BSM Search Techniques (for the Large Hadron Collider)

Based on "A review of Mass Measurement Techniques proposed for the Large Hadron Collider", Barr and Lester, arXiv:1004.2732

NExT-PhD Abingdon 2011

Christopher Lester
University of Cambridge Wambridge

$$
4_{\text {orking grave }}
$$

Recall \exists awkward problems ...

Aim was to fix some of these problems with the Standard Model

- Fine-tuning / "hierarchy problem" (technical) Why are particles light?
- Does not explain Dark Matter
- No gauge coupling unification

What are common features of "solutions" to these problems?

- Big increase in particle content
- Longish decay chains
- Missing massive particles
- Large jet/lepton/photon multiplicity

At some point, $\mathbf{5 0 0 0}$ people will shout:

How hard is it to identify what was found?

Want to emphasise what is visible at the LHC

- Distinguish the following from each other
- Hadronic Jets,
- B-jets (sometimes)
- Electrons, Positrons, Muons, Anti-Muons
- Tau leptons (sometimes)
- Photons
- Measure Directions and Momenta of the above.
- Infer total transverse momentum of invisible particles. (eg neutrinos)

What do we NOT measure?
Hadronic

What might events look like?

This is the high energy physics of the $21^{\text {st }}$ Century!

What events really look like scares me!

Supersymmetry as Lingua Franca

Some possibilities:

- Supersymmetry
- Minimal
- Non-minimal
- R-parity violating or conserving
- Extra Dimensional Models
- Large (SM trapped on brane)
- Universal (SM everywhere)
- With/without small black holes

We will look
mainly at
supersymmetry (SUSY)

ipersymmetry! CAUTION!

- It may exist
- It may not
- First look for

Experiment must lead theory.

Gamble: deviations from Standard Model!

IF DEVIATIONS ARE SEEN:

- Old techniques won't work
- New physics not simple
- Can new techniques in SUSY but can apply them elsewhere.

CAUTION

Impending

Doom

SUSY particle content

Even in SUSY many possibilities

(Baryon number violating)

(Lepton number violating)

Do we care about masses?

- Common Parameter in the Lagrangian
- Expedites discovery - optimal selection
- Interpretation
(SUSY breaking mechanism,
Geometry of Extra Dimensions)
- Prediction of new things

Mass of $\mathrm{W}, \mathrm{Z} \boldsymbol{\rightarrow}$ indirect top quark mass "measurement"

"mass measurement methods"

... short for ...

"parameter estimation and discovery techniques"

Idealised Hadron Collider

Proton 1
Remnant 1

More Realistic Hadron Collider

Proton 1
Remnant 1

Types of Technique

Few
assumptions

Many

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element
assumptions

Types of Technique

Vague conclusions

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables

Specific conclusions

- Cross section
- Max Likelihood / Matrix Element

Types of Technique

Robust

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables

Fragile

- Cross section
- Max Likelihood / Matrix Element

Interpretation : the balance of benefits

Few

assumptions

Many
assumptions

Vague conclusions

Specific conclusions

Robust

Fragile

Topology / hypothesis

Full index in arXiv:1004.2732

Topology / hypothesis

Full index in arXiv:1004.2732

Lectures are roughly ordered from simple to complicated ...

(more details in arXiv:1004.2732)

Good vs poor variables

Probability

IDEAL

MASS OF INTEREST
Value of function

[much of the talk based on material in]

arXiv:1004.2732

A Review of the Mass Measurement Techniques proposed for the Large Hadron Collider

Alan J Barr*
Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
Christopher G Lester ${ }^{\dagger}$
Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 OHE, United Kingdom

We review the methods which have been proposed for measuring masses of new particles at the Large Hadron Collider paying particular attention to the kinematical techniques suitable for extracting mass information when invisible particles are expected.

Scope and disclaimers

- will not spend much time on fully visible final states as standard mass reconstruction techniques apply
- will only consider new particles of unknown mass decaying to invisible particles of unknown mass (and other visible particles)
- selection bias - more emphasis on things l've worked with
- Transverse masses, MT2, kinks, kinematic methods.
- (Not Matrix Element / likelihood methods / loops)
- not shameless promotion - focus on faults!

Few assumptions, Vague Conclusions.

Anything with sensitivity to mass scales.

Idealised Hadron Collider

Proton 1
Remnant 1

Missing transverse momentum

$$
\overrightarrow{\mathbf{p}}_{T}^{\text {miss }}=-\sum_{i} \overrightarrow{\mathbf{p}}_{T}^{i^{\text {th }} \text { visible }}
$$

$\mathrm{u}_{\mathrm{T}}=$ upstream transverse mom
= "everything else visible"
another interesting visible

Events have missing energy too, and it's not missing momentum

Rant about missing transverse momentum

- eTmiss - aaargh
- MET - AAAARGH
- missing energy - AAAAAARRRGH
- Blame LEP?
- Calorimeter apologists?
- alphaT

Main EASY signatures are:

- Lots of missing pt
- Lots of leptons
- Lots of jets

$\stackrel{\square}{4}$	- $\mathscr{F}_{T} \Leftarrow$ Dominant signature
	- E_{T} with lepton veto
¢	- One lepton
\bigcirc	- Two leptons Same Sign (SS)
$\stackrel{0}{\sim}$	- Two leptons Opposite Sign (OS)

Simply count events containing the above

Perhaps

simple $=$ best $?$

-- The End --

Am in great danger of appearing to sweep a great number of LHC analyses under here!

Not my intention at all!

Can attempt to spot susy by counting "strange" events ...

... but can we say anything concrete about a mass scale?

Next example still low-tech

Effective mass

$\underset{\text { histogram: }}{\text { What you }} \quad M_{\text {eff }}=\mathbf{p}_{\mathrm{T}}^{\text {missing }}+\sum_{i}\left|\mathbf{p}_{\mathrm{T}}^{\mathrm{jet}_{i}}\right|$
You look for position of this peak and call it MeffPeak

Call it Meff and Mest too (just to confuse people!)

What might Meff peak position correlate with?

Define SUSY scale:
$M_{\text {susy }}^{\mathrm{eff}}=\left(M_{\text {susy }}-\frac{M_{\chi}^{2}}{M_{\text {susy }}}\right)$, with $M_{\text {SUSY }} \equiv \frac{\sum_{i} M_{i} \sigma_{i}}{\sum_{i} \sigma_{i}}$

$M_{\text {effPeak }} / M_{\text {est }}$ example

Observable $\mathrm{M}_{\text {eff }}$ Peak sometimes correlates with property of model $\mathrm{M}_{\text {eff }}$ defined by

Correlations between MeffPeak position and MeffSusy

M_Hotpants ..

- Can encourage tendency to

- Create your variable, then see what might be able to measure. Oops.

Effective mass

Meff is not alone ...

$$
\begin{gathered}
\begin{array}{c}
\text { Murky underworld of hidden relatives known } \\
\text { variously as } \mathrm{HT} \ldots \text { same thing ... sometimes }
\end{array} \\
H_{T}=E_{T(2)}+E_{T(3)}+E_{T(4)}+\left|\boldsymbol{p}_{T}\right| \\
E_{T}=E \sin \theta \quad \begin{array}{l}
\text { See arXiv:1105.2977 for why } \\
\text { sinTheta brings on nightmares. }
\end{array}
\end{gathered}
$$

(There are no standard definitions of H_{T} or Meff. Authors differ in how many jets are used, whether PT miss should be added etc.)

All have some sensitivity to the overall mass scales involved, but interpretation requires a model and more assumptions.

Why are we adding transverse momenta?

- Why not multiply? (or add logs)?

$$
M_{\text {happy }}=\left(\prod_{i=1}^{n} \mathbf{p}_{T}^{i}\right)^{\frac{1}{n}}
$$

- Serious proposal to use Meff ${ }^{2}-\left(u_{T}\right)^{2}$ in arxiv:1105.2977
-Why are the signs the same? Why equal weights? Silly?
- How many years would it take ATLAS/CMS to discover the invariant mass for $Z->a b$?

$$
\begin{array}{r}
\mathrm{M}^{2}=\left(\sqrt{m_{a}^{2}+a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}+\sqrt{m_{b}^{2}+b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}\right)^{2} \\
-\left(a_{\mathrm{x}}+b_{\mathrm{x}}\right)^{2}-\left(a_{\mathrm{y}}+b_{\mathrm{y}}\right)^{2}-\left(a_{\mathrm{z}}+b_{\mathrm{z}}\right)^{2}
\end{array}
$$

Highest Meff event so far

The highest Meff in any (supposedly "clean") ATLAS event is 1548 GeV

- calculated from four jets with pts:
- 636 GeV
- 189 GeV
- 96 GeV
- 81 GeV
- 547 GeV of missing transverse momentum.

Squark-gluino-neutralino model (massless $\tilde{\chi}_{1}^{0}$)

Don't confuse simplicity with complexity ... can layer add many layers of interpretation

Measure top quark mass from mean lepton PT only!

CDF note 8959

Measurement of the top quark mass from the lepton transverse momentum in the $t \bar{t} \rightarrow$ dilepton channel at the Tevatron

A new measurement of the top quark mass at $1.8 \mathrm{fb}^{-1}$ integrated luminosity, using leptons' P_{T} in the dilepton channel is presented. A top quark mass of $\mathrm{m}_{\text {top }}=156 \pm 20_{\text {(atat) }} \pm 4.6_{\text {(eyst) }} \mathrm{GeV} / \mathrm{c}^{2}$ is obtained with the Likelihood method and of $149 \pm 21_{\text {(stat) }} \pm 5$ (syst) $\mathrm{GeV} / \mathrm{c}^{2}$ is obtained with the Straight Line method.

Top quark production tevatron - dileptonic

Remnant 1

Hadron 1

Hadron 2
Remnant 2

Mean lepton pT

Frightening y-axis!

Moral

- You can monte-carlo anything.
- example h->tau tau
- But do you trust it? Is it the best you can do?

More assumptions Less Vague Conclusions

non-hotpants

Topology / hypothesis

Full index in arXiv:1004.2732

All visible $\mathrm{Z}^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$z \rightarrow\left\langle\begin{array}{l}a \\ b\end{array}\right.$

$$
f^{2}=Z^{\mu} Z_{\mu}=(a+b)^{\mu}(a+b)_{\mu}
$$

On-shell, perfect measurement

$$
\mathrm{M}^{2}=\left(\sqrt{m_{a}^{2}+a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}+\sqrt{m_{b}^{2}+b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}\right)^{2}
$$

$$
-\left(a_{\mathrm{x}}+b_{\mathrm{x}}\right)^{2}-\left(a_{\mathrm{y}}+b_{\mathrm{y}}\right)^{2}-\left(a_{\mathrm{z}}+b_{\mathrm{z}}\right)^{2}
$$

SPS - the Z boson Mass

Finite width
Detector resolution

Broaden peak

Dealing with incomplete information

Cannot reconstruct
$\left(P_{v}+P_{e}\right)^{2}$

Observe: $\quad P_{e}$ (four components)
Unobserved: P_{v} (does not interact)

Unobserved, but not unconstrained...

Historical solution:

(full!) W transverse mass

$$
\begin{gathered}
m_{T}^{2}=m_{e}^{2}+m_{v}^{2}+2\left(e_{e} e_{v}-\mathbf{p}_{\mathbf{T}} \cdot \mathbf{p}_{\mathrm{T}}\right) \\
\mathrm{W} \longrightarrow \begin{array}{c}
\mathrm{e} \\
e_{e}=\sqrt{m_{e}^{2}+p_{T e}^{2}} \\
e_{v}=\sqrt{m_{v}^{2}+p_{T v}^{2}}
\end{array}
\end{gathered}
$$

$$
m_{T}=\sqrt{\text { !! NOT THIS !! }} \begin{aligned}
& 2\left|\vec{P}_{T_{e}}\right| \vec{P}_{T v} \mid(1-\cos \vartheta) \\
& \text { !his is NOT the transverse mass !! }
\end{aligned}
$$

W transverse mass: nice properties

- In every event $m_{T}<m_{W}$ if the W is on shell
- There are events in which m_{T} can saturate the bound on m_{w}.
motivate m_{T} in W discovery and mass measurements.

But where did these properties come from?

Re-examine invariant mass: $\mathrm{M} \rightarrow \mathrm{ab}$

$$
\begin{aligned}
\mathrm{M}^{2}= & \left(\sqrt{m_{a}^{2}+a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}+\sqrt{m_{b}^{2}+b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}\right)^{2} \\
& -\left(a_{\mathrm{x}}+b_{\mathrm{x}}\right)^{2}-\left(a_{\mathrm{y}}+b_{\mathrm{y}}\right)^{2}-\left(a_{\mathrm{z}}+b_{\mathrm{z}}\right)^{2} \\
= & \left(E_{a}+E_{b}\right)^{2}-\left(a_{\mathrm{x}}+b_{\mathrm{x}}\right)^{2}-\left(a_{\mathrm{y}}+b_{\mathrm{y}}\right)^{2}-\left(a_{\mathrm{z}}+b_{\mathrm{z}}\right)^{2} \\
= & m_{a}^{2}+m_{b}^{2}+2\left(E_{a} E_{b}-a_{x} b_{\mathrm{x}}-a_{\mathrm{y}} b_{\mathrm{y}}-a_{\mathrm{z}} b_{\mathrm{z}}\right)
\end{aligned}
$$

$$
=m_{a}^{2}+m_{b}^{2}+2\left(e_{a} e_{b} \cosh (\Delta \eta)-a_{x} b_{x}-a_{y} b_{y}\right)
$$

$$
\text { where } \quad \begin{gathered}
e_{a}=\sqrt{m_{a}^{2}+a_{x}^{2}+a_{y}^{2}} \\
e_{b}=\sqrt{m_{b}^{2}+a_{b}^{2}+a_{b}^{2}}
\end{gathered} \quad \begin{gathered}
\text { and } \\
\eta_{a}=\frac{1}{2} \ln \left(\left(E_{a}+a_{z}\right) /\left(E_{a}-a_{z}\right)\right) \\
\end{gathered} \quad \begin{aligned}
\eta_{b}=\frac{1}{2} \ln \left(\left(E_{b}+b_{z}\right) /\left(E_{b}-b_{z}\right)\right) \\
\Delta \eta=\eta_{a}-\eta_{b}
\end{aligned}
$$

Comparing invariant and transverse masses:

$$
\begin{array}{ll}
M^{2}=m_{a}^{2}+m_{b}^{2}+2\left(e_{a} e_{b} \cosh (\Delta \eta)-a_{x} b_{x}-a_{y} b_{y}\right) \\
M_{T}^{2}=m_{a}^{2}+m_{b}^{2}+2\left(e_{a} e_{b}\right. & \left.-a_{x} b_{x}-a_{y} b_{y}\right)
\end{array}
$$

Since $\cosh (\Delta \eta) \geq 1$ have $M_{T} \leq M$
with equality when $\Delta \eta=0$.
(Not same as throwing away z information!)
But have bound, and bound can be saturated.

Note that at this point we are assuming we know m_{b}.

W boson mass measurement

Counts

Plot m_{T} for each event
Each new event gives a new lower bound on m_{w}

If bound is saturated
(as it is in this example) the endpoint is m_{w}

m_{W}

In the data....

Alternative way of approaching the problem

Set out INTENDING to construct best lower
 bound on $\left(P_{e}+P_{v}\right)^{2}$

given the constraints

Constraints in this instance:
$0=\left(P_{v}\right)^{2} \quad$ [massless neutrino]
$0=\Sigma \mathbf{p}_{\mathrm{T}}=\mathbf{u}_{\mathrm{T}}+\mathbf{p}_{\mathrm{T}}(\mathrm{e})+\mathbf{p}_{\mathrm{T}}(\mathrm{v})$
[momentum conservation in transverse plane]

Suggests general prescription...

(1) Propose a decay topology

(2) Write down your the Lorentz Invariant of chфice (3) Write down the constraints
(4) Calculate the bound (algebraically/numerically/mix)

$$
\text { (2) } \mathcal{M}_{a} \equiv \sqrt{g_{\mu \nu}\left(\mathbf{P}_{a}+\mathbf{Q}_{a}\right)^{\mu}\left(\mathbf{P}_{a}+\mathbf{Q}_{a}\right)^{\nu}}
$$

$$
\text { (3) } \sum_{i=1}^{N_{工}} \vec{q}_{i T}=\vec{p}_{T} \equiv-\vec{u}_{T}-\sum_{i=1}^{N_{\nu}} \vec{p}_{i T}
$$

Single parent ... multiple daughters

many visibles many invisibles

$$
M_{1 \mathrm{~T}}^{2}=\left(\sqrt{M_{P}^{2}+\overrightarrow{\mathbf{p}}_{T}^{2}}+\sqrt{M_{\text {slash }}^{2}+\overrightarrow{\mathbf{q}}_{T \text { miss }}^{2}}\right)^{2}-u_{T}^{2}
$$

Bound depends on GUESS masses of

$$
M_{\text {slash }}=\sum_{i} \tilde{M}_{i}
$$ all invisible daughters

Most conservative: set to zero [more later]

Almost exactly same as transverse mass one small generalization

The "invisible mass" has become a parameter rather than the actual visible mass.

We will come back to this many times.
Suggests we should think about non-physical parameters a bit more

Applications of $\mathrm{M}_{1 \top}$?

Higgs \rightarrow WW* \rightarrow Ivlv

Written up in http://arxiv.org/abs/1106.2322

Higgs $\rightarrow \mathrm{WW}^{*} \rightarrow$ Ivlv

FIG. 1: Signal-only distributions of $m_{T}^{\text {approx }}\left(\right.$ top) and $m_{T}^{\text {true }}$ (bottom) for various values of m_{h} (in GeV). No cuts on $\Delta \phi_{\ell \ell}^{\max }$ and $p_{T W W}^{\min }$ have been applied.

Against the 2010 LHC data...

Big improvement in LHC Higgs Sea

ATLAS 35/pb: H \rightarrow WW \rightarrow Ivlv

change of topic moving closer to BSM

What if we don't know the masses of the invisible particle(s)?

BUT M_{B} unknown...

Can we construct a maximal lower bound on M_{A} that depends on a hypothesis for M_{B} ?
"wrong M_{B} " not what M_{T} was designed for.

Probability

Set $M=0$ as the "most conservative" but then endpoint in wrong place.

Let's go back to the (full) transverse mass again for a closer look!

In next few slides:

χ
$=$ Guess (i.e. hypothesis) for mass of the invisible daughter

In other words, we will use χ in all the places we previously used M_{B}.

Schematically, all we have guaranteed so far is the picture below:

- Since " x " can now be "wrong", some of the properties of the transverse mass can "break":
- $\mathrm{m}_{\mathrm{T}}(\chi)$ max is no longer invariant under transverse boosts! (except when $\chi=m_{B}$)
- $\mathrm{m}_{\mathrm{T}}(\chi)<\mathrm{m}_{\mathrm{A}}$ may no longer hold! (however we always retain: $\left.\mathrm{m}_{\mathrm{T}}\left(\mathrm{m}_{\mathrm{B}}\right)<\mathrm{m}_{\mathrm{A}}\right)$

Actual dependence on invisible mass guess χ more like this:

In fact, we get this very nice result:

Event 1 of 8

$\mathrm{m}_{\mathrm{T}}(\chi) \uparrow$

Event 2 of 8

$\mathrm{m}_{\mathrm{T}}(\chi)$

Event 3 of 8

$\mathrm{m}_{\mathrm{T}}(\chi)$

Event 4 of 8

$\mathrm{m}_{\mathrm{T}}(\chi)$

Event 5 of 8

Event 6 of 8

$\mathrm{m}_{\mathrm{T}}(\chi) \uparrow$

Event 7 of 8

$\mathrm{m}_{\mathrm{T}}(\chi) \uparrow$

Event 8 of 8

$\mathrm{m}_{\mathrm{T}}(\chi)$

Overlay all 8 events

Overlay many events

Here is a transverse mass "KINK"

χ
Weighing Wimps with Kinks at Colliders arXiv: 0711.4008

Alternatively, look at M_{T} distributions for a variety of values of chi.

 Each curve has a different value of chi

What causes the kink?

- Two entirely independent things can cause the kink:
- (1) Variability in the "visible mass"
- (2) Recoil of the "interesting things" against Upstream Transverse Momentum
- Which is the dominant cause depends on the particular situation ... let us look at each separately:

Kink cause 1: Variability in visible mass

- $\mathrm{m}_{\mathrm{Vis}}$ can change from event to event
- Gradient of $m_{T}(\chi)$ curve depends on $m_{V \text { is }}$
- Curves with low $\mathrm{m}_{\mathrm{vis}}$ tend to be "flatter"

Kink cause 1: Variability in visible mass

- $\mathrm{m}_{\mathrm{Vis}}$ can change from event to event
- Gradient of $m_{T}(\chi)$ curve depends on $m_{\text {vis }}$
- Curves with high $\mathrm{m}_{\text {Vis }}$ tend to be "steeper" $\mathrm{m}_{\mathrm{T}}(\chi)$
m_{A}
m_{B}

Kink cause 2 :
Recoil against Upstream Momentum

Kink cause 2: Recoil against UTM

- UTM can change from event to event
- Gradient of $\mathrm{m}_{\mathrm{T}}(\chi)$ curve depends on UTM
- Curves with UTM parallel to visible momenta tend to be "flatter"

Kink cause 2: Recoil against UTM

- UTM can change from event to event
- Gradient of $\mathrm{m}_{\mathrm{T}}(\chi)$ curve depends on UTM
- Curves with UTM opposite to visible $m \quad)^{\uparrow}$ momenta end to be "steeper"
m_{A}
m_{B}

Health warning!

(for those of you interested in LHC dark matter constraints)

Rather worryingly, M_{T} kinks are at present the only known kinematic methods which (at least in principle) allow determination of the mass of the invisible particle in short chains at hadron colliders!
[We will see a dynamical method that works for single three+ body decays shortly. Likelihood methods can determine masses in pair decays too, though at cost of model dependence and CPU. See Alwall.]

That last statement should worry you!

Weighing Wimps with Kinks at Colliders arXiv: 0711.4008

Spot the kink

Varying " χ " ... to first order see:

Take home messages for MT

- EASY to get MASS DIFFERENCE
- We have two independent kinematical opportunities to measure invisible daughter mass in single particle decays:
- "Upstream boost induced" MT kink
- from ISR alone, useless, from real UTM, possible - "Variable visible mass induced" MT kink
- impossible in 2-body decay, otherwise possible -HARD to set absolute mass scale
- We used pT -miss information - so only works with one invisible (so far ...)

Change of topic:

How do we measure masses when there is
 Pair Production?

A popular new-physics scenario

Proton 1
Remnant 1
Proton 1

Proton 2
Remnant 2

We have two copies of this:

But don't know p_{T} of B this time! $:$:

a possible "splitting"

another possible "splitting"

another possible "splitting"

If this splitting is "correct":

Therefore:

parent mass

$$
>=
$$

$\operatorname{Max}\left[M_{T}(a), M_{T}(b)\right]$
parent mass $>=M_{T}{ }^{(b)}$

But this splitting might be wrong!

But can say that:

parent mass $\geq \operatorname{Min}\left\{\operatorname{Max}\left[M_{T}(\mathrm{a}), \mathrm{M}_{\mathrm{T}}(\mathrm{b})\right]\right\}$ over all splittings of ptmiss

This is $\mathrm{m}_{\mathrm{T} 2}$ the "Stransverse Mass"

$$
m_{T 2}\left(v_{1}, v_{2}, \mathbf{p}_{T}, m_{i}^{(1)}, m_{i}^{(2)}\right) \equiv \min _{\left.\sum_{\mathbf{q}_{T}=\mathbf{p}_{T}}\left\{\max _{R}\left(m_{T}^{(1)}, m_{T}^{(2)}\right)\right\},{ }^{2}\right)}
$$

The most conservative partition consistent with the constraint

Take the better of the two lower bounds

It is the generalisation of transverse mass to pair production. Clear how to generalise it to any other types of production.

Note MT2 def is part of the four-step procedure:
[(1) select topology, (2) parent mass, (3) constraints, (4) find maximal lower bound] described earlier.

CONSTRAINTS
$\mathbf{M}_{\mathbf{1}}=\mathbf{M}_{\mathbf{2}}+\sum_{i=1}^{N_{\mathcal{I}}} \vec{q}_{i T}=\vec{p}_{T} \equiv-\vec{u}_{T}-\sum_{i=1}^{N_{\mathcal{V}}} \vec{p}_{i T}$
Momentum conservation in transverse plane

In other words:

- If your event is signal ...

and if MT2 is " 350 GeV " ...
then the squark mass is $>=350 \mathrm{GeV}$.

Indeed, can show MT2 is, by construction, the best possible lower bound on the squark mass.

MT2 example in real data

- "Top Quark Mass Measurement using mT2 in the Dilepton Channel at CDF" (arXiv:0911.2956 and arXiv:1105.0192) reports that they "achieve the single most precise measurement of $\mathrm{m}_{\text {top }}$ in [the dilepton] channel to date". Also under study by ATLAS.

Top-quark physics is an important testing ground for mT2 methods, both at the LHC and at the Tevatron. If it can't work there, its not going to work elsewhere.

Example MT2 distribution ?weighing? 500 GeV squarks

Squark mass
... works because MT2 for all BGs is provaably low due to small QCD mass scale

Detector effects

All these have $\mathrm{m}_{\mathrm{T} 2}$ either $<\mathrm{m}_{\text {top }}$ or $\rightarrow \mathrm{m}_{<}$

Putting it to work for discovery

Health warning!

But note: high multiplicity environment already proving to be a challenge for mT2 (post 35/pb) and di-squark search in most recent data is being conducted with Meff. Problem is diagnosing the di-jet system.

Have dodged question of mass of invisible daughters.

What if we don't know their masses?

Varying " χ " ... to first order

MT2 inherits mass-space boundary from MT

The MT2(chi) curve is the boundary of the region of (mother, daughter) mass-space consistent with the observed event!

Minimal Kinematic Constraints and m(T2), Hsin-Chia Cheng and Zhenyu Han (UCD) e-Print: arXiv:0810.5178 [hep-ph]

MT2 is defined in terms of MT

- Consequently, MT2 inherits the "kink structure" of MT and can (in principle) be used to:
- EASILY measure the parent-daughter mass difference,
- might PERHAPS measure the absolute mass scale using utm boosts kinks or variable visible mass kinks (HARD)

Are MT2 kinks observable ?

Expect KINK only from UTM Recoil (perhaps only from ISR!)

Expect stronger KINK due to both UTM recoil, AND variability in the visible masses.

Perhaps: MT2's endpoint structure is weaker than MT's.

Caveat Mensor!

(for those of you interested in LHC dark matter constraints)

Disappointingly, $\mathrm{M}_{\mathrm{T} 2}$ kinks, are the only known kinematic methods which (at least in principle) allow determination of the mass of the invisible daughters of pair produced particles in short chains.
[We will see a dynamical method that works for three+ body decays shortly. Likelihood methods can determine masses in pair decays too, though at cost of model dependence and CPU. See Alwall.]

change of topic!

Not all proposed new-physics chains are short!

(more details in arXiv:1004.2732)

If chains a longer use "edges" or "Kinematic endpoints"

What is a kinematic endpoint?

- Consider M_{LL}

What is a kinematic endpoint?

- Zoom in on di-leptons to calculate m_{L}

- In slepton rest-frame

Dilepton invariant mass distribution

Di-Lepton Invariant Mass (GeV)

Note key difference to bounding vars

- With the bounding vars you place a bound on a property/parameter/invariant of the hypothesis or model by construction.
- With the kinematic edges and enpoints, you look for a kinematic strucure in a distribution, and use it to constrain one or more parameters of the hypothesis or model.

What about these invariant masses?

Some extra difficulties - may not know order particles were emitted

Therefore need to define $\quad m_{q l}^{h i g h}=\max \left[m_{q l^{+}}, m_{q l^{-}}\right]$ $\begin{gathered}\text { order-blind variables } \\ \text { such as }\end{gathered} \quad m_{q l}^{l o w}=\min \left[m_{q l^{+}}, m_{q l^{-}}\right]$

$$
m_{j \ell(s)}^{2}(\alpha) \equiv\left(m_{j \ell_{n}}^{2 \alpha}+m_{j \ell_{f}}^{2 \alpha}\right)^{\frac{1}{\alpha}} \quad m_{j \ell(d)}^{2}(\alpha) \equiv\left|m_{j \ell_{n}}^{2 \alpha}-m_{j \ell_{f}}^{2 \alpha}\right|^{\frac{1}{\alpha}}
$$

There are many other possibilities for resolving problems due to position ambiguity. Compare hep-ph/0007009 and hep-ph/0510356 with arXiv:0906.2417

Measure Kinematic Edge Positions

(d) $\quad \mathrm{m}_{1 \mathrm{la}}(\mathrm{GeV})$

$l^{+} l^{-} q$ edge
$X q$ edge
$l^{+} l^{-} q$ threshold
$l_{\text {near }}^{ \pm} q$ edge
$l_{\text {far }}^{ \pm} q$ edge
$l^{ \pm} q$ high-edge
$l^{ \pm} q$ low-edge
$M_{T 2}$ edge

$$
\begin{aligned}
& \left(m_{\bar{l} \max }\right)^{2}=(\tilde{\xi}-\tilde{l})(\tilde{l}-\tilde{\chi}) / \tilde{l} \\
& \left(m_{l l q}^{\max }\right)^{2}=\left\{\begin{array}{l}
\max \left[\frac{(\tilde{q}-\tilde{\xi})(\tilde{\xi}-\tilde{\chi})}{\tilde{\xi}}, \frac{(\tilde{\tilde{q}-\tilde{l})(\tilde{l}-\tilde{\chi})}}{\tilde{l}}, \frac{(\tilde{q} \tilde{l}-\tilde{\xi} \tilde{\chi})(\tilde{\xi}-\tilde{l})}{\xi(\underline{l}}\right] \\
\operatorname{except} \text { for the special case in which } \tilde{l}^{2}<\tilde{q} \tilde{\chi}<\tilde{\xi}^{2} \text { and } \\
\tilde{\xi}^{2} \tilde{\chi}<\tilde{q} \tilde{q}^{2} \text { where one must use }\left(m_{\tilde{q}}-m_{\tilde{\chi}_{1}^{0}}{ }^{2} .\right.
\end{array}\right. \\
& \left(m_{X_{q}}^{\max }\right)^{2}=X+(\tilde{q}-\tilde{\xi})\left[\tilde{\xi}+X-\tilde{\chi}+\sqrt{(\tilde{\xi}-X-\tilde{\chi})^{2}-4 X \tilde{\chi}}\right] /(2 \tilde{\xi})
\end{aligned}
$$

$$
\begin{aligned}
& \left(m_{l_{\text {near }}}^{\max }\right)^{2}=(\tilde{q}-\tilde{\xi})(\tilde{\xi}-\tilde{l}) / \tilde{\xi} \\
& \left(m_{l_{\text {fax }} \boldsymbol{q} q}^{\max }\right)^{2}=(\tilde{q}-\tilde{\xi})(\tilde{l}-\tilde{\chi}) / \tilde{l} \\
& \left(m_{l q(\text { high })}^{\max }\right)^{2}=\max \left[\left(m_{l_{\text {near }}}^{\max }\right)^{2},\left(m_{l_{\text {tar } q}}^{\max }\right)^{2}\right] \\
& \left(m_{l q(\mathrm{low})}^{\max }\right)^{2}=\min \left[\left(m_{l_{\text {near }}}^{\max }\right)^{2},(\tilde{q}-\tilde{\xi})(\tilde{l}-\tilde{\chi}) /(2 \tilde{l}-\tilde{\chi})\right] \\
& \Delta M=m_{\tilde{l}}-m_{\tilde{\chi}_{1}^{0}}
\end{aligned}
$$

Table 4: The absolute kinematic endpoints of invariant mass quantities formed from decay chains of the types mentioned in the text for known particle masses. The following shorthand notation has been used: $\tilde{\chi}=m_{\tilde{\chi}_{1}^{0}}^{2}, \tilde{l}=m_{\tilde{T}_{R}}^{2}, \tilde{\xi}=m_{\tilde{\chi}_{2}^{0}}^{2}, \tilde{q}=m_{\tilde{q}}^{2}$ and X is m_{h}^{2} or m_{Z}^{2} depending on which particle participates in the "branched" decay.

So now we have:

Large set of measurements

	S5	
Endpoint	Fit	Fit error
$l^{+} l^{-}$edge	109.10	0.13
$l^{+} l^{-} q$ edge	532.1	3.2
$l^{ \pm} q$ high-edge	483.5	1.8
$l^{ \pm} q$ low-edge	321.5	2.3
$l^{+} l^{-} q$ threshold	266.0	6.4
$X q$ edge	514.1	6.6
$\Delta M\left(M_{T 2}\right.$ edge $)$	-	-

Theoretical expressions for edge positions in terms of masses

Related edge	Kinematic endpoint
$l^{+} l^{-}$edge	$\left(m^{\text {max }}\right)^{2}=(\tilde{\xi}-\tilde{l})(\tilde{l}-\tilde{\chi}) / \tilde{l}$
$l^{+} l^{-} q$ edge	$\left(m_{l l_{l}}^{\max }\right)^{2}=\left\{\begin{array}{l} \max \left[\frac{(\tilde{q}-\tilde{\xi})(\tilde{\xi}-\tilde{\chi})}{\tilde{\xi}}, \frac{(\tilde{q}-\tilde{l})(\tilde{l}-\tilde{\chi})}{\tilde{l}}, \frac{(\tilde{q} \tilde{l}-\tilde{\xi} \tilde{\chi})(\tilde{\xi}-\tilde{l})}{\tilde{\xi} l}\right] \\ \operatorname{except} \text { for the special case in which } \tilde{l}^{2}<\tilde{q} \tilde{\chi}<\tilde{\xi}^{2} \text { and } \\ \tilde{\xi}^{2} \tilde{\chi}<\tilde{q} \tilde{l}^{2} \text { where one must use }\left(m_{\tilde{q}}-m_{\tilde{\chi}_{1}^{0}}\right)^{2} . \end{array}\right.$
$X q$ edge	$\left(m_{X_{q}}^{\max }\right)^{2}=X+(\tilde{q}-\tilde{\xi})\left[\tilde{\xi}+X-\tilde{\chi}+\sqrt{(\tilde{\xi}-X-\tilde{\chi})^{2}-4 X \tilde{\chi}}\right] /(2 \tilde{\xi})$
$l^{+} l^{-} q$ threshold	
$l_{\text {near }}^{ \pm} q$ edge	$\left(m_{l_{\text {eear }} \max ^{\text {max }}}\right)^{2}=(\tilde{q}-\tilde{\xi})(\tilde{\xi}-\tilde{l}) / \tilde{\xi}$
$l_{\text {far }}^{ \pm} q$ edge	$\left(m_{l_{\text {fax }}(\max }\right)^{2}=(\tilde{q}-\tilde{\xi})(\tilde{l}-\tilde{\chi}) / \tilde{l}$
$l^{ \pm} q$ high-edge	$\left(m_{l q(\text { high })}^{\text {max }}\right)^{2}=\max \left[\left(m_{\left.l_{\text {mear }}\right)^{\text {max }}}\right)^{2},\left(m_{l_{\text {far }}}^{\text {max }}\right)^{2}\right]$
$l^{ \pm} q$ low-edge	$\left(m_{l q(\mathrm{low}}^{\max }\right)^{2}=\min \left[\left(m_{l_{\text {mear }} \max ^{\text {max }}}\right)^{2},(\tilde{q}-\tilde{\xi})(\tilde{l}-\tilde{\chi}) /(2 \tilde{l}-\tilde{\chi})\right]$
$M_{T 2}$ edge	$\Delta M=m_{\tilde{l}}-m_{\tilde{\chi}_{1}^{0}}$

Fit all edge position for masses!

 ...mainly constrain mass differences

Cross section information is orthogonal to mass differences

How applicable are these long chain techniques?

For the chain
we need:

$$
\begin{aligned}
& \square \quad m_{\tilde{\chi}_{2}^{0}}>m_{\tilde{l}_{R}}>m_{\tilde{\chi}_{1}^{0}} \\
& \square \\
& m_{\tilde{g}}>m_{\tilde{q}}
\end{aligned}
$$

This is possible over a wide range of parameter space.

If this chain is not open, the method is still valid, but we need to look at other decay chains.

Example mSUGRA inspired scenario: $-A_{0}=m_{0}, \tan \beta=10, \mu>0$
[See Allanach et al, Eur.Phys.J.C25 (2002) 113, hep-ph/0202233]

Figure from hep-ph/0410303

Other ambiguities

$$
\left(m_{l l q}^{2}\right)^{\max }=\left\{\begin{array}{l}
\left(m_{\tilde{q}}-m_{\tilde{\chi}_{1}^{0}}\right)^{2} \text { if } m_{\tilde{\chi}_{2}^{0}}^{2}>m_{\tilde{q}} m_{\tilde{\chi}_{1}^{0}} \\
\left(m_{\tilde{q}}^{2}-m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}\right) / m_{\tilde{\chi}_{2}^{0}}^{2} \text { otherwise } .
\end{array}\right.
$$

Endpoints are not always linearly independent

e.g. if $m_{\tilde{q}_{L}}>m_{\tilde{\chi}_{2}^{0}}^{2} / m_{\tilde{\chi}_{1}^{0}}$ and $m_{\tilde{\chi}_{1}^{0}}^{2}+m_{\tilde{\chi}_{2}^{0}}^{2}>2 m_{\tilde{\chi}_{1}^{0}} m_{\tilde{\chi}_{2}^{0}}>2 m_{\tilde{q}_{L}}^{2}$
then the endpoints are

$$
\begin{aligned}
& \left(m_{l l}^{\max }\right)^{2}=\left(m_{\tilde{\chi}_{2}^{0}}^{2}-m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}\right) / m_{\tilde{l}_{R}}^{2} \\
& \left(m_{q l l}^{\max }\right)^{2}=\left(m_{\tilde{q}_{L}}^{2}-m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}\right) / m_{\tilde{l}_{R}}^{2} \\
& \left(m_{q l_{n}}^{\max }\right)^{2}=\left(m_{\tilde{q}_{L}}^{2}-m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2}-m_{\tilde{l}_{R}}^{2}\right) / m_{\tilde{\chi}_{2}^{0}}^{2} \\
& \left(m_{q l_{f}}^{\max }\right)^{2}=\left(m_{\tilde{q}_{L}}^{2}-m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}\right) / m_{\tilde{l}_{R}}^{2} \\
& \Rightarrow \quad\left(m_{q l l}^{\max }\right)^{2}=\left(m_{l l}^{\max }\right)^{2}+\left(m_{l_{f}}^{\max }\right)^{2}
\end{aligned}
$$

Four endpoints not always sufficient to find the masses
angle between leptons in slepton rest frame

■ Introduce new distribution $m_{\text {qll } \theta>\pi / 2}$ identical to $m_{q l l}$ except require $\theta>\pi / 2$
It is the minimum of this distribution which is interesting

Different parts of model space behave differently: $\mathrm{m}_{\mathrm{QLL}}{ }^{\max }$

Where are the big mass differences?
$\left(m_{l l q}^{\max }\right)^{2}=\left\{\begin{array}{l}\max \left[\frac{(\tilde{q}-\tilde{\xi})(\tilde{\xi}-\tilde{\chi})}{\tilde{\xi}}, \frac{(\tilde{q}-\tilde{l})(\tilde{l}-\tilde{\chi})}{\tilde{l}}, \frac{(\tilde{\tilde{l} \tilde{l}-\tilde{\xi} \tilde{\chi})(\tilde{\xi}-\tilde{l})}}{\tilde{\xi} \tilde{\tilde{l}}}\right] \\ \operatorname{except} \text { for the special case in which } \tilde{l}^{2}<\tilde{q} \tilde{\chi}<\tilde{\xi}^{2} \text { and } \\ \tilde{\xi}^{2} \tilde{\chi}<\tilde{q} \tilde{l}^{2} \text { where one must use }\left(m_{\tilde{q}}-m_{\tilde{\chi}_{1}^{0}}\right)^{2} .\end{array}\right.$

Which parts of

$\left(\mathrm{m}^{2}{ }_{\text {qlear }}, \mathrm{m}^{2}{ }_{\text {qlfar }}, \mathrm{m}^{2}{ }^{\text {III }}\right)$-space are populated by these events:

Answer: The Vegetable, Samosa $\mathrm{m}_{\text {II }}$

Can see II edge clearly.

Christopher Lester

Can touch $\mathrm{m}_{\text {II }}$ sphere at carrot corner

$\mathrm{m}_{\mathrm{ql}-\text { near }}$

Christopher Lester

Can touch $\mathrm{m}_{\text {Ilq }}$ sphere at opion corner

$\mathrm{m}_{\mathrm{ql}-\text { near }}$

Christopher Lester

Can touch $\mathrm{m}_{\text {II }}$ sphere at noodle corner

$\mathrm{m}_{\mathrm{ql} \text {-near }}$

Christopher Lester

So, in principle, find masses by looking for highest contrast edge.

Distance above surface + k

The "shadow" (projection) of the samosa is useful for origami too

Figure 7: Obtaining the shape of the $m_{j l(l o)}^{2}$ versus $m_{j l(h i)}^{2}$ bivariate distribution by folding the $m_{j l_{n}}^{2}$ versus $m_{j l_{f}}^{2}$ distribution across the line $m_{j l_{n}}^{2}=m_{j l_{f}}^{2}$. This particular example applies to region \mathcal{R}_{3}. For the other three regions, refer to Figs. 8(a), 8(b) and 8(d).

Formalising an old idea ... kinematic boundaries, creases, edges, cusps etc

Adding even more assumptions ...

Let's consider what happens when we allow ourselves to look at more than one event

N successive 2-body decays

- In D space-time dimensions
- $\mathrm{D}+(\mathrm{N}+1)$ unknowns: comprising
- D unknown momentum-components for final "missing particle"
- (N+1) unknown backbone-particle masses
- $N+1$ constraints:
- Invariant masses of the backbone-momenta must match the "unknown" masses
- UNKNOWNS - CONSTRAINTS = D > 0
- Cannot solve for unknowns! :

Why not look at K events?

- K events, each (N successive 2-body decays)
- KD+(N+1) unknowns: comprising
- KD unknown momentum-components for final "missing particle"
- ($\mathrm{N}+1$) unknown backbone-particle masses
- $\mathrm{K}(\mathrm{N}+1)$ constraints:
- Invariant masses of the backbone-momenta must match the "unknown" massses
- UNKNOWNS - CONSTRAINTS $=K(D-(N+1))+(N+1)$
- System solvable for $K \geq \frac{N+1}{N+1-D}$ provided

$$
N+1>D \text { i.e. } N \geq 4
$$

Ambiguities

- Which jet is which?
- Which lepton is which?

- So will need more events than the last calculation suggests $\sim x 4$?

"Mass relation" method: summary

- Can:

- reconstruct complete decay kinematics
- Measure all sparticle masses
- provided that:
- Chain has $\mathrm{N} \geq 4$ successive two-body decays
- One simultaneously examines at least

$$
\frac{N+1}{N+1-D}=\frac{N+1}{N-3}
$$

events sharing the same sparticles.

See sections X and IX of hep-ph/0402295

Some example

Though see Miller
Caveats: hep-ph/0501033

Nobody has shown that this will work for real data.
Sample purity. Bias.
Heavily model dependent?

Dependence on reconstruction resolution.

$\mathrm{N}=4$ two-body decays

- Fewer than 5 events
- Under constrained, cannot solve
- 5 events
- Can solve in principle (ignoring ambiguities)
- Can treat events as "ideal"
- More than 5 events
- Over constrained. Potential for inconsistency.
- Reconstructed events will not "make sense" until resolutions are taken into account.

Another sort of "just"-constrained event

 - get constraint from other "side"

Left: case considered in hep-ph/9812233

- Even if there are invisible decay products, events can often be fully reconstructed if decay chains are long enough.
- (mass-shell constraints must be >= unknown momenta)
- Since we can use ptmiss constraint, chains can be shorter than $\mathrm{N}=4$ now.

Or do both at once - pairs of double events!

- Pairs of events of the form:

are exactly constrained.
(arXiv:0905.1344)

What about shapes of distributions?

Compare shapes of invariant mass distributions for the highlighted pairs of visible massless momenta:

versus

Yes and no ..

- Putting aside experimental fears concerning efficiency and acceptance corrections ...
- ... huge errors in the fit, and very poor sensitivity to absolute mass scale. See next exercises.
- This is why endpoints, edges and resonances are good, but shapes less so

Exercises

- (12) Determine the shape of the phase space distribution $\mathrm{d} \sigma / \mathrm{d}(\mathrm{mll})$ (up to an arbitrary normalizing constant) for the three-body decay shown below. Assume massless visibles, and arbitrary masses for the parent and invisible.

- (13) Prove that $r=x / y$ must lie in the range $1 / \sqrt{ } 3 \leq r \leq 1 / \sqrt{ } 2$. (Note this means r can only move by $\pm 0.06 \ldots$ not far!)
- (14) Estimate how many events (approximately) would be needed to distinguish two r values differing by 0.012 (i.e. $\sim 1 / 10^{\text {th }}$ of allowed range)

At fixed $M_{A}-M_{B}$ you should find

The most detailed "shape" of all is the complete likelihood of the data

- Alwall et.al. (arXiv:0910.2522, arXiv:1010.2263) applied matrix element method to:

For ~ 100 events get valley in likelihood surface with same shape as boundary of MT2 distribution

That's probably enough on mass measurement techniques!

Have only begun to scrape the surface.

(more details in arXiv:1004.2732)

Not time to talk about many things

- Parallel and perpendicular MT2 and MCT
- Subsystem MT2 and MCT methods
- Solution counting methods (eg arXiv:0707.0030)
- Hybrid Variables
- Phase space boundaries (arXiv:0903.4371)
- Cusps and Singularity Variables (lan-Woo Kim)
- Why wrong solutions are often near right ones (arXiv:1103.3438)
- Razors
- and many more!

I have only scratched the surface of the variables that have been discussed. Even the review of mass measurement methods arXiv:1004.2732 makes only a small dent in 70+ pages. However it provides at least an index ...

Take home messages

- Lots of approaches to kinematic mass measurement
- some very general, some very specific.
- very little of the "detailed stuff" is tested in anger. Experimentalists not universally convinced of utility!
- very often BGs present serious impediment.
- theorists and experimenters should pay close attention to zone of applicability
- BUT
- Finding sensible variables buys more than just mass measurements - e.g. signal sensitivity

Extras if time ...

Notes:

- At TASI 2010: 75 mins per lecture:
- Lec1: 1-73 (73 slides)
- Lec2: 74-183 (110 slides)
- Lec3: 184-224 (41 slides) on masses
- then segue into spins for another 40

Other MT2 related variables (1/3)

- MCT ("Contralinear-Transverse Mass") (arXiv:0802.2879)
- Is equivalent to MT2 in the special case that there is no missing momentum (and that the visible particles are massless).
- Proposes an interesting multi-stage method for measuring additional masses
- Can be calculated fast enough to use in ATLAS trigger.

Other MT2 related variables (2/3)

- MTGEN ("MT for GENeral number of final state particles") (arxiv:0708.1028)
- Used when
- each "side" of the event decays to MANY visible particles (and one invisible particle) and
- it is not possible to determine which decay product is from which side ... all possibilities are tried
- Inclusive or Hemispheric MT2 (Nojirir + Shimizu) (arxiv:0802.2412)
- Similar to MTGEN but based on an assignment of decay product to sides via hemisphere algorithm.
- Guaranteed to be >= MTGEN

Other MT2 related variables (3/3)

- M2C ("MT2 Constrained") arXiv:0712.0943 (wait for v3 ... there are some problems with the v 1 and v 2 drafts)
- M2CUB ("MT2 Constrained Upper Bound") arXiv:0806.3224
- There is a sense in which these two variables are really two sides of the same coin.
- if we could re-write history we might name them more symmetrically
- I will call them $m_{\text {small }}$ and $m_{\text {Big }}$ in this talk.

$\mathrm{m}_{\text {Small }}$ and $\mathrm{m}_{\text {Big }}$

- Basic idea is to combine: ${ }^{1+2(\alpha)}$
- MT2
- with

- a di-lepton invariant mass endpoint measurement (or similar) providing:

$$
\Delta=\mathrm{M}_{\mathrm{A}}-\mathrm{M}_{\mathrm{B}}
$$

(or $\mathrm{M}_{\mathrm{Y}}-\mathrm{M}_{\mathrm{N}}$ in the notation of their figure above)
"Best case"
(needs SPT, i.e. large recoil PT) Both $\mathrm{m}_{\text {Big }}$ and $\mathrm{m}_{\text {Small }}$ are found.
$\mathrm{m}_{\mathrm{T} 2}(\chi)$
$\Delta+\chi$
"Typical ZPT case" (no $\mathrm{m}_{\text {Big }}$ is found)

"Possible ZPT case"

 (neither $\mathrm{m}_{\text {Big }}$ nor $\mathrm{m}_{\text {Small }}$ is found)*$$
\Delta+\chi
$$

${ }^{*}$ Except for conventional definition of $\mathrm{m}_{\text {Small }}$ to be Δ in this case.

"Possible SPT case"

(no $\mathrm{m}_{\text {Small }}$ is found) ${ }^{*}$

$\mathrm{m}_{\mathrm{T} 2}(\chi)$

${ }^{*}$ Except for conventional definition of $m_{\text {Small }}$ to be Δ in this case.

What $m_{\text {Small }}$ and $m_{\text {Big }}$ look like, and how they determine the parent mass

arXiv:0806.3224

Outcome:

- $m_{\text {Big }}$ provides the first potentially-useful event-by-event upper bound for m_{A}
- (and a corresponding event-by-event upper bound for m_{B} called $m_{\chi \cup B}$)
- $m_{S m a l l}$ provides a new kind of event-by-event lower bound for m_{A} which incorporates consistency information with the dilepton edge
- $\mathrm{m}_{\text {Big }}$ is always reliant on SPT (large recoil of interesting system against "up-stream momentum") - cannot ignore recoil here!

LHC Specific problems

- Hadron Collider - z-boost of COM unknown
- Pile up, multiple interactions
- Production of many new particles at once?
- Multiple massive stable invisible particles?

What sort of parameter spaces?

- High dimensional
- At the very least, 8 dims
- More like ~ 100 dims
- No really compelling reasons to believe in any particular simple model

Unusual parameter spaces!

Contrast with UA1/UA2

- Glashow Wienberg Salam: Phys Rev Lett 19, 1264 (1967)
- Predictions in terms of (then) unknown θ_{w} :
$-\mathrm{M}_{\mathrm{Z}}>75 \mathrm{GeV} / \mathrm{c}^{\wedge} 2, \mathrm{M}_{\mathrm{W}}>35 \mathrm{GeV} / \mathrm{c}^{2}$
- By $1982 \theta_{\mathrm{w}}$ much constrained, giving:
$-M_{z} \approx 92 \pm 2 \mathrm{GeV} / \mathrm{c}^{2}, \mathrm{M}_{\mathrm{w}} \approx 82 \pm 2 \mathrm{GeV} / \mathrm{c}^{2}$
- CERN able to build UA1+UA2 (~1980) knowing the above.
- In 1983 UA1+UA2 observe W and Z at expected masses:
$-\mathrm{M}_{\mathrm{z}} \approx 95 \pm 3 \mathrm{GeV} / \mathrm{c}^{2}, \mathrm{M}_{\mathrm{w}} \approx 81 \pm 5 \mathrm{GeV} / \mathrm{c}^{2}$

A personal view of some of the recent ATLAS results

(unashamed focus on new physics searches)

Christopher Lester

Inclusive weak boson and top quark

 cross section measurements by ATLAS

Parton-parton luminosity

BSM Searches

ATLAS Searches* - 95\% CL Lower Limits (June 6, 2011)

BSM Searches

Contact interactions

Fermi theory example:

At low energies, this

... but now know that G_{F} is order one coupling suppressed by powers of W mass.

$$
\frac{G_{\mathrm{F}}}{(\hbar c)^{3}}=\frac{\sqrt{2}}{8} \frac{g^{2}}{m_{\mathrm{W}}^{2}}
$$

Can do the same sort of thing for "four quark vertex" to constrain new mass scale.

3.4 TeV contact interactions were excluded by $3 / \mathrm{pb}$ of data ($95 \% \mathrm{CL}$)

 interactions peak at small jet-jet rapidity differencesqqqq limit increases to 9.5
TeV with 36/pb (Mar 2011:
arXiv:1103.3864)
$q q \mu \mu$ limit is at 4.5
TeV with 42/pb
(April 2011:
arXiv:1104.4398)

$$
\chi=e^{\left|y_{1}-y_{2}\right|}
$$

and
y_{1} and y_{2} are rapidities of the two jets.

SM QCD is mostly flat in jet-jet rapidity difference

Highest Meff event so far

The highest Meff in any (supposedly "clean") ATLAS event is 1548 GeV

- calculated from four jets with pts:
- 636 GeV
- 189 GeV
- 96 GeV
- 81 GeV
- 547 GeV of missing transverse momentum.

Squark-gluino-neutralino model (massless $\tilde{\chi}_{1}^{0}$)

Less well tested areas

- neutralino mass close to squark or gluino mass
- signatures with not many jets

So far MT2 only competitive at $35 / \mathrm{pb}$

Multi-leptons (with jets and MPT)

- Require 3 leptons (any flavour and charge combos)
-20 GeV electron/muon
-20 GeV electron/muon
- 20 GeV electron / 10 GeV muon
- Require 2 jets $>50 \mathrm{GeV}$ and MPT > 50 GeV to suppress ttbar and $\mathrm{Z}+\mathrm{jets}$
- so not sensitive to direct multilepton production.
http://cdsweb.cern.ch/record/1338568/files/ATLAS-CONF-2011-039.pdf

Multi-leptons

Multi-leptons

http://cdsweb.cern.ch/record/1338568/files/ATLAS-CONF-2011-039.pdf

Multi-leptons

- Your favourite multi-lepton producing model is probably not ruled yet, unless you know it makes lots of jets too ...

Excesses in e+e- or mu+mu- over e+mu- and e-mu+?

- Can we focus on flavour-conserving BSM signals, and reduce sensitivity to BG modelling?

$$
\mathcal{S}=\frac{N\left(e^{ \pm} e^{\mp}\right)}{\beta\left(1-\left(1-\tau_{e}\right)^{2}\right)}-\frac{N\left(e^{ \pm} \mu^{\mp}\right)}{1-\left(1-\tau_{e}\right)\left(1-\tau_{\mu}\right)}+\frac{\beta N\left(\mu^{ \pm} \mu^{\mp}\right)}{\left(1-\left(1-\tau_{\mu}\right)^{2}\right)}
$$

http://arxiv.org/abs/1103.6208

Aim is that analysis doesn't really need to know these numbers very well:

	$e^{ \pm} e^{\mp}$	$e^{ \pm} \mu^{\mp}$	$\mu^{ \pm} \mu^{\mp}$
Data	4	13	13
Z/	$\gamma^{*}+$ jets	0.40 ± 0.46	0.36 ± 0.20
Dibosons	0.30 ± 0.11	0.36 ± 0.10	0.61 ± 0.67
$t \bar{t}$	2.50 ± 1.02	6.61 ± 2.68	4.71 ± 1.91
Single top	0.13 ± 0.09	0.76 ± 0.25	0.67 ± 0.33
Fakes	0.31 ± 0.21	-0.15 ± 0.08	0.01 ± 0.01
Total SM	3.64 ± 1.24	8.08 ± 2.78	6.91 ± 2.20

2lepton flavour subtraction :

If the assumption is made that the branching fractions for $e^{ \pm} e^{\mp}$ and $\mu^{ \pm} \mu^{\mp}$ final states in new physics events are identical. and the branching fraction for $e^{ \pm} \mu^{\mp}$ final states is zero,
i.e. lepton flavour conserving limit of order 10 events for order 35 events/pb indicates limit for cross section for lepton flavour conserving production is about $\sim 0.3 \mathrm{pb}$
fairly model independent
competitive with results from the jets+mpt analysis:

Exclude non-SM effective cross sections ($\sigma \times \mathrm{BR} \times \mathrm{Acc} \times \mathrm{Eff}$):
A: $1.3 \mathrm{pb} \quad \mathrm{B}: 0.35 \mathrm{pb} \quad \mathrm{C}: 1.1 \mathrm{pb} \quad \mathrm{D}: 0.11 \mathrm{pb}$ https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/susy-Olepton 01/

.. competitive with 35/pb limits on strong BSM production

Exclude non-SM effective cross sections ($\sigma \times \mathrm{BR} \times \mathrm{Acc} \times \mathrm{Eff}$):
A: 1.3 pb
B: 0.35 pb
C: 1.1 pb
D: 0.11 pb
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/susy-Olepton 01/

This presentation arguably less

holnfi.l.

Against the 2010 LHC data...

ATLAS 35/pb: $\mathrm{H} \rightarrow \mathrm{WW} \rightarrow$

