Composite Dynamics

Francesco Sannino

CP ${ }^{3}$ - Origins
Particle Physics \& Origin of Mass

NEXT Graduate School I8 July 20II

Francesco Sannino

Standard Model

RXTE PUFFED ACCRETION DISK VERSION 2 WITH NO WOBBLE

ANIMATIONETY
DANA BERRRY
SKYWORKS DIGITAL ANIMATION
$310-441-1735$

Mystery of Mass

Riddles

Standard Model

Energy

The standard model

SM

TeV Scale

WW Scattering

S-wave amplitude:

$$
\begin{aligned}
A_{0}=\frac{G_{F}}{8 \pi \sqrt{2}} s \quad G_{F} & =\frac{g^{2}}{4 \sqrt{2} M_{W}^{2}} \\
& \simeq 1.14 \times 10^{-5} \mathrm{GeV}^{-2}
\end{aligned}
$$

Unitarity:

$$
\Re\left[A_{0}\right] \leq \frac{1}{2} \quad \longrightarrow \quad s \leq 4 \pi \sqrt{2} / G_{F} \sim(1.2 \mathrm{TeV})^{2}
$$

WW Scattering

$$
A_{0}^{\prime}=-\frac{G_{F}}{8 \pi \sqrt{2}} s
$$

Theorem:

Unitarity requires the existence of a weakly coupled Higgs particle or New Physics around the Terascale!

Origin of mass

The Higgs

$$
H=\frac{1}{\sqrt{2}}\binom{\pi_{2}+i \pi_{1}}{\sigma-i \pi_{3}}
$$

Custodial symmetries

$$
\begin{gathered}
{\left[i \tau_{2} H^{*}, H\right]=\frac{1}{\sqrt{2}}(\sigma+i \vec{\tau} \cdot \vec{\pi}) \equiv M} \\
S U_{L}(2) \times S U_{R}(2) \\
g_{L / R} \in S U_{L / R}(2) \quad M \rightarrow g_{L} M g_{R}^{\dagger}
\end{gathered}
$$

Custodial symmetries

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} \operatorname{Tr}\left[D_{\mu} M^{\dagger} D^{\mu} M\right]-\frac{m^{2}}{2} \operatorname{Tr}\left[M^{\dagger} M\right]-\frac{\lambda}{4} \operatorname{Tr}\left[M^{\dagger} M\right]^{2} \\
& \downarrow \\
& S U_{L}(2) \times U_{Y}(1)
\end{aligned}
$$

$$
1
$$

$$
D_{\mu} M=\partial_{\mu} M-i g W_{\mu} M+i g^{\prime} M B_{\mu}
$$

$$
W_{\mu}=W_{\mu}^{a} \frac{\tau^{a}}{2}, \quad B_{\mu}=B_{\mu} \frac{\tau^{3}}{2}
$$

Custodial symmetries

$$
\left\langle\sigma^{2}\right\rangle \equiv v^{2}=\frac{\left|m^{2}\right|}{\lambda}
$$

$$
|H|
$$

$$
\sigma=v+h
$$

Custodial symmetries

Gauge Boson-Masses

$$
\begin{gathered}
\frac{1}{2} \operatorname{Tr}\left[D_{\mu} M^{\dagger} D^{\mu} M\right] \longrightarrow \begin{array}{|c}
M_{W}=g v / 2=M_{z} \cos \theta_{w} \\
\downarrow
\end{array} \\
e=g \sin \theta_{w} \quad \cos \theta_{w}=g / \sqrt{g^{2}+g^{\prime 2}}
\end{gathered}
$$

Quark-Masses
$-\lambda_{d} \bar{Q}_{L} \cdot H d_{R}$
$m_{d}=\lambda_{d} v / \sqrt{2}$

Higgs mechanism in Nature

Superconductivity

Macroscopic-Screening
Non-Relativistic
SM-Screening
Relativistic

$$
T<T_{c}
$$

$n_{s}=$ Density SC electrons

$$
|\psi|^{2}=n_{C}=\frac{n_{s}}{2} \quad|H|^{2}=\frac{v^{2}}{2}
$$

Superconductivity

Meissner-Mass

Static Vector Potential

$$
\begin{array}{cc}
M^{2}=q^{2} \overparen{n_{s} / 2 m} & M_{W}^{2}=g^{2} \sqrt{2} / 4 \\
m=2 m_{e} \quad q=-2 e & \\
n_{s} \sim 4 \times 10^{28} \mathrm{~m}^{-3} & M_{W} \sim 80 \mathrm{GeV} \\
\xi=1 / M \sim 10^{-6} \mathrm{~cm} & \xi_{W}=1 / M_{W} \sim 10^{-15} \mathrm{~cm} \\
\text { Hidden structure } & \text { ???? }
\end{array}
$$

Weak-GB-Mass

Fermi Scale

$$
v=1 / \sqrt{\sqrt{2} G_{F}} \approx 246 \mathrm{GeV}
$$

$$
M_{H}^{2}=2 \lambda v^{2}
$$

SM - Geometry

Many Models

(?)MSSM

XLMS D

Technicolor

Branes

Unparticle

AdS/?

Technicolor - Geometry

Dynamical EW Breaking

$$
L(H) \rightarrow-\frac{1}{4} F^{a \mu \nu} F_{\mu \nu}^{a}+i \bar{Q} \gamma^{\mu} D_{\mu} Q+\cdots
$$

Dots are partially fixed by Anomalies as well as other principles
$\cdots \quad \rightarrow \quad L$ (New SM Fermions)

QCD-like TC

New Strong Interactions at $\sim 250 \mathrm{GeV}$
[Weinberg, Susskind]

Natural to use QCD-like dynamics.

$$
\begin{array}{r}
S U(N)_{T C} \times S U(3)_{C} \times S U_{L}(2) \times U_{Y}(1) \\
\left\langle Q^{f} \widetilde{Q}_{f^{\prime}}\right\rangle=\Lambda_{T C}^{3} \quad \Lambda_{T C} \simeq 1 \mathrm{TeV}
\end{array}
$$

S \& T

Ext. SM

$$
\Pi_{X Y}^{\mu \nu}\left(q^{2}\right)=\Pi_{X Y}\left(q^{2}\right) g^{\mu \nu}+\cdots
$$

Kennedy-Lynn, Peskin-Takeuchi, Altarelli-Barbieri, Bertolini- Sirlin, Marciano-Rosner

S\&T

S-measures the left - right type current correlator

$$
S=-16 \pi \frac{\Pi_{3 Y}\left(m_{Z}^{2}\right)-\Pi_{3 Y}(0)}{m_{Z}^{2}}
$$

T-measures deviations from

$$
m_{\mathrm{W}}^{2}=\cos ^{2} \theta_{\mathrm{W}} m_{\mathrm{Z}}^{2}
$$

$$
T=4 \pi \frac{\Pi_{11}(0)-\Pi_{33}(0)}{s_{W}^{2} c_{W}^{2} m_{Z}^{2}}
$$

Need novel dynamics

Large \& Positive S from QCD-like Technicolor

SM Fermion Masses

Extending Technicolor

$$
\bar{L} \cdot H e_{R} \quad \rightarrow \quad \bar{L} \frac{\bar{Q} Q}{\Lambda_{E T C}^{2}} e_{R}
$$

Different Approaches

Scalar-less New Gauge Interactions (Extended TC)
 Marry SUSY and Technicolor

Add New Scalars in the Flavor Sector

Extended Technicolor

Modifies TC dynamics

Eichten \& Lane 80

Recent investigations
Ryttov \& Shrock 10

Need to go beyond QCD

Near Conformal

Why walking helps?

$$
\left\langle\bar{Q} Q_{E T C}\right\rangle=\exp \left(\int_{A_{T C}}^{\Lambda_{E T C}} d \ln (\mu) \gamma_{m}(\alpha(\mu))\right)\left\langle\bar{Q} Q_{T C}\right\rangle
$$

QCD-Like
$\exp \left(\int_{\Lambda_{T C}}^{\Lambda_{E T C}} d \ln (\mu) \gamma_{m}(\alpha(\mu))\right) \sim\left(\ln \left(\Lambda_{E T C} / \Lambda_{T C}\right)\right)^{\gamma_{m}}$

Near the conformal window

$$
\exp \left(\int_{\Lambda_{T C}}^{\Lambda_{E T C}} d \ln (\mu) \gamma_{m}(\alpha(\mu))\right) \sim\left(\Lambda_{E T C} / \Lambda_{T C}\right)^{\gamma_{m}\left(\alpha^{\star}\right)}
$$

$$
m_{\mathrm{f}} \approx \frac{g_{E T C}^{2}}{\Lambda_{E T C}^{2}}<\bar{Q} Q>_{E T C}=\frac{g_{E T C}^{2}}{\Lambda_{E T C}^{2}}\left(\frac{\Lambda_{E T C}}{\Lambda_{T C}}\right)^{\gamma_{m}\left(\alpha^{*}\right)}<\bar{Q} Q>_{T C}
$$

If large anomalous dimension, around $\gamma_{m}\left(\alpha^{*}\right) \sim 1.7$

Fermion Mass Enhancement \& FCNC decoupling

Selecting Nature's Next Force

Theory space

Gauge Theories

Gauge Group

Matter

Xtreme-conditions

Phases

$V(r)$

Free Electric

$$
V(r) \propto \frac{1}{r \log (r)}
$$

$$
\alpha(r) \rightarrow \frac{1}{\log (r)}
$$

$$
\alpha=\frac{g^{2}}{4 \pi}
$$

Coulomb

$$
V(r) \propto \frac{1}{r}
$$

IR Conformal Phase

QCD - Like

$V \propto \sigma r$

Asymptotic safety

Knobs

Gauge Group, i.e. SU, SO, SP

Matter Representation
\# of Flavors per Representation

IR Conformal
NA-QED

A novel phase @ large Nf

Interesting structure at large Nf
Entire series at large Nf is known

Universal Picture

SU(N) Phase Diagram

What is the use?

(?)MSSM

Composite DM

© Dark matter candidates

Unparticle

- Natural models of unparticle

Strong Int.

© Better understanding

Lattice BSM

○ Testable

Ideal Walking

Ideal?

Walking is highly fine tuned
Anomalous dimensions are small

Ideal walking

Fukano \& Sannino 10

$$
L(H) \rightarrow-\frac{1}{4} F^{a \mu \nu} F_{\mu \nu}^{a}+i \bar{Q} \gamma^{\mu} D_{\mu} Q+\cdots
$$

$$
\alpha_{a b} \frac{\bar{Q} T^{a} Q \bar{Q} T^{b} Q}{\Lambda_{E T C}^{2}}+\beta_{a b} \frac{\bar{Q}_{L} T^{a} Q_{R} \bar{\psi}_{R} T^{b} \psi_{L}}{\Lambda_{E T C}^{2}}+\gamma_{a b} \frac{\bar{\psi}_{L} T^{a} \psi_{R} \bar{\psi}_{R} T^{b} \psi_{L}}{\Lambda_{E T C}^{2}}+\ldots
$$

Gauged Nambu Jona-Lasinio

As if the number of flavors is continuous
蝶 Anomalous dimensions increase

Phenomenologically viable糍 Being tested!

S in Gauge Theories

$$
i \Pi_{\mu \nu}^{a, b}(q) \equiv \int d^{4} x e^{-i q x}\left[<J_{\mu, V}^{a}(x) J_{\nu, V}^{b}(0)>-<J_{\mu, A}^{a}(x) J_{\nu, A}^{b}(0)>\right]
$$

$$
\Pi_{\mu \nu}^{a, b}(q)=\left(q_{\mu} q_{\nu}-g_{\mu \nu} q^{2}\right) \delta^{a b} \Pi\left(q^{2}\right)
$$

$$
S\left[q^{2}\right]=-16 \pi \frac{\Pi\left(q^{2}\right)-\Pi(0)}{q^{2}}
$$

(This is not automatically the phenomenological S-parameter
© Unambiguous
(It is the definition to use in lattice simulations

Open Questions

$$
\begin{aligned}
& \lim _{\frac{q^{2}}{m^{2}} \rightarrow 0} \frac{6 \pi S}{N_{D} d[r]}=S_{\text {norm }} \\
& N_{D}=\frac{N_{f}}{2}
\end{aligned}
$$

© Does S vanish as we approach the conformal window ?
(What happens at the lower boundary ?
© What is its value inside the conformal window ?

Perturbative Conformal S

CP3 - Origins
 Particle Physics \& Origin of Mass
 One - loop

$$
\begin{aligned}
& \lim _{\frac{q^{2}}{m^{2}} \rightarrow 0} S=\frac{1}{6} \\
& x=\frac{m^{2}}{q^{2}} \\
& \sharp=N_{D} d[r]
\end{aligned}
$$

CP3 - Origins
 Particle Physics \& Origin of Mass
 Conformal limit

$$
\lim _{\frac{m^{2}}{q^{2}} \rightarrow 0} \Re[S]=x \frac{\sharp}{\pi}[2+\log (x)]+\mathcal{O}\left(x^{2}\right)
$$

$$
\lim _{2} \Im[S]=x \sharp+\mathcal{O}\left(x^{2}\right)
$$

$$
\frac{m^{2}}{q^{2}} \rightarrow 0
$$

$$
\sharp=N_{D} d[r] \quad x=\frac{m^{2}}{q^{2}}
$$

© Real and Imaginary part vanish

One - loop S-ummary

Flavor Structure

$$
S_{\text {norm }}=1+\frac{17}{72} \gamma\left(\alpha^{*}\right)
$$

$$
\gamma(\alpha)=\frac{3}{2} C_{2}[r] \frac{\alpha}{\pi}
$$

Di Chiara, Pica, Sannino 10

Conformal S @ 2 loops

Di Chiara, Pica, Sannino 10
$\begin{array}{cc}\text { ! } & ? \\ 0 & S_{\text {norm }} \simeq 2(\mathrm{QCD})\end{array}$

Conformal S @ 2 loops

Magnetic S

$$
S_{\text {norm }} \simeq 2(\mathrm{QCD})
$$

Magnetic S

Magnetic

$$
S_{m}=S_{q}+S_{B}+S_{\mathrm{M}}
$$

$$
\frac{6 \pi}{3} S_{m}=\left(\frac{X}{3}\right)+\left(\frac{\ell_{C}+\ell_{B_{A}}}{3}+\frac{25}{729} \ell_{B_{S}}(32 \log 2-39)-(0.14)\right.
$$

Below the window

$$
N_{f}
$$

$m \quad \mathrm{~S}$ is smooth

$$
m+m_{d y n}
$$

$$
S_{\mathrm{norm}} \simeq 2(\mathrm{QCD})
$$

Sannino, PRL 10

S - conjecture

Sannino 1006.0207

Sannino 1007.0254

$$
\lim _{\frac{q^{2}}{m^{2}} \rightarrow 0} \frac{6 \pi S}{N_{D} d[r]}=S_{\text {norm }} \geq 1
$$

\mathbf{S} increases as Nf decreases
S counts relevant degrees of freedom
\mathbf{S} tests weak-strong gauge duality

Tested to higher loops: Di Chiara, Pica, Sannino 10

In fact ...

$$
S=S_{(W) T C}+\overparen{S}_{S S}
$$

Offset the first term

Rule:

Find WT minimizing the lower bound for S

Minimal Working TC

- Minimal WT

$S U(2)_{T C} \square \quad \mathbb{D}$

Sannino \& Tuominen 04
Dietrich, Sannino, Tuominen 05
Frandsen, Masina, Sannino 09

- Next to MWT
$S U(3)_{T C} \square$
U Sannino, Tuominen 04
D
Dietrich, Sannino, Tuominen 05
- Orthogonal
$S O(4)_{T C} \quad \square \quad \begin{aligned} & \mathbf{U} \\ & \mathbf{D}\end{aligned}$
Frandsen, Sannino 09
- Ultra MT
$S U(2)_{T C} \quad \square$
U Ryttov \& Sannino 08
D

Minimal Walking Technicolor

F.S. + Tuominen 04

Dietrich, F.S., Tuominen 05
\mathbf{U} and \mathbf{D} : Adj of $\mathrm{SU}(2)$

S beyond TC...

$$
S=S_{(W) T C}+S_{N S}
$$

Offset the first term

New Leptons

Fermions : $\quad \psi_{L}=\binom{\psi_{1 L}}{\psi_{2 L}}, \quad \psi_{1 R}, \quad \psi_{2 R}$
Hypercharge: $\quad Y$,

$$
Y+\frac{1}{2}, \quad Y-\frac{1}{2}
$$

$S_{\text {Leptons }}=\frac{1}{6 \pi}\left[1-2 Y \ln \left(\frac{M_{1}}{M_{2}}\right)^{2}+\frac{1+8 Y}{20}\left(\frac{m_{Z}}{M_{1}}\right)^{2}+\frac{1-8 Y}{20}\left(\frac{m_{Z}}{M_{2}}\right)^{2}+O\left(\frac{m_{Z}^{4}}{M_{i}^{4}}\right)\right]$

$$
M_{1,2}^{2} \gg m_{Z}^{2}
$$

New Leptons \& Precision Data

Exotic Leptonic hypercharge $\mathrm{Y}=-3 / 2$

Standard Model Leptonic hypercharge

MWT Features

綦 The most economical WT theory
＊Compatible with precision measurements
漛 Possible DM candidates and Unification
縤 Can support 1st order Electroweak Phase Transition
桠 Features a light composite Higgs Dietrich，F．S．，Tuominen 05.
Da Silva，Doff，Natale 08， 09.
䟢 Lattice studies have begun

MWT Effective Lagrangian

$\mathcal{L}($ Composites $)+\mathcal{L}($ Mixing with SM $)+\mathcal{L}($ New Leptons $)+\mathcal{L}($ SM - Higgs $)$

Composite Higgs

Composite Axial - Vector States

Heavy Electron
2 Heavy Majoranas

Constraining MWT

Andersen, Hapola, Sannino 11
Belyaev, Foad, Frandsen, Jarvinen, Pukhov, Sannino $08 \boldsymbol{M}_{\boldsymbol{A}}(\mathbf{T e V})$

NEXT

© Implement technibaryon sector of MWT in CalCHEP - MadGraph
© Composite fermions in MWT
© Topological terms (in progress)
© Orthogonal technicolor
© Implement Ultra Minimal Walking Technicolor
© Supersymmetric extension of Minimal Walking Technicolor

New life in Technicolor

Not the Coldplay album

Dark Matter

First evidence for DM

｜uentarg ofs

婄
1953 F．Zwicky found the first evidence for DM

繗 Velocity dispersion of the galaxies in the COMA cluster

噛 Dark Matter was dubbed then！

Cluster Evidence Today

From X-ray emission: Stronger evidences
Temperature of the cluster gas too high!
Factor 5 higher than the one from baryonic matter

Bullet Cluster

Self interactions

料 From bullet cluster one deduces：
Markevitch et al． 03

$$
\sigma \leq 1.7 \times 10^{-24} \mathrm{~cm}^{2} \sim 10^{9} \mathrm{pb}
$$

Stronger constraints requiring large cores of clusters．
Yoshida，Springer \＆White 00
料 Sphericity of halos．

Galactic Scales

Stars in the outer part of galaxies rotate faster than expected!

$$
v_{c}^{2} \propto G_{N} \frac{M(r)}{r} \propto \frac{M_{\mathrm{tot}}}{r}
$$

Galactic Scales

瞵 We need something like：

$$
M(r) \propto r \quad \Longrightarrow \quad \rho_{D M} \propto r^{-2}
$$

粦 Density is uncertain in the internal regions of galaxies
粦 Data \＆numerical simulations：Isothermal，NFW，Moore， Kratsov，Einasto，etc．．．

$$
\rho(r)=\frac{\rho_{0}}{\left(\frac{r}{R}\right)^{\gamma}\left[1+\left(\frac{r}{R}\right)^{\alpha}\right]^{\frac{\beta-\gamma}{\alpha}}}
$$

Large structure formation

V. Springel, MPA Munich

Yoshida et al. 03

$$
Z=28.62
$$

DM Properties

䗱 Interacts gravitationally

汬 Electrically neutral and decoupled from primordial plasma

野 Lead to correct density profile for galaxy rotation curves

彞 Cold DM：Must cluster \＆lead to structure formation

制 Either stable or very long lived

DM candidates in SM？

Particle content of the Standard Model

N
LSS constrain also

$$
m_{\nu} \leq 0.27-1 \mathrm{eV} \quad \Longrightarrow \quad \Omega_{\nu} \ll \Omega_{D M}
$$

龃 Charged
颣 Decaying too soon／ Charged
龉 Baryonic／Charged
Massless like graviton
数 For thermal neutrinos
$\Omega_{\nu} h^{2} \sim \frac{\sum_{i} m_{\nu i}}{93 \mathrm{eV}} \leq 0.07$
$m_{\nu} \leq 2 \mathrm{eV}$（Tritium β decay）

Need beyond SM！！

What makes DM?

Oversimplification

DM candidates

Minimal Supersymmetric Standard Model
Axion
Just another particle with no links to SM

Composite

洋
New strong force with new quarks（techni－ baryon，meson，．．．）

Un－baryons

Incomplete list

DM asymmetry

蝶 A particle similar to the nucleon

彞 Electrically neutral

暽 At most EW－type cross sections
＊Great if connected to EW（Observable at LHC）

(Un)TC Interact. Massive Particle (u)TIMP

TIMPs	Masses	Annih.	Asymm	Symm	Models
TC-Baryon	$(1-3) \mathrm{TeV}$	-	\times	-	Complex-Rep Traditional TC
TC-PGB	$5 \mathrm{GeV}-.5 \mathrm{TeV}$	\times	\times	\times	(Pseudo)-Real (UMT, MWT, OT)
Unbaryon	$(1-10) \mathrm{GeV}$	\times	\times	\times	Techni-unparticle

TC-Baryon \begin{tabular}{l}
Nussinov, 86

Barr - Chivukula - Farhi 90

Sarkar 96

Gudnason - Kouvaris - F.S. 06

Foadi, Frandsen, Sannino 09
Nardi, Sannino., Strumia, 08.
Sannino, 10

\end{tabular}

$$
\text { Gudnason - Kouvaris - Sannino. } 06
$$

TC-PGB Ryttov - Sannino 08
Frandsen \& Sannino. 09

Unbaryon
D.B. Kaplan 92
Sannino, Zwicky 09
Frandsen, Sarkar, 10

Related

Kouvaris 06,07,10
Kainulainen, Virkajarvi, Tuominen 06,09,10

Mixed TIMP DM

Belyaev, Frandsen, Sannino, Sarkar 10

DM and GUTs

$$
\frac{\Omega_{T B}}{\Omega_{B}}=\frac{T B}{B} \frac{m_{T B}}{m_{p}} \sim \mathcal{O}(1)
$$

Light

Heavy

$m_{T B} \sim 5 \mathrm{GeV}$
$m_{T B} \approx(1-3) \mathrm{TeV}$
$\frac{T B}{B} \approx \mathcal{O}(1)$

$$
\frac{T B}{B} \approx \exp \left[-\frac{m_{T B}}{T^{*}}\right]
$$

GUTs

$$
\tau \sim \frac{M_{G U T}^{4}}{m_{T B}^{5}} \sim 3 \times 10^{37} \mathrm{sec}
$$

$$
\tau \sim \frac{M_{G U T}^{4}}{m_{T B}^{5}} \sim 10^{26} \mathrm{sec}
$$

Puzzle

Quantum Mechanics

Del Nobile, Kouvaris, Sannino I I

Interfering Composite ADM

CoGeNT and DAMA

Del Nobile, Kouvaris, Sannino I I

Chang et al. 20I0, Feng et al, 20II, Frandsen et al. 20II

Conclusions

© DEWSB can naturally occur at the LHC
© Phase Diagram of strongly interacting theories
© Minimal models of technicolor are near conformal
© Composite Dark Matter
© Composite inflation... to discuss another time.

