the 2009
International Symposium on Code Generation and Optimization.

ORACLE

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2535.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug_mode.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/profile_mode.html

. Thanks!

,:o__
<
1%
0

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37

